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Abstract: The L-type amino acid transporter (LAT) family are Na+-independent transporters, which deliver neutral 
amino acids into cells. The four LATs, LAT1 (SLC7A5), LAT2 (SLC7A8), LAT3 (SLC43A1) and LAT4 (SLC43A2), are 
responsible for the majority of cellular leucine uptake. They show increased expression in many cancers, and are 
critical for control of protein translation and cell growth through the mTORC1 pathway. The increased transporter 
expression observed in cancers is regulated by transcriptional pathways such as hormone receptors, c-myc and 
nutrient starvation responses. We review the expression and function of the LAT family in cancer, as well as the 
recent development of specific inhibitors targeting LAT1 or LAT3. These LAT family inhibitors may be useful adjuvant 
therapeutics in multiple cancers. 
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Recent advances in therapeutics designed to 
target the PI3K/Akt/mTORC1 pathway have 
resulted in dozens of new anti-cancer com-
pounds currently undergoing Phase I/II trials [1, 
2]. This critical cell growth pathway is also regu-
lated by nutrients, in particular the essential 
amino acid leucine, which is required for activa-
tion of the mTORC1/Ragulator complex. Leu- 
cine is the most common of the 20 proteino-
genic amino acids present in proteins. It is 
thought that mTORC1 can only begin transla-
tion when sufficient levels of leucine, arginine 
or glutamine are available. The L-type amino 
acid transporters (LATs) are the major trans-
porters that mediate uptake of leucine into 
cells, thereby regulating mTORC1 signaling and 
protein synthesis. This critical requirement for 
intracellular leucine is reflected in the increased 
expression of LATs in the majority of cancers, 
and in the diverse transcription factors that 
regulate their expression. The classification, 
structure and function of LAT family have been 
well reviewed recently [3, 4]. In our review, we 
provide an overview of recent studies focusing 
on the role and regulation of the four LAT family 
members (LAT1, LAT2, LAT3 and LAT4) in can-
cer. We have analyzed LAT family member 

expression levels, correlations with disease 
state and metastasis, and their role in cancer 
cell growth through the mTORC1 pathway. 
Furthermore, we discuss targeting of the LAT 
family as a novel anti-cancer approach and the 
current state of LAT inhibitors. 

L-type amino acid transporter family

The L-type amino acid transporter (LAT) family 
consists of four Na+-independent neutral amino 
acid transporters. The members of this family 
are grouped in two sub-families, namely, SLC7 
(LAT1 and LAT2) and SLC43 (LAT3 and LAT4). 
Each member of the LAT family is believed to 
contain 12 transmembrane domains, however 
there are no current structures solved for any of 
the human LAT proteins. LAT1 (SLC7A5) and 
LAT2 (SLC7A8) associate with the 4F2hc (4F2 
antigen heavy chain; CD98 heavy chain) glyco-
protein, forming a heterodimeric obligatory ex- 
changer with a high affinity [5-9]. LAT3 (SLC- 
43A1) and LAT4 (SLC43A2) are facilitated dif-
fusers of neutral amino acids with a low affinity, 
and do not appear to require a binding partner 
[10, 11]. LAT3 and LAT4 deliver a narrow range 
of neutral amino acids into cells, including leu-
cine, isoleucine, valine, phenylalanine and 
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methionine [10, 11]. Similarly, LAT1 and LAT2 
can transport these same neutral amino acids, 
including additional amino acids such as tyro-
sine, histidine and tryptophan [5, 7-9] (Table 1). 

In 1998, two independent groups cloned LAT1 
from cancer cells [5, 6]. LAT1 has 507 amino 
acids with a molecular weight of 55 kDa. LAT1 
mRNA is strongly expressed in brain, spleen, 
placenta, testis and colon (Table 1) [5]. LAT2 
was subsequently cloned due to its homology 
with LAT1 [7-9]. Human LAT2 and LAT1 shows 
an amino acid sequence identify of 50%. LAT2 
has 535 amino acids with a molecular weight of 
58 kDa [7]. LAT2 transcripts are strongly 
expressed in jejunum, ileum, kidney, placenta, 
brain, and also detected in liver, skeletal mus-
cle, prostate, ovaries and heart [7-9, 12]. Both 
LAT1 and LAT2 transport capacity is indepen-
dent of sodium or chloride. However, binding of 
4F2hc at cysteine 163 (LAT1) is required for the 
normal function and membrane localization of 
LAT1 and LAT2 [5, 7, 8]. Leucine transport by 
LAT1 is also dependent on L-glutamine, which 
is delivered by other amino acid transporters 
including ASCT2 (SLC1A5) [13-16].  

LAT3 transcript was originally cloned from pros-
tate cancer and named prostate cancer overex-
pressed gene 1 (POV1) [17, 18]. Later, POV1 
was identified as a transporter and named 
LAT3 by expression cloning from the hepatocar-
cinoma-derived cell line FLC [10]. Mouse LAT3 
contains 564 amino acids with a molecular 
weight of 62.6 kDa [19], while human LAT3 has 
559 amino acids. A long intracellular loop pre-
dicted to exist between transmembrane do- 
mains 6 and 7, contains putative protein kinase 
C-dependent phosphorylation sites and a tyro-
sine phosphorylation site [19]. Human LAT4 
exhibits 57% identity to human LAT3 [11]. LAT3 
and LAT4 have a broad expression pattern in 
human tissues. Northern blot analysis showed 
that LAT3 mRNA is expressed in pancreas, liver, 

skeletal muscle and fetal liver at a high levels 
[10, 19] (Table 1). Human LAT4 mRNA is strong-
ly expressed in placenta, kidney and peripheral 
blood leukocytes in human tissue. Mouse LAT4 
is detected in intestine, kidney, brain, white adi-
pose tissue, testis and heart, but not in liver 
[11] (Table 1). However, the physiologic func-
tions of LAT3/LAT4 in these organs are still not 
fully understood. Although the expression of 
LAT3 in kidney is low, strong expression is 
detected at the apical plasma membrane of 
podocyte foot processes. LAT3 is important for 
the development and maintenance of podocyte 
function and structure [20, 21]. A recent study 
also showed that red blood cell development 
requires LAT3 expression for hemoglobin pro-
duction. In LAT4 knockout mice, newborn mice 
are smaller than wild type mice [22], suggest-
ing that LAT4 is important for growth and 
development. 

LAT family expression and function in cancer

While the LAT family clearly play important roles 
in development and function of normal tissues, 
they are frequently increased in cancer sam-
ples. To effectively review this area, and high-
light the important role of LAT family members 
in cancer, we have summarized publications 
across multiple cancers (Table 2). In addition, 
we have performed new analyses of Oncomine 
microarray/sequencing datasets to further 
highlight which cancers show a significant 
increase in LAT expression compared to normal 
tissue (P < 0.05, Fold change > 2; Table 2). 
These data clearly show that LAT1 is most com-
monly upregulated in multiple cancers, and 
accordingly LAT1 has been the most studied of 
the LAT family members. While the Oncomine 
data suggest that LAT2 is upregulated in 9 dif-
ferent cancer types, there are few studies that 
have validated its role in cancer cell growth. 
LAT3 and LAT4 show a more restricted expres-
sion pattern in 5 or 4 different cancer types 

Table 1. LAT expression and function
Protein Gene Substