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Abstract

Background

Psoriatic arthritis (PsA) is an inflammatory arthritis whose pathogenesis is poorly under-

stood; it is characterized by bone erosions and new bone formation. The diagnosis of PsA is

mainly clinical and diagnostic biomarkers are not yet available. The aim of this work was to

clarify some aspects of the disease pathogenesis and to identify specific gene signatures in

paired peripheral blood cells (PBC) and synovial biopsies of patients with PsA. Moreover,

we tried to identify biomarkers that can be used in clinical practice.

Methods

PBC and synovial biopsies of 10 patients with PsA were used to study gene expression

using Affymetrix arrays. The expression values were validated by Q-PCR, FACS analysis

and by the detection of soluble mediators.

Results

Synovial biopsies of patients showed a modulation of approximately 200 genes when com-

pared to the biopsies of healthy donors. Among the differentially expressed genes we

observed the upregulation of Th17 related genes and of type I interferon (IFN) inducible

genes. FACS analysis confirmed the Th17 polarization. Moreover, the synovial trascriptome

shows gene clusters (bone remodeling, angiogenesis and inflammation) involved in the

pathogenesis of PsA. Interestingly 90 genes are modulated in both compartments (PBC

and synovium) suggesting that signature pathways in PBC mirror those of the inflamed

synovium. Finally the osteoactivin gene was upregulared in both PBC and synovial biopsies

and this finding was confirmed by the detection of high levels of osteoactivin in PsA sera but

not in other inflammatory arthritides.
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Conclusions

We describe the first analysis of the trancriptome in paired synovial tissue and PBC of

patients with PsA. This study strengthens the hypothesis that PsA is of autoimmune origin

since the coactivity of IFN and Th17 pathways is typical of autoimmunity. Finally these find-

ings have allowed the identification of a possible disease biomarker, osteoactivin, easily

detectable in PsA serum.

Introduction
Psoriatic arthritis (PsA) is primarily characterised by enthesitis and by synovitis, leading to
bone erosions and new bone formation [1]; 10% to 30% of patients with skin psoriasis are
affected by the disease, with an estimated prevalence of 1%.

Genetic studies indicate that PsA has a heritable component [2] and many genes have been
implicated in psoriasis and PsA [3]. However only a few genes have been associated to both
psoriasis and PsA [4].

PsA is characterized by different clinical phenotypes: oligoarticular or polyarticular asym-
metrical peripheral joint inflammation or axial involvement. In the last few years several crite-
ria have been used for the classification of PsA. The most frequently classification criteria used
are those proposed by Moll and Wright [5] and more recently, are the classification criteria for
PsA (CASPAR) [6]. The diagnosis of PsA is mainly performed on a clinical basis and after the
exclusion of other seronegative arthritides and up to now there are no diagnostic tests available.
Diagnostic work up is based on medical history, physical examination, blood tests, and imaging
of the joints. Plain radiographs are used to evaluate the joint damage. Magnetic resonance
imaging (MRI) is able to detect joint damage earlier and to assess the extent of joint involve-
ment more accurately than plain radiographs. Indeed MRI is able both to quantify the extent of
the inflammatory process within the affected joints and to detect enthesitis even in apparently
unaffected joints and in the absence of clinical symptoms. Enthesitis is considered the primary
event in the pathogenesis of the disease [7]. Moreover MRI and scintigraphy can be used for an
early detection of sacroiliitis and axial disease. In addition these imaging techniques are widely
used to evaluate the efficacy of novel therapies for PsA [8,9].

In psoriatic skin lesions the typical cell infiltrate contains activated keratinocytes, T and B
lymphocytes, macrophages and neutrophils. Both CD4 and CD8 T cells have been associated
with skin and joint damage [10,11] typical of PsA.

The synovial tissue in PsA is characterized by an abundant T cell infiltrate, marked angio-
genesis, and synovial hyperplasia with increased expression and/or secretion of cytokines and
proteases that contribute to amplify the local inflammation and may explain the “erosive
behavior” of the synovium leading to joint destruction.

The cytokine tumor necrosis factor-alpha (TNF-alpha) is a very important inflammatory
mediator and has been implicated in PsA pathogenesis. TNF-alpha inhibitors are widely used
in PsA therapy and are usually quite effective in reducing the extent of skin lesions and of mus-
culoskeletal symptoms, however a high percentage of PsA patients does not respond to TNFal-
pha antagonists. Considering the expense and side effects of anti-TNF biological agents, the
identification of biomarkers that could be used to predict which patients will respond to biolog-
ical treatment is an important goal in medicine.

Therapies that target the TNFα induce a significant clinical improvement in approximately
70% of patients [12]. However, the extent of clinical improvement is often far from complete
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remission and the majority of PsA patients experience a flare of the disease within the first 2
years [12]. Therefore, the identification of new molecules that play a pivotal role in the patho-
genesis of the disease is fundamental for the development of new therapies. Moreover prognos-
tic and diagnostic biomarkers need to be identified. To this aim, gene expression profiling may
be of great help since it has been used to classify lymphoid malignancies [13] and to dissect
pathways involved in several autoimmune and inflammatory diseases. In this regard gene array
studies have generated useful insight in several diseases including systemic lupus erythemato-
sus (SLE) [14], rheumatoid arthritis (RA) [15], and multiple sclerosis (MS) [16]

Gene expression studies in PBMC of subjects with rheumatoid arthritis (RA) and systemic
lupus erythematosus (SLE) have allowed the identification of specific gene 'signatures' that are
differentially expressed in patients when compared to healthy subjects [14,15]. In a few cases
differentially expressed genes (DEGs) have been shown to correlate with particular features of
the disease (such as presence or absence of systemic organ involvement in RA), or with capac-
ity to respond to immunosuppressive treatment.

In this study we used a gene array strategy to identify transcriptional profiles that distin-
guish PsA patients from healthy control subjects. For this purpose we analyzed for the first
time gene expression in paired peripheral blood cells (PBC) and synovial biopsies of 10 PsA
patients. We reasoned that the combined analysis of transcription data obtained in PBC and in
the target tissue of PsA, the synovial membrane, could provide a deeper understanding of the
genetic pathways that regulate the disease.

Using this approach we have been able to shed light on some aspects of disease pathogenesis
by dissecting different aspects of this complex pathology. Interestingly DEGs recapitulate most
of the typical features of PsA, such as bone remodeling with new bone formation, synovial
hyperplastic growth with neoangiogenesis, local and systemic inflammatory response, activa-
tion of innate and adaptive immune reponses.

Moreover our results provide evidence for an autoimmune origin of PsA, since gene expres-
sion profiles are characterized by the combined overexpression of type I IFN inducible genes
[17] and of Th17 related transcripts. Indeed coactivity of IFN and Th17 pathways is typical of
autoimmunity and has been described both in human diseases and in animal models [18–20].

Moreover, using the same strategy, we could identify a novel biomarker, osteoactivin, that
can be easily detected in PsA sera. Indeed increased serum levels of osteoactivin, seem to be
typical of PsA and, in the absence of other disease markers, the detection of high levels of this
molecule may represent an interesting tool in the diagnostic work up of PsA.

Patients and Methods

Patients
We studied a cohort of 60 patients (38 males and 22 females, mean age: 44 years) affected by
PsA, attending the Unit of Autoimmune Diseases, at the University Hospital of Verona, Italy.
The patients enrolled in the study were selected as already described elsewhere [21]. All
patients fulfilled the CASPAR criteria for the diagnosis of PsA: inflammatory musculoskeletal
involvement (inflammatory arthritis, enthesitis or lumbar pain) combined with at least 3 fea-
tures: 1) evidence of current psoriasis, personal history of psoriasis, family history of psoriasis
in unaffected patiens; 2) affected nails (onycholysis, pitting); 3) dactylitis; 4) negative rheuma-
toid factor; 5) radiographic evidence of new juxta-articular bone formation (excluding osteo-
phytes) [22].

All the patients underwent clinical examination and laboratory evaluation comprehensive
of inflammatory markers, such as CRP and erythrocytes sedimentation rate (ESR); rheumatoid
factor (RF) and anti-CCP antibody detected by ELISA test; antinuclear antibody detected by
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indirect immunofluorescence on HEp-2 cells; and genetic screening for the association with
the allele HLA-B27. All patients underwent the following instrumental investigations: ultraso-
nography with Power Doppler to investigate subclinical enthesopaty and synovitis in asymp-
tomatic patients; conventional radiography, magnetic resonance imaging (MRI) and
scintigraphy. The radiological features of peripheral PsA included asymmetric distribution,
participation of distal interphalangeal joints, periostitis, bone density preservation, bone anky-
losis and pencil-in-cup deformity.

A group of 10 subjects with recent onset PsA (within one year from the diagnosis) was
selected within the entire cohort of PsA patients and utilized for the gene array study. These
patients were not treated with anti-TNF agents or with disease-modifying antirheumatic drugs
(DMARDs). The clinical features of the patients are reported in Table 1 that also includes a
description of the PsA patients selected for the gene array study. Sixty control subjects matched
for sex and age served as control group. Moreover 60 patients with rheumatoid arthritis (RA),
60 patients with Ankylosing spondylitis (AS) and 20 patients with osteoarthritis (OA) were
used as controls. RA patients had the American College of Rheumatology classification criteria
for RA [23]. In all RA patients the disease was at an active stage and blood was obtained before
therapy with biological agents. AS patients met the SAS classification criteria for AS [24].

All the participants to the study signed a written informed consent. The local Ethical Com-
mittee of the Azienda Ospedaliera Universitaria of Verona, Verona, Italy had approved the
study protocol. All the investigations have been performed according to the principles con-
tained in the Helsinki declaration.

Synovial biopsies
In the 10 PsA patients selected for the gene array study synovial membranes were obtained
with needle biopsies.

Table 1. Clinical features of the patients with PsA included in the study.

Patients 60

Sex male 38

female 22

Age at diagnosis (years) 44±8

Involvement axial 25

peripheral 35

Enthesitis 29

Dactylitis 23

Psoriasis 47

Association with HLA-B27 18

Patients utilized for the gene array study 10

Sex male 6

female 4

Age at diagnosis (years) 43±6

Involvement axial 4

peripheral 6

Enthesitis 7

Dactylitis 4

Psoriasis 7

Association with HLA-B27 3

doi:10.1371/journal.pone.0128262.t001
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In 10 control healthy donors synovial biopsies were collected during orthopedic knee
arthroscopy following traumatic events.

Gene array
Tissue samples from every single patient were frozen in liquid nitrogen immediately after dis-
section and stored at -70°C until homogenization. Sample preparation for gene array analysis
was carried out as previously described [25–27]. Briefly, frozen samples were homogenized in
TRI REAGENT (1mL per 50–100mg of tissue) in a Potter-type mechanical homogenizer with
Teflon pestle.

PAXgene Blood RNA tubes (PreAnalytiX, Hombrechtikon, Switzerland) were used for blood
collection and total RNA was extracted according to the protocol supplied by the manufacturer.

Preparation of cRNA hybridization and scanning of arrays for each samples were performed
following the manufacturer instructions (Affymetrix, Santa Clara, CA, USA) by Cogentech
Affymetrix microarray unit (Campus IFOM IEO, Milan, Italy) using the Human Genome
U133A 2.0 Gene Chip (Affymetrix). The Human Genome U133A Gene Chip is a single array
which contains 14,500 well-characterized human genes and more than 22,000 probe sets and
500,000 distinct oligonucleotide features. The gene expression profiles were analyzed using the
Gene Spring software, version 12.1 (Agilent Technologies, SantaClara, CA, USA) that calcu-
lated a robust multi-array average of background-adjusted, normalized, and log-transformed
intensity values applying the Robust Multi-Array Average algorithm (RMA).

With this software the mean optical background level for each array was subtracted from
the signal intensity for each probe. The normalized data were transformed to the log2 scale. A
signal log2 ratio of 1.0 corresponds to an increase of the transcript level by two-fold change (2
FC) and -1.0 indicates a decrease by two-fold change (-2 FC). A signal log2 ratio of zero would
indicate no change. The unpaired t-test was performed to determine which genes were modu-
lated at a significant level (p�0.01) and p values were corrected for multiple testing by using
Bonferroni correction. Finally, statistically significant genes were chosen for final consideration
when their expression was at least 2.0 fold different in the test sample versus control sample.
Genes that passed both the p-value and the FC restriction were submitted to functional classifi-
cation analysis according to the Gene Ontology (GO) annotations.

The microarray results have been reported according to the MIAME guidelines and depos-
ited in the public repository ArrayExpress http://www.ebi.ac.uk/arrayexpress; accession num-
ber E-MTAB-3201.

FACS analysis
Peripheral blood mononuclear cells (PBMCs) were obtained from 20 healthy donors and 30
patients affected by PsA following a density-gradient centrifugation on Lymphoprep
(Nycomed Pharma, Oslo, NO) and two washes with PBS.

Cells collected from patients and normal controls were cultured in 2 mL tubes containing 1
mL of RPMI 1640 + FCS 10% (Lonza, Basel, CH) at a concentration of 1�106 cells/mL. Cells
were stimulated for 4 hours with Dynabeads Human T-Activator CD3/CD28 (Life Technolo-
gies, Carlsbad, CA, USA) or with heat-inactivated Candida albicans. IL-17 production was
assessed using the IL-17 Secretion Assay (Miltenyi Biotec, Bergish Gladbach, D) according to
the manufacturer’s instruction. Briefly, cells were washed in 2 mL of cold buffer, centrifuged at
300xg for 5 minutes at 4°C and the pellet resuspended in 90 μL of cold medium. An incubation
with IL-17 Catch Reagent was carried out for 5 minutes in ice and cells were washed as before.
PBMCs were incubated in 1 mL of warm medium at 37°C for 45 minutes under slow continu-
ous rotation. Cells were then washed and resuspended in in 75 μL of cold buffer and 10 μL of
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IL-17 Detection Antibody APC, 10 μL of anti-CD3 PerCP (Becton Dickinson, Franklin Lakes,
NJ, USA) and 5 μL of anti-CD4 APC-H7 (Becton Dickinson) antibodies were added. Incuba-
tion was performed in ice for 10 minutes. Finally cells were washed and resuspended in an
appropriate volume of PBS and acquired on a FACSCanto II cytometer (Becton Dickinson).
Analysis was performed with FlowJo 9.3.3 software (Tree Star, Ashland, OR, USA).

Real Time RT-PCR
Total RNA was isolated from PBMC using TRIzol reagent (Invitrogen, Carlsbad, CA, USA),
following manufacturer’s instructions. First-strand cDNA was generated using the Super-
Script III First-Strand Synthesis System for RT-PCR Kit (Invitrogen), with random hexam-
ers, according to the manufacturer’s protocol. PCR was performed in a total volume of 25 μl
containing 1× Taqman Universal PCR Master mix, no AmpErase UNG and 2.5 μl of cDNA;
pre-designed, Gene-specific primers and probe sets for each gene (SPP1: Hs 00959010_m1;
CXCL13: Hs 00757930_m1; CCL18 Hs 00268113_m1; LAMP3: Hs 00180880_m1; CADM1:
Hs 00942509_m1) were obtained from Assay-on-Demande Gene Expression Products
(Applied Biosystems).

As described in details previously [25–27], Real Time PCR reactions were carried out in a
two-tube system and in singleplex. The Real Time amplifications included 10 minutes at 95°C
(AmpliTaq Gold activation), followed by 40 cycles at 95°C for 15 seconds and at 60°C for one
minute. Thermocycling and signal detection were performed with 7500 Sequence Detector
(Applied Biosystems). Signals were detected according to the manufacturer’s instructions. This
technique allows the identification of the cycling point where PCR product is detectable by
means of fluorescence emission (Threshold cycle or Ct value). As previously reported, the Ct
value correlates to the quantity of target mRNA [26]. Relative expression levels were calculated
for each sample after normalization against the housekeeping genes GAPDH, beta-actin and
18s ribosomal RNA (rRNA), using the ΔΔCt method for comparing relative fold expression
differences [25,28]. The data are expressed as fold change. Ct values for each reaction were
determined using TaqMan SDS analysis software. For each amount of RNA tested triplicate Ct
values were averaged. Because Ct values vary linearly with the logarithm of the amount of
RNA, this average represents a geometric mean.

Detection of soluble mediators in sera and synovial fluids
Serum levels of osteoactivin/GPNMB [29] were detected using a commercially available ELISA
kit (Biorbyt Ltd, Cambridge, UK). The ELISA kits for osteopontin, CCL20, CCL18, MMP-3
and IL-23 were all purchased from R & D Systems (Phoenix, AZ, USA) and used according to
the manufacturer’s instructions. IL-17 and IL-23 were detected in synovial fluids (SFs) of 20
patients with PsA and in 20 patients with OA, used as controls. The ELISA kit for IL-17 was
purchased from eBioscience (San Diego, CA, USA) and used according to the manufacturer’s
instruction.

SF was distributed into heparinized tubes, and the cells removed by centrifugation (400 × g,
10 min). Before each test. synovial fluids were treated with hyaluronidase at a concentration of
10 U/ml for 80 min at 37°C followed by centrifugation (12,000 × g, 5 min). This treatment was
used to reduce the viscosity of synovial fluid.

Statistical Analysis
Statistical testing was performed using SPSS Statistics 2 software (IBM,United States). Data
obtained from the analysis of the soluble mediators were submitted to statistical testing using
the non parametric Mann-Whitney test. For the analysis of IL-17–positive CD4+T cells in
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PBMCs and of IL-17 and IL-23 synovial fluid levels, the significance of the differences between
patients and controls was determined using the unpaired Student’s t-test.

Results

Gene-array analysis
a) DEGs in synovial biopsies. In order to identify genes potentially involved in the patho-

genesis of PsA, we first compared the gene expression profiles of 10 synovial biopsies obtained
from patients with PsA with synovial specimens obtained from normal healthy subjects under-
going post-traumatic surgery.

When both a Bonferroni–corrected P-value criterion (p�0.01) and a fold change criterion
(FC�2) were applied to the signal variation of every single gene to detect robust and statisti-
cally significant changes between baseline and experimental arrays [25,27], we obtained 196
modulated genes that were further analyzed. 135 and 61 transcripts resulted to be up- and
downregulated respectively; in many cases the fold changes were very high. In particular three
genes showed a very high level of induction: osteopontin, SPP1/OPN (FC 450), fibronectin 1,
FN1 (FC 405) and osteoactivin, GPNMB (FC 147).

Fig 1 shows the heat map representing some Affymetrix arrays with a selection of modu-
lated genes.

The Gene Ontology analysis of the regulated transcripts showed that the vast majority of
them are involved in several biological processes that may play a role in PsA including: inflam-
mation, immune response, apoptosis, cell cycle regulation and proliferation, cell migration and
invasion, extra-cellular matrix (ECM) and ECM remodeling, bone remodeling, angiogenesis,
signal transduction.

Table 2 shows a detailed representation of selected genes within the above-mentioned clus-
ters. The table also includes GeneBank accession numbers and fold changes. The complete list
of modulated genes can be found in S1 Table.

A large number (29/196) of modulated genes have a role in the inflammatory process.
The upregulated transcripts comprise chemokine (C-X-Cmotif) ligand 13, CXCL13 (FC

79.22), CXCL9/MIG (FC 11.16), chemokine (C-C motif) ligand 18, CCL18 (FC 20.32), interleu-
kin 1 receptor, type I, IL1R1 [30,31] (FC 5.67), oxidized low density lipoprotein receptor 1,
OLR1/LOX1 (FC 83.1), S100 calcium binding protein namely S100B [32] (FC 7.8) and S100A102
[33] (FC 2.21), fibronectin1, FN1 [34] (FC 405.4), tumour necrosis factor alpha TNF (FC 3.5).

Among genes involved in the immune response, many Th17-lymphocytes related genes
were up-regulated including CCR6 (FC 2.01), CCL20 (FC 3.6), CXCL13 (FC 79.2) [35] inter-
leukin 17A, IL17A [36] (FC 2.3), IL22 [37] (FC 2.04), IL26 [38] (FC 3.67); IL23A [39] (FC 2.2)
and signal transducer and activator of transcription 3, STAT3 (FC 2.26) [40].

Other genes involved in B cell activity are downregulated in PsA samples [40,41].
Several upregulated genes play a role in innate immunity and are expressed in dendritic

cells [42–45] and in macrophages [46].
Many genes coding for protein involved in apoptosis and/or in apoptosis regulation resulted

modulated in pathological samples [47–54].
Genes that positively regulate cell cycle resulted overexpressed in PsA synovial samples [55–

57]. Moreover there was a strong downregulation of the guanine nucleotide binding protein,
gamma 11, GNG11 (FC -42.3), an inducer of cellular senescence in human cells [58]. Genes
that control cell proliferation were also modulated in PsA biopsies even with very high fold
change [59–66].

Another group of differentially expressed genes comprises transcripts involved in cell
migration and invasion. Interestingly genes that promote these processes resulted up-regulated,
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Fig 1. Gene expression profiles of synovial membranes obtained from 10 PsA patients and from 10
healthy subjects. The heat map shows the expression levels of all the modulated genes. Blue-violet
indicates genes that are expressed in synovial biopsies of PsA patients at lower levels when compared with
the mean values of the control subjects, orange-red indicates genes that are expressed at higher levels when
compared to the control means and yellow indicates genes that are not differently expressed in the patients
group versus the control group. Each row represents a gene; each column shows the expression of selected
genes in each individual (see S1 Table for complete list of genes expression data). On both sides of the heat
map a selection of genes is shown. Green and red squares indicate upregulated and downregulated genes
respectively.

doi:10.1371/journal.pone.0128262.g001
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Table 2. Annotated genes differentially expressed in PsA synovial membranes versus healthy synovial membranes grouped according to their
function.

Probe Set ID Gene Title Gene
Symbol

FC Representative Public
ID

inflammation

207113_s_at tumor necrosis factor (TNF superfamily, member 2) TNF 3.55 NM_000594

210004_at oxidized low density lipoprotein (lectin-like) receptor 1 OLR1 83.10 AF035776

205242_at chemokine (C-X-C motif) ligand 13 CXCL13 79.22 NM_006419

32128_at chemokine (C-C motif) ligand 18 CCL18 20.32 NM_002988

203915_at chemokine (C-X-C motif) ligand 9 CXCL9/MIG 11.16 NM_002416

209686_at S100 calcium binding protein B S100B 7.80 NM_006272

200872_at S100 calcium binding protein A10 S100A10 2.21 NM_002966

206974_at chemokine (C-X-C motif) receptor 6 CXCR6 6.28 NM_006564

202948_at interleukin 1 receptor, type I IL1R1 5.67 NM_000877

211719_x_at fibronectin 1 FN1 405.39 NM_212482

immune response

a) adaptive

205242_at chemokine (C-X-C motif) ligand 13 CXCL13 79.22 NM_006419

216876_s_at interleukin 17A IL17A 2.30 U32659

221165_s_at interleukin 22 IL22 2.04 AF279437

221111_at interleukin 26 IL26 3.67 NM_018402

220054_at interleukin 23, alpha subunit p19 IL23A 2.00 NM_016584

208991_at signal transducer and activator of transcription 3 STAT3 2.26 NM_139276.2

206983_at chemokine (C-C motif) receptor 6 CCR6 2.01 NM_004367

205476_at chemokine (C-C motif) ligand 20 CCL20 3.61 NM_004591

206991_s_at chemokine (C-C motif) receptor 5 CCR5 8.42 NM_000579

208488_s_at complement component (3b/4b) receptor 1 CR1 -2.36 NM_000651

205544_s_at complement component receptor 2 CR2 -5.05 NM_001877

221239_s_at Fc receptor-like 2 FCRL2 -3.90 NM_030764

220068_at pre-B lymphocyte 3 VPREB3 -3.59 NM_013378

b) innate

205569_at lysosomal-associated membrane protein 3 LAMP3 36.99 NM_014398

204787_at V-set and immunoglobulin domain containing 4 VSIG4/Z39IG 26.76 NM_007268

221538_s_at plexin A1 PLXNA1 3.36 NM_032242

210889_s_at Fc fragment of IgG, low affinity IIb, receptor (CD32) FCGR2B 5.25 M31933

209959_at nuclear receptor subfamily 4, group A, member 3 NR4A3 5.20 U12767

219890_at C-type lectin domain family 5, member A CLEC5A 16.91 NM_013252

206682_at C-type lectin domain family 10, member A CLEC10A 4.01 NM_006344

apoptosis

205573_s_at sorting nexin 7 SNX7 7.76 NM_015976

217996_at pleckstrin homology-like domain, family A, member 1 PHLDA1 6.09 NM_007350

204998_s_at activating transcription factor 5 ATF5 5.79 NM_012068

221530_s_at basic helix-loop-helix family, member e41 BHLHE41 5.03 AB044088

217966_s_at family with sequence similarity 129, member A FAM129A 3.54 AF288391

211367_s_at caspase 1, apoptosis-related cysteine peptidase CASP1 -2.83 NM_033292

220048_at ectodysplasin A receptor EDAR -2.22 NM_022336

204201_s_at protein tyrosine phosphatase, non-receptor type 13 PTPN13 2.18 NM_006264

243_g_at microtubule-associated protein 4 MAP4 2.40 M64571

204614_at serpin peptidase inhibitor, clade B, member 2 SERPINB2 -5.90 NM_002575

(Continued)
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Table 2. (Continued)

Probe Set ID Gene Title Gene
Symbol

FC Representative Public
ID

cell cycle regulation

208712_at cyclin D1 CCND1 9.94 NM_053056.2

220658_s_at aryl hydrocarbon receptor nuclear translocator-like 2 ARNTL2 4.03 NM_020183

204115_at guanine nucleotide binding protein (G protein), gamma 11 GNG11 -42.28 NM_004126

204032_at breast cancer anti-estrogen resistance 3 BCAR3 3.94 NM_003567

cell proliferation

213348_at cyclin-dependent kinase inhibitor 1C (p57, Kip2) CDKN1C -17.49 NM_001122631

201830_s_at neuroepithelial cell transforming 1 NET1 4.27 NM_005863

209815_at patched homolog 1 (Drosophila) PTCH1 -7.22 NM_000264

202177_at growth arrest-specific 6 GAS6 4.12 NM_000820

205081_at cysteine-rich protein 1 CRIP1 3.11 NM_001311

219787_s_at epithelial cell transforming sequence 2 oncogene ECT2 3.04 NM_018098

201324_at epithelial membrane protein 1 EMP1 45.31 NM_001423

209481_at SNF related kinase SNRK -2.15 AF226044

202286_s_at tumor-associated calcium signal transducer 2 TACSTD2 56.82 NM_002353

cell migration and/or
invasion

202345_s_at fatty acid binding protein 5 (psoriasis-associated) FABP5 12.73 NM_001444

218451_at CUB domain containing protein 1 CDCP1 3.61 NM_022842

203349_s_at ets variant 5 ETV5 7.03 NM_004454

200696_s_at gelsolin (amyloidosis, Finnish type) GSN 3.65 NM_000177

ECM/ECM remodeling

205828_at matrix metallopeptidase 3 (stromelysin 1, progelatinase) MMP3 26.05 NM_002422

217757_at alpha-2-macroglobulin A2M 25.43 NM_000014

210042_s_at cathepsin Z CTSZ 7.14 NM_001336

212158_at syndecan 2 SDC2 15.68 NM_002998

202439_s_at iduronate 2-sulfatase IDS 2.31 NM_000202

202071_at syndecan 4 SDC4 5.98 NM_002999

205559_s_at proprotein convertase subtilisin/kexin type 5 PCSK5 -4.52 NM_006200

206310_at serine peptidase inhibitor, Kazal type 2 SPINK2 -2.30 NM_021114

214768_x_at anti-thyroid peroxidase monoclonal autoantibody IgK chain, V
region

FAM20B -4.03 NM_014864

angiogenesis

204984_at glypican 4 GPC4 2.24 NM_001448

201110_s_at thrombospondin 1 THBS1 -8.29 NM_003246

212070_at G protein-coupled receptor 56 GPR56 -7.31 NM_001145774

219501_at ecto-NOX disulfide-thiol exchanger 1 ENOX1 3.47 NM_017993

219278_at mitogen-activated protein kinase kinase kinase 6 MAP3K6 2.41 NM_004672

211499_s_at mitogen-activated protein kinase 11 MAPK11 2.24 NM_002751

213693_s_at mucin 1, cell surface associated MUC1 2.46 X80761

bone remodeling

209875_s_at secreted phosphoprotein 1 SPP1/OPN 448.78 J04765

201141_at glycoprotein (transmembrane) nmb GPNMB 147.53 NM_001005340

a) bone growth

209031_at cell adhesion molecule 1 CADM1 14.85 NM_014333

203411_s_at lamin A/C LMNA 13.75 NM_005572

(Continued)
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Table 2. (Continued)

Probe Set ID Gene Title Gene
Symbol

FC Representative Public
ID

212458_at sprouty-related, EVH1 domain containing 2 SPRED2 4.33 AY299090

205066_s_at ectonucleotide pyrophosphatase/phosphodiesterase 1 ENPP1 7.20 NM_006208

206026_s_at tumor necrosis factor, alpha-induced protein 6 TNFAIP6 4.84 NM_007115

202283_at serpin peptidase inhibitor, clade F, member 1 SERPINF1 4.77 NM_002615

201951_at activated leukocyte cell adhesion molecule ALCAM 5.95 L38608

b) bone erosion

207113_s_at tumor necrosis factor (TNF superfamily, member 2) TNF 3.55 NM_000594

204638_at acid phosphatase 5, tartrate resistant ACP5 3.91 NM_001611

207037_at tumor necrosis factor receptor superfamily, member 11a, NFKB
activator

TNFRSF11A 3.77 NM_003839

202252_at RAB13, member RAS oncogene family RAB13 5.37 NM_002870

212151_at pre-B-cell leukemia homeobox 1 PBX1 -2.36 NM_002585

202388_at regulator of G-protein signaling 2, 24kDa RGS2 -4.34 NM_002923

212531_at lipocalin 2 LCN2 -3.26 NM_005564

201417_at SRY (sex determining region Y)-box 4 SOX4 -2.78 NM_003107

203395_s_at hairy and enhancer of split 1 HES1 -2.18 NM_005524

signaling pathways

a) Wnt and beta-catenin
pathway

205003_at dedicator of cytokinesis 4 DOCK4 13.81 AY233380

213693_s_at mucin 1, cell surface associated MUC1 2.46 X80761

219889_at frequently rearranged in advanced T-cell lymphomas FRAT1 -2.59 NM_005479

205805_s_at receptor tyrosine kinase-like orphan receptor 1 ROR1 2.02 NM_005012

208712_at cyclin D1 CCND1 9.94 NM_053056.2

201667_at gap junction protein, alpha 1, 43kDa GJA1 9.03 NM_000165

216511_s_at transcription factor 4 TCF4/
TCF7L2

-7.27 NM_001146274

b) MAP-kinase pathway

219278_at mitogen-activated protein kinase kinase kinase 6 MAP3K6 2.41 NM_004672

211499_s_at mitogen-activated protein kinase 11 MAPK11 2.24 NM_002751

212912_at ribosomal protein S6 kinase, 90kDa, polypeptide 2 RPS6KA2 2.65 NM_021135

202581_at heat shock 70kDa protein 1A HSPA1A 6.94 NM_005345

d) Insulin pathway

209185_s_at insulin receptor substrate 2 IRS2 -4.83 AF073310

205066_s_at ectonucleotide pyrophosphatase/phosphodiesterase 1 ENPP1 7.20 NM_006208

206020_at suppressor of cytokine signaling 6 SOCS6 2.26 NM_004232

b) Notch pathway

211974_x_at recombination signal binding protein for immunoglobulin kappa J
region

RBPJ 2.92 NM_203284

203395_s_at hairy and enhancer of split 1 HES1 -2.18 NM_005524

207113_s_at tumor necrosis factor (TNF superfamily, member 2) TNF 3.55 NM_000594

e) Type I interferon pathway

202411_at interferon, alpha-inducible protein 27 IFI27 13.74 NM_005532

204439_at interferon-induced protein 44-like IFI44L 2.23 NM_006820

214453_s_at interferon-induced protein 44 IFI44 2.32 NM_006417

204415_at interferon, alpha-inducible protein 6 IFI6 2.20 NM_022873

213797_at radical S-adenosyl methionine domain containing 2 RSAD2 3.68 NM_080657

(Continued)
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i.e. the CUB domain containing protein 1, CDCP1 (FC 3.6) [67]; gelsolin, GSN (FC 3.65) [68];
the fatty acid binding protein 5, FABP5 (FC 12.73) [69], and the ets variant 5, ETV5 (FC 7.03),
a pro-invasive transcription factor tought to be involved in bone invasion [70].

Several genes encoding for ECM components or involved in ECM remodeling were modu-
lated in PsA samples. We found a strong overexpression of syndecan 2, SDC2 (FC 15.68) and
syndecan 4, SDC4 (FC 5.98) and of several proteases-encoding genes, including matrix metal-
lopeptidase 3, MMP3 (FC 26.05), suppression of tumorigenicity 14, ST14/matriptase (FC 2.78);
carboxy-peptidase cathepsin Z, CTSZ (FC 7.14) [71] and iduronate 2-sulfatase, IDS (FC 2.31)
[72]. On the contrary, inhibitors of metalloproteases, proprotein convertase subtilisin/kexin
type 5, PCSK5/PC5/6 (FC -4.52) [73], and serine peptidase inhibitor, Kazal type 2, SPINK2
(FC -2.30) [74] were underexpressed.

Differentially expressed genes also comprise transcripts which regulate the angiogenesis
process [75–78].

A large number (28/196) of genes differentially expressed in PsA biopsies belong to the
bone remodeling cluster which comprises transcripts involved in bone-growth and bone
resorption. Upregulated genes promote bone growth with different mechanisms such as osteo-
blast differentiation i.e: lamin A, LMNA (FC 13.75) [79]; bone-matrix deposition, i.e: cell adhe-
sion molecule 1, CADM1 (FC 14.85) [80]; bone development, i.e: sprouty-related, EVH1
domain containing 2, SPRED2 (FC 4.33) [81]; bone mineralization i.e: ectonucleotide pyropho-
sphatase/phosphodiesterase 1, ENPP1/NPP1 (FC 7.20), [82] and bone morphogenesis, i.e: acti-
vated leukocyte cell adhesion molecule, ALCAM/CD166 (FC 5.95), [83].

Genes inhibiting osteoblast proliferation [84,85]and osteoblast differentiation [86–88] were
expressed in lower levels in PsA samples.

In addition the following upregulated genes may support bone growth by interfering with
osteoclast activity: tumor necrosis factor, alpha-induced protein 6, TNFAIP6/TSG6 (FC 4.84)
[89], and serpin peptidase inhibitor, clade F member 1, SERPINF1/PEDF (FC 4.77).

In the bone resorption cluster, the following upregulated genes promote osteoclast activity
and/or differentiation: the acid phosphatase 5, tartrate resistant, ACP5/TRAP (FC 3.91) [90],
the tumor necrosis factor a, TNFa (FC 3.55); member RAS oncogene family, RAB13 (FC 5.37)

Table 2. (Continued)

Probe Set ID Gene Title Gene
Symbol

FC Representative Public
ID

217502_at interferon-induced protein with tetratricopeptide repeats 2 IFIT2 2.03 NM_001547

203153_at interferon-induced protein with tetratricopeptide repeats 1 IFIT1 3.17 NM_001548

204747_at interferon-induced protein with tetratricopeptide repeats 3 IFIT3 2.58 NM_001549

219209_at interferon induced with helicase C domain 1 IFIH1 2.15 NM_022168

205469_s_at interferon regulatory factor 5 IRF5 2.03 NM_001098629

205483_s_at ISG15 ubiquitin-like modifier ISG15 2.03 NM_005101

202086_at myxovirus resistance 1, interferon-inducible protein p78 MX1 3.05 NM_002462

208436_s_at interferon regulatory factor 7 IRF7 2.15 NM_001572

f) others

201020_at tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein, eta

YWHAH 3.27 NM_003405

209050_s_at ral guanine nucleotide dissociation stimulator RALGDS 2.43 NM_006266

221211_s_at chromosome 21 open reading frame 7 C21orf7 -8.00 NM_020152

doi:10.1371/journal.pone.0128262.t002
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[91] and tumor necrosis factor receptor superfamily, member 11a, NFKB activator,
TNFRSF11A/RANK (FC 3.77) [92].

Noteworthy the bone remodeling category contains two genes, osteopontin and osteoacti-
vin, which show a very high level of induction (FC 450 and 147 respectively).

Finally we analysed DEGs which belong to /or are connected to the gene cluster signal trans-
duction using a pathway analysis tool to evaluate if they contribute to known signaling net-
works that may be relevant in the pathogenesis of PsA and found that a conspicuous number
of genes (also including genes originally ascribed to different functional classes) is involved in
well characterized signaling networks already associated to human diseases, including
immune-mediated diseases, bone diseases and inflammatory diseases.

These signal cascades include: 1) the Interferon-alpha (IFN-A) pathway also named “Type I
Interferon signature” [93], 2) the Wnt/beta-catenin signaling pathway, 3) the Notch signaling
pathway, 4) the mitogen activated protein (MAP) kinase pathway, and 5) the insulin pathway.

In particular 13 type I interferon inducible genes (IFIG) were upregulated, thus indicating
the presence of an IFN type I signature, typically associated with autoimmune disease such as
systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Crohn’s disease and Sjogren
syndrome [94–100].

Seven modulated genes belong to the WNT signalling pathway which has been associated
with the pathogenesis of RA, and in particular with synovial inflammation and bone remodel-
ing [101–107].

Three genes belong to the Notch signalling pathway that is crucial for bone homeostasis and
is involved in the pathogenesis of several immune-mediated diseases, including RA [108].

Four genes of the MAP kinase pathway are upregulated including: mitogen-activated pro-
tein kinase 11, MAPK11 (FC 2.24), mitogen-activated protein kinase 6,MAP3K6 (FC 2.41),
ribosomal protein S6 kinase, 90 kDa, polypeptide 2, RPS6KA2 (FC 2.65), heat shock 70 kDa
protein 1 A, HSPA1A (FC 6.94). The p38 MAPK signalling pathway has been associated with
psoriasis and psoriatic arthritis [109].

Two genes belong to the insulin pathway: insulin receptor substrate 2, IRS2 (FC-4.83) and
ectonucleotyde pyrophosphatase/phosphodiesterase 1, ENPP1 (FC 7.2). The insulin pathway is
involved in the pathogenesis of the metabolic syndrome [110] and an increased body mass
index increases the risk of PsA development in patients with cutaneous psoriasis, supporting a
link between fat-mediated inflammation and joint involvement [111].

The modulation of some genes observed by gene array analysis was validated by Q-PCR
(Fig 2).

B) DEGs in PBC. We next compared the gene expression profiles of 10 PBC samples
obtained from the same PsA patients used for the biopsy collection with 10 PBC samples
obtained from healthy age and sex matched donors. When the same statistical criteria and fold
change criteria were applied to the modulated genes, we obtained 187 genes that were further
analysed. 118 and 69 genes resulted to be up- or downregulated respectively. While the number
of DEGs in PBC is similar to that obtained in synovial biopsies, the average level of gene induc-
tion (FC) is much lower in PBC when compared to the synovium. DEGs are distributed in sev-
eral functional classes which partially overlap with the ones identified by genes modulated in
PsA synovium. The gene categories comprise: inflammation, immune response, apoptosis, cell
cycle regulation and proliferation, cell migration and invasion, ECM/ECM remodeling, bone
remodelling, angiogenesis, signal transduction.

A detailed representation of modulated genes within the above-mentioned clusters vcan be
found in S2 Table.

Interestingly modulated genes are distributed in various gene categories that regulate differ-
ent biological processes (ie proliferation, apoptosis, immune response), however the functional
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classes which show the highest enrichment in modulated trascripts are the immune response
(36/187), the signal transduction (25/187) the inflammation (25/187), and the bone remodeling
(17/187) gene clusters.

Remarkably, in the immune response group, we observed increased expression of several
Th17 related genes (CCR6 [112]; CCL20 [113]; lymphocyte antigen 9, LY9 [114,115]; interleu-
kin 6 signal transducer, IL6ST [116–118], interleukin 12 receptor, beta 2, IL12RB [119]).

Noteworthy 10 IFIG were modulated also in PBC samples, thus confirming the presence of
an INFA signature observed within the synovium.

Consistently with the presence of a strong inflammatory response typical of PsA we also
observed upregulation of several proinflammatory genes (IL8; CCL18; chemokine (C-X-C
motif) ligand 1, CXCL1; IL1A; OLR1; HSPA1A; CXCL9; see S2 Table). New bone formation is
a typical feature of PsA and consistently with this aspect of the disease several genes involved
in the bone growth process are modulated also in PBC.

The analysis of the expression profiles of the PBC samples revealed that 90 out of 187 tran-
scripts differently regulated in PBC were also modulated in PsA synovium (Table 3). These
genes belong to different functional classes including: immune response and inflammation;
angiogenesis, apoptosis; bone remodeling; cell proliferation; extracellular matrix remodeling
and ECM components; signal transduction.

Fig 2. Real time RT-PCR of somemodulated genes.Genes selected for validation were SPP1, CXCL13,
CCL18, LAMP3 and CADM1. The transcripts of the selected genes were increased in PsA samples when
compared to healthy donors. Relative expression levels were calculated for each sample after normalization
against the housekeeping gene GAPDH. Experiments have been conducted in triplicates. Similar results
were obtained using the housekeeping genes18s rRNA and beta-actin (data not shown).

doi:10.1371/journal.pone.0128262.g002
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Table 3. Annotated genes differentially expressed in PsA synovial membranes and in PsA PBC versus healthy controls grouped according to
their function.

Probe Set ID Gene Title Gene Symbol FC
SM

FC
PBC

Representative Public
ID

inflammation

210004_at oxidized low density lipoprotein (lectin-like) receptor 1 OLR1 83.10 7.16 AF035776

32128_at chemokine (C-C motif) ligand 18 CCL18 20.32 2.03 NM_002988

219386_s_at SLAM family member 8 SLAMF8 14.24 4.52 NM_020125

202948_at interleukin 1 receptor, type I IL1R1 5.67 3.31 NM_000877

209959_at nuclear receptor subfamily 4, group A, member 3 NR4A3 5.20 2.48 U12767

211372_s_at interleukin 1 receptor, type II IL1R2 6.57 4.27 U64094

219890_at C-type lectin domain family 5, member A CLEC5A 16.91 5.64 NM_013252

202581_at heat shock 70kDa protein 1A HSPA1A 6.94 10.43 NM_005345

206697_s_at haptoglobin HP -2.71 -2.34 NM_005143

203915_at chemokine (C-X-C motif) ligand 9 CXCL9/MIG 11.16 8.48 NM_002416

209686_at S100 calcium binding protein B S100B 7.80 7.82 NM_006272

immune response

209771_x_at CD24 molecule CD24 -8.30 -2.06 NM_013230

205789_at CD1d molecule CD1D -4.49 -2.62 NM_001766

206277_at purinergic receptor P2Y, G-protein coupled, 2 P2RY2 -2.90 -2.2 NM_002564

216984_x_at immunoglobulin lambda variable 2–11 IGLV2-11 -3.66 -3.31 D84143

206983_at chemokine (C-C motif) receptor 6 CCR6 2.01 2.67 NM_004367

205476_at chemokine (C-C motif) ligand 20 CCL20 3.61 2.14 NM_004591

220307_at CD244 molecule, natural killer cell receptor 2B4 CD244/2B4 -4.05 -2.73 AF242540

210029_at indoleamine 2,3-dioxygenase 1 IDO1 5.87 2.34 M34455

205544_s_at complement component receptor 2 CR2 -5.05 -3.12 NM_001877

220068_at pre-B lymphocyte 3 VPREB3 -3.59 -3.43 NM_013378

207840_at CD160 molecule CD160 -14.75 -2.51 NM_007053

apoptosis

217996_at pleckstrin homology-like domain, family A, member 1 PHLDA1 6.09 4.32 NM_007350

204998_s_at activating transcription factor 5 ATF5 5.79 2.79 NM_012068

204201_s_at protein tyrosine phosphatase, non-receptor type 13 PTPN13 2.18 2.16 NM_006264

204614_at serpin peptidase inhibitor, clade B, member 2 SERPINB2/PAI2 -5.90 -2.46 NM_002575

cell cycle regulation

204115_at guanine nucleotide binding protein (G protein), gamma 11 GNG11 -42.28 -2.65 NM_004126

cell proliferation

201830_s_at neuroepithelial cell transforming 1 NET1 4.27 3.05 NM_005863

201324_at epithelial membrane protein 1 EMP1 45.31 2.06 NM_001423

208623_s_at ezrin EZR 2.41 3.04 J05021

209481_at SNF related kinase SNRK -2.15 -2.54 AF226044

209815_at patched homolog 1 (Drosophila) PTCH1 -7.22 -2.65 NM_000264

209808_x_at inhibitor of growth family, member 1 ING1 -2.08 -2.68 AF149723

202286_s_at tumor-associated calcium signal transducer 2 TACSTD2 56.82 3.76 NM_002353

ECM/ECM remodeling

210042_s_at cathepsin Z CTSZ 7.14 2.67 NM_001336

212158_at syndecan 2 SDC2 15.68 2.84 NM_002998

202071_at syndecan 4 SDC4 5.98 2.71 NM_002999

200665_s_at secreted protein, acidic, cysteine-rich (osteonectin) SPARC -5.60 -2.11 NM_003118

206310_at serine peptidase inhibitor, Kazal type 2 SPINK2 -2.30 -2.32 NM_021114

(Continued)
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Table 3. (Continued)

Probe Set ID Gene Title Gene Symbol FC
SM

FC
PBC

Representative Public
ID

214768_x_at anti-thyroid peroxidase monoclonal autoantibody IgK
chain, V region

FAM20B -4.03 -2.52 NM_014864

angiogenesis

212070_at G protein-coupled receptor 56 GPR56 -7.31 -3.25 NM_001145774

218723_s_at chromosome 13 open reading frame 15 C13orf15 3.11 2.74 NM_014059

201110_s_at thrombospondin 1 THBS1 -8.29 -3.48 NM_003246

bone remodeling

206026_s_at tumor necrosis factor, alpha-induced protein 6 TNFAIP6 4.84 4.23 NM_007115

202283_at serpin peptidase inhibitor, clade F, member 1 SERPINF1 4.77 2.77 NM_002615

222258_s_at SH3-domain binding protein 4 SH3BP4 3.73 3.11 AF015043

203395_s_at hairy and enhancer of split 1 HES1 -2.18 -2.23 NM_005524

208328_s_at myocyte enhancer factor 2A MEF2A 2.51 2.45 NM_005587

212151_at pre-B-cell leukemia homeobox 1 PBX1 -2.36 -2.2 NM_002585

205548_s_at BTG family, member 3 BTG3/ANA 2.29 4.76 NM_006806

212531_at lipocalin 2 LCN2 -3.26 -3.43 NM_005564

213222_at phospholipase C, beta 1 (phosphoinositide-specific) PLCB1 -3.68 -2.73 NM_182734

201417_at SRY (sex determining region Y)-box 4 SOX4 -2.78 -3.03 NM_003107

210786_s_at Friend leukemia virus integration 1 FLI1/ETS1 -2.25 -2.16 M93255

209875_s_at secreted phosphoprotein 1 SPP1/OPN 448.78 4.32 J04765

201141_at glycoprotein (transmembrane) nmb GPNMB 147.53 3.27 NM_001005340

203411_s_at lamin A/C LMNA 13.75 2.4 NM_005572

202252_at RAB13, member RAS oncogene family RAB13 5.37 2.62 NM_002870

signaling pathways

201020_at tyrosine 3-monooxygenase YWHAH 3.27 2.37 NM_003405

221211_s_at chromosome 21 open reading frame 7 C21orf7 -8.00 -2.81 NM_020152

206020_at suppressor of cytokine signaling 6 SOCS6 2.26 3.15 NM_004232

202581_at heat shock 70kDa protein 1A HSPA1A 6.94 10.43 NM_005345

209185_s_at insulin receptor substrate 2 IRS2 -4.83 -2.05 AF073310

203395_s_at hairy and enhancer of split 1 HES1 -2.18 -2.23 NM_005524

214453_s_at interferon-induced protein 44 IFI44 2.32 2.06 NM_006417

204439_at interferon-induced protein 44-like IFI44L 2.23 2.34 NM_006820

204415_at interferon, alpha-inducible protein 6 IFI6 2.20 3.04 NM_022873

213797_at radical S-adenosyl methionine domain containing 2 RSAD2 3.68 2.65 NM_080657

203153_at interferon-induced protein with tetratricopeptide repeats 1 IFIT1 3.17 2.21 NM_001548

204747_at interferon-induced protein with tetratricopeptide repeats 3 IFIT3 2.58 3.06 NM_001549

205469_s_at interferon regulatory factor 5 IRF5 2.03 2.78 NM_001098629

205483_s_at ISG15 ubiquitin-like modifier ISG15 2.03 2.23 NM_005101

202086_at myxovirus resistance 1, interferon-inducible protein p78 MX1 3.05 2.66 NM_002462

205003_at dedicator of cytokinesis 4 DOCK4 13.81 2.04 AY233380

216511_s_at transcription factor 4 TCF7L2/TCF4 -7.27 -2.25 NM_001146274

cell junctions

204627_s_at integrin, beta 3 ITGB3 -9.21 -2.46 NM_000212

206493_at integrin, alpha 2b ITGA2B -5.36 -2.33 NM_000419

microtubule-based
process

204141_at tubulin, beta 2A TUBB2A 5.21 3.06 NM_001069

(Continued)
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Frequency of IL-17–positive CD4+T cells in PBMCs from patients with
PsA
Using flow cytometry, we evaluated the intracellular expression of the cytokine IL-17, by
PBMCs from 30 patients with PsA and from 20 healthy control subjects, following stimulation
with microbeads coated with anti-CD3 and CD28 or with Candida Albicans. We observed a
higher proportion of IL-17–producing CD4+ T cells within the PBMCs of patients with PsA
compared with healthy control subjects.

The mean values obtained in 30 PsA PBMC following stimulation with anti-CD3 and CD28
were 1.3% +/- 0.28 versus 0.65% +/- 0.2 (p = 0.005), while the mean values obtained in PSA
PBMC following stimulation with Candida Albicans were 0.63% +/- 0.18 versus 0.33%+/- 0.07
(p = 0.004). Representative FACS experiments are shown in Fig (3A and 3B).

Detection of IL-17 and IL-23 in synovial fluids from patients with PsA
Il-17 and IL-23 levels were investigated in 20 SFs of patients with PsA and in 20 SF of patients
with OA used as controls. SF IL-17 levels were higher in PSA patients (17.87±11.13 pg/mL)
than in controls (5.12±1.30 pg/mL) (p<0.01). SF IL-23 levels were higher in PSA patients
(37.17±18.13 pg/mL) than in controls (14.12±7.23 pg/mL) (p<0.01)

Detection of soluble mediators in PsA sera
The analysis of gene expression profiles was paralleled by the detection of some of the corre-
sponding soluble mediators in the sera of patients with PsA. We decided to analyse the levels of
osteopontin, osteoactivin, CCL20, CCL18, MMP-3 and IL-23. Fig 4 shows the concentration of
these molecules in the sera of the 30 PsA patients. The serum levels of all the molecules tested
was significantly higher in PsA patients when compared to 30 normal healthy donors.

When osteopontin and osteoactivin were evaluated in the entire cohort of 60 patients with
PsA and compared with 60 normal subjects and with 60 patients affected by RA and AS,

Table 3. (Continued)

Probe Set ID Gene Title Gene Symbol FC
SM

FC
PBC

Representative Public
ID

transport

209267_s_at solute carrier family 39 (zinc transporter), member 8 SLC39A8 6.68 2.96 AB040120

209610_s_at solute carrier family 1, member 4 SLC1A4 2.58 2.27 NM_003038

220974_x_at sideroflexin 3 SFXN3 2.93 2.14 NM_030971

201243_s_at ATPase, Na+/K+ transporting, beta 1 polypeptide ATP1B1 3.86 2.97 NM_001677

others

221541_at cysteine-rich secretory protein LCCL domain containing 2 CRISPLD2 -6.35 -2.52 NM_031476

206643_at histidine ammonia-lyase HAL -4.98 -3.37 NM_002108

209574_s_at chromosome 18 open reading frame 1 C18orf1/
LDLRAD4

2.27 2.13 NM_181481

203518_at lysosomal trafficking regulator LYST -2.31 -2.17 NM_000081

208442_s_at ataxia telangiectasia mutated ATM -3.32 -3.2 NM_000051

207156_at histone cluster 1, H2ag HIST1H2AG -3.58 -2.04 NM_021064

204838_s_at mutL homolog 3 MLH3 -4.14 -2.33 NM_014381

218711_s_at serum deprivation response SDPR -19.65 -2.04 NM_004657

218865_at MOCO sulphurase C-terminal domain containing 1 MOSC1/MARC1 -4.86 -2.45 NM_022746

213022_s_at utrophin UTRN/DRP1 -2.15 -2.59 NM_007124

doi:10.1371/journal.pone.0128262.t003
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osteoactivin was found to be statistically higher in subjects with PsA (Fig 5) with a high sensi-
tivity and specificity (Fig 6).

Discussion
In this paper we provide for the first time a comprehensive analysis of the transcriptome within
SM and PBC obtained from the same patients affected by PsA. We believe that the combined
analysis of the gene expression profiles of paired synovial biopsies and PBC of patients with
PsA is likely to better dissect the complex molecular pathways that regulate the different clinical
and histopatological aspects of the disease. One contribution of this work is therefore a detailed
compilation of genes relevant to the pathogenesis of PsA. Indeed the vast majority of DEGs is
involved in biological processes closely connected to the main features of the disease. Notewor-
thy we observed that, when comparing DEGs in synovial biopsies with DEGs in PBC, a large
number of genes were similarly modulated in the two settings, indicating that PBCmay be a sig-
nificant promise for gene expression studies as substitute of tissues that are not easily accessible.

A feature of PsA histopathology is the synovial membrane lining layer hyperplasia, which in
RA has been at least in part attributed to an impairement of fibroblast-like-synoviocyte (FLS)
apoptosis [120]. Our analysis of apoptosis-related genes indicate a predominant overexpression
of anti-apoptotic transcripts which may contribute to the cell accumulation phenomena typical
of synovial hyperplasia.

Fig 3. Flow cytometric analysis of IL-17 producing CD4+ lymphocytes in patients with PsA.Data are
representative of all the 30 subjects studied. A and B panels show the percentages of IL-17 producing CD4
+ lymphocytes in PBMC of healthy donors (N.S) and patients affected by PsA (PsA) after stimulation with
Dynabeads Human T-Activator CD3/CD28 (panel a) or with heat-inactivated Candida albicans (panel b).

doi:10.1371/journal.pone.0128262.g003
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The synovial hyperplastic growth may also be sustained by the global upregulation of genes
with mitogenic effect and by the repression of anti-proliferative transcripts observed in PsA
samples.

Interestingly, the overexpression of the GAS6 and EZR genes has been already associated
with FLS proliferation in inflammatory arthitides [60,121]. FLSs are indeed the predominant
cell type in synovial membrane and, especially when switching their phenotype to macro-
phage-like cells, they can destroy extracellular matrix, deeply penetrating into bone and carti-
lage [122]. It is worthwhile mentioning that EZR has already been reported as differentially
expressed in PsA by Pollock et al. [123]

In PsA synovium, genes involved in cell migration and tissue invasion are strongly upregu-
lated (ie ETV5, and FABP5) consistently with the acquisition of a proinvasive phenotype by
PsA synoviocytes. This behaviour may also depend on overexpression of extracellular matrix
degrading enzymes.

Fig 4. Serum levels of selected soluble mediators in PsA patients and in normal subjects. The
histograms represent the mean of the results obtained in 30 healthy donors and in 30 PsA patients. p values
were calculated using the non-parametric Mann-Whitney test.

doi:10.1371/journal.pone.0128262.g004
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Fig 5. Serum levels of osteopontin and osteoactivin in PsA patients and in control subjects.Graphical
representation of the distributions of osteopontin (A) and osteoactivin (B) serum levels in: 60 psoriatic arthritis
(PsA) patients, 60 rheumatoid arthritis (RA) patients, 60 ankylosing spondylitis (AS) patients and in 60 normal
subjects (NS). p values were calculated using the non-parametric Mann-Whitney test: Osteopontin: PsA vs
NS: p <0.01; PsA vs SA: p <0.01, PsA vs AR: p not significant. Osteoactivin: PsA vs NS: p <0.01; PsA vs SA:
p <0.05; PsA vs AR: p <0.01.

doi:10.1371/journal.pone.0128262.g005

Fig 6. Sensitivity and specificity of the assay of osteoactivin levels between PsA patients and control
subjects. AUC: area under the curve; CI: confidence interval.

doi:10.1371/journal.pone.0128262.g006

Gene Expression Profiling in Psoriatic Arthritis

PLOS ONE | DOI:10.1371/journal.pone.0128262 June 18, 2015 20 / 33



In this regard we found a strong upregulation of transcripts encoding for proteases (i.e.
MMP3, IDS, and CTSZ) and for the metalloproteases inducers ETV5 and FSCN1 [124],
whereas proteinases inhibitors (i.e. PCSK5 and SPINK2) showed a decreased expression.

The upregulation of the MMP3 gene is particularly interesting, since its overexpression has
been reported in PsA synovium [125] and increased MMP3 levels have been detected in sera of
PsA patients by several investigators [126] including ourselves (Fig 4).

Among genes coding for ECM components, the upregulation of the two syndecans tran-
scribing genes (SDC2 and SDC4) is remarkable since these molecules are involved in the reten-
tion and activation of leukocytes in inflamed synovium [127,128] and can induce synovial
fibroblasts to produce cartilage matrix degrading enzymes such as ADAMTS5 [129].

Another aspect associated to synovial hyperplasia is neoangiogenesis, considered a typical
feature of the early phase of PsA [130,131]. Synovial angiogenesis is mediated by several factors
produced by both synovial tissue and infiltrating inflammatory cells [131] and promotes the
synovial infiltration into the intraarticular cartilage [132,133].

Our gene array data show an overall up-regulation of proangiogenic genes involved in dif-
ferent steps of neoangiogenesis, such as GPC4, abundantly expressed in PsA synovium [75],
and MAPK11, also known as p38β, a downstream target of VEGF signaling during angiogene-
sis [78]. An increased expression for MUC1, an activator of multiple pro-angiogenic factors
during hypoxia-driven angiogenesis [134], typical of inflammatory joint diseases [135], was
also observed.

Moreover we found a decreased expression of two anti-angiogenic genes, GPR56, a potent
inhibitor of vessel formation [136] and THBS1, which inhibits vasculogenesis through the trig-
gering of CD36 on endothelial cells, leading to apoptosis of endothelial cells [137]. Interest-
ingly, using a rat model of osteoarthritis (OA) Hsie et al. [138] demonstrated that THBS1 gene
transfer significantly reduced microvessel density and inflammation, thus controlling the pro-
gression of the disease.

A very peculiar aspect of PsA pathology is the presence of new bone deposition.
In this context our DEGs indicate that the process of bone formation may be due to genes

which regulate osteoblast differentiation (LMNA, CAMTA1 and LCN2) [79,86,139] and prolif-
eration (PBX1, RGS2 and SOX4) [84,85,87,140] or correlate with the bone-forming capacity of
mesenchymal stem cells (MSCs) (CADM1). As a matter of fact the synovial membrane has
been recently considered a reservoir of MSCs able to differentiate in osteoblasts and chondro-
blasts [141,142].

Moreover some upregulated genes have specific roles in particular aspects of bone develop-
ment, such as bone matrix mineralization (ENPP1 and TUFT1) [82], bone morphogenesis
(ALCAM) and endochondral ossification (SPRED2). Noteworthy endochondral ossification
plays an important role in the pathogenesis of spondyloarthropathies, including PsA [143].

DEGs are therefore consistent with the new bone formation process typical of PsA, and
mostly characterized by ankylosis, periostitis, and syndesmophytes [143].

PsA is characterized by bone erosions mediated by osteoclasts at the synovial-bone junction.
It is well known that bone erosion is sustained by the osteoclast proteolytic activity and indeed
a great increase of the osteoclast-specific marker ACP5 gene, was present in our arrays [90].
Accordingly, we also noticed a remarkable induction for the SH3BP4 gene (FC 3.73), a positive
regulator of autophagy, which is a TNFα-dependent process thought to play an important role
in joint destruction [144,145]. Two important mediators of bone remodeling typically associ-
ated with PsA are RANK and TNF both upregulated in PsA samples. RANK plays a pivotal
role in osteoclastogenesis since its gene product is a macrophage-colony stimulating factor
(M-CSF)-inducible molecule located on the osteoclast precursor surface that, upon engage-
ment by its ligand RANKL, induces these cells to differentiate [146].
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Interestingly the RANKL expression on osteoblasts and other effector cell is primarily regu-
lated by TNF and by Annexin II [147], the product of the gene ANXA2, also upregulated in
our PsA samples (see S2 Table).

TNF is involved in a number of autoimmune /inflammatory diseases and is one of the
major proinflammatory factors in arthritis causing joint inflammation and cartilage destruc-
tion [148]. TNF level is increased both in the synovium and in the synovial fluid of PSA
patients [149].

Besides these wellknown effects on inflammation and on bone resorption by inducing osteo-
clastogenesis and osteoclast recruitment, TNF is also able to induce the expression of the glyco-
protein dickkopf-1 (DKK-1), the Wnt-signaling antagonist that suppresses the bone-formation
process and the production of the osteoclastogenesis inhibitor, osteoprotegerin [92].

However several phase-3 studies showed that TNF inhibitors significantly ameliorated
radiographic progression of the disease, but failed to control new bone formation [92]. It has
been suggested that continued suppression of inflammation via anti-TNF agents may acceler-
ate new bone formation and ankylosis [92] possibly through upregulation of DKK-1.

As expected, a large number of modulated genes encode for proinflammatory transcripts
and the highest levels of induction were observed for FN1 (F.C. 405) followed by OLR1 (F.C.
83) and CXCL13 (F.C. 79).

Fibronectin is a component of the cartilage matrix but is also locally produced in the syno-
vial fluid where its level positively correlates with joint destruction [150]. Moreover citrulli-
nated forms of fibronectin (cFn) are commonly present in inflammed synovium [150] and
notably, fibronectin is a target of autoantibodies in RA [151]. Furthermore cFn inhibits apopto-
sis and stimulates the secretion of proinflammatory cytokines in FLS isolated from RA patients
[150] and induces osteoblast differentiation from human mesenchymal stem cells [152].

OLR1/LOX-1, the receptor for LDL oxidized expressed by endothelial cells and macrophages
in the atherosclerotic lesions, is also produced by FLS in the RA synovium where it drives
inflammation and cartilage degradation by inducing MMP-1 and MMP-3 expression [153].

CXCL13 is a B cell chemoattractant that has been related to the ectopic lymphoid neogen-
esis and T/B cells aggregates seen in PsA synovial tissues [130,154].

Other proinflammatory mediators highly induced in PsA samples include CXCL9/MIG,
CCL18, CXCR6. CCL18 has been found increased in synovial tissue from RA patients
[155] whereas MIG has been involved in regulating leucocyte traffic in both RA and PsA
synovium [156].

CXCR6 is highly expressed by skin CD8+ T cells of psoriatic skin lesions [157] and in PsA
synovium [158] where it has been suggested to play a role in T-cell homing [157].

We also found increased expression for the IL1R1 gene, an important regulator in both
inflammation and autoimmunity. Indeed anti-IL-1 strategies have had a huge impact in auto-
immune and inflammatory diseases [159].

Our results indicate a conspicuous participation of macrophages in the PSA synovium
inflammatory infiltrate as showed by the up-regulation of several macrophage related genes,
such as: FCGR2B, NR4A3, and CLEC5A/MDL1. Indeed macrophages are the principal source
of TNFα [160] and in the inflammatory setting, TNF-α in synergy with RANKL, can induce
the acquisition of the osteoclast phenotype by macrophages [161] thus contributing to promote
osteolysis.

Among the above mentioned genes, NR4A3 and CLEC5A/MDL1 are abundantly expressed
by activated macrophages [162,163]. Interestingly, during joint inflammation, overexpression
of CLEC5A/MDL-1 recruits inflammatory cells and induces the production of IL-1, IL-6, IL-
17A, and TNF, contributing to cartilage damage and bone erosion. FCGR2B, present on several
cell types including synovial mononuclear phagocytes, monocytes, neutrophils and myeloid
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dendritic cells (DCs) [164] is an inhibitory receptor with important regulatory functions on Fc
receptor activation, which has been found overexpressed in RA synovium samples [165]. Note-
worthy variation in the gene encoding FCGR2B has been associated with susceptibility to auto-
immune disease such as RA and SLE [166].

Another important gene cluster is the signal transduction gene category which includes sev-
eral modulated transcripts particularly important for PsA pathogenesis. Indeed we noticed
overexpression of 13 IFIG in PsA synovium, thus indicating the presence of an IFN type I sig-
nature, typically associated with autoimmune disease such as SLE, RA, Crohn’s disease and
Sjogren syndrome [94–100]. Noteworthy a type I interferon signature is present also in DEGs
from PBC of patients with PsA, indicating that indeed peripheral blood cells reflects, although
at lower level, the gene modulation present in the synovium.

Finally, DEGs indicate a T cell immune response with prevalent upregulation of several
Th17 related genes both in PsA synovium (8 upregulated transcripts) and, to a lesser extent, in
PBC (5 upregulated genes). Th17 cells have been implicated in autoimmune diseases including
SLE, RA and psoriasis. In these last two disease conditions, experimental evidence indicates
that Th17 cells and the related IL-17/IL-23 cytokine axis, play a role in disease pathogenesis in
animal models and in the human disease suggesting that targeting the IL-17/IL23 cytokine axis
may represent a promising therapeutic strategy. In this regard it is now clear that Th17 cells
and related cytokines play a crucial role in sustaining autoimmunity especially when associated
to type I IFN-driven inflammation. A recent report [20] shows that CCR6+ memory T-helper
cells producing IL-17A, IL-17F, IL-21, and/or IL-22 are increased in SLE patients and that this
increase is related to the presence of IFN type I signature thus providing evidence that IFN
type I signature co-acts with Th17 cells and related cytokines in the pathogenesis of systemic
autoimmune diseases such as SLE.

In order to further confirm our gene expression data on overexpression of IFIG and Th17
pathways, we analysed the presence of IL-17 producing CD4+ T cells and found a significantly
increased percentage of these cells in PBMC of patients with PsA compared with normal sub-
jects. Moreover the levels of IL-17 and IL-23 in synovial fluid were higher than in control syno-
vial fluids further confirming the findings of the gene array analysis. Taken together these data
suggest an autoimmune origin of PsA, probably through the activation of the IL-23/IL-17 cyto-
kine network. Indeed PsA has always been considered of autoimmune origin, driven by auto-
reactive T cells directed against autoantigens present in the skin and in the joints. This view has
been recently questioned by McGonagle et al. [167] who have proposed that PsA may be con-
sidered an autoinflammatory rather than an autoimmune disease. One of the reasons adduced
is that the autoimmune model would fail to explain diffuse enthesitis, and that the proposed
autoantigens common to skin and joints have not been identified so far. However a recent
work by Sherlock et al. [168,169]shows that IL-23 is able to induce enthesitis in animal models
of spondyloarthropathy acting on resident T cells within the enthesis; once activated these
entheseal T cells can promote local inflammation and bone remodeling through a variety of
effector molecules such as IL-17 and IL-22. Therefore these findings suggest that mechanisms
other then local injury (microtrauma, microdamage, altered vascularity and repair) [170] may
be responsible for the onset of enthesitis and that enthesitis may be sustained by effector medi-
ators of the Th17 cell subset. As far as the absence of autoantigens common to skin and joints
adduced as evidence for an autoinflammatory origin of the disease we have recently found that
PsA is characterized by the presence of serum autoantibodies crossreacting with an epitope
shared by skin and joint antigens [171].

Finally our work shows that the two genes, SSP1 and GPNMB, encoding for osteopontin
and osteoactivin are among the most expressed genes found in the gene array analysis (FC 450
and 147). Osteopontin (OPN), also called bone sialoprotein I (BSP-1 or BNSP), is encoded by
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the SPP1 gene (secreted phosphoprotein 1), first identified in osteoblasts. OPN is biosynthe-
sized by a variety of cells including fibroblasts, osteoblasts, osteocytes, chondrocytes, some
bone marrow cells, dendritic cells, endothelial cells. OPN plays a role in bone metabolism
(bone mineralization and remodeling) but has also a role in immunity. OPN is a cytokine with
pleiotropic effect produced by activated T cells, dendritic cells and macrophages. It is released
at increased levels during inflammation and the secreted form (s-OPN) has been shown to act
as a chemoattractant for many cells through integrin receptors and CD44. Recently, it has been
shown that OPN is able to regulate the expression of Toll like receptor-9 (TLR-9), of TLR-
7-dependent interferon-alpha (IFN-alpha) in plasmacytoid dendritic cells. Moreover it seems
to be implicated in Th17 developmenent [172]. Indeed OPN seems to play a role in the patho-
genesis of several autoimmune diseases including RA, MS and SLE [173]. Osteoactivin (OA),
also known as transmembrane glycoprotein GPNMB, is a type I glycoprotein expressed in oste-
oblasts, osteoclasts, melanocytes and other cell types. In osteoblast progenitors OA is a positive
regulator of osteoblast differentiation in the final phases of matrix maturation and mineraliza-
tion [174]. In addition, as observed in bone fracture in animal models, OA is able to accelerate
bone repair [175].

We have found that osteopontin is elevated also in the sera of subjects with RA and AS,
whereas high levels of osteoactivin are present only in the sera of PsA patients.

In conclusion, we report here the gene array analysis of paired SM and PBC in patients with
PsA; the analysis has identified the modulation of cluster of genes encoding for molecules
involved in the pathogenesis of the disease. The findings have been validated with different
methods and further support that PsA is of autoimmune origin.

Moreover, one of the more expressed genes encodes for a molecule, osteoactivin, that is
selectively elevated in the sera of patients with PsA suggesting that this molecule may be used
as a marker of the disease.
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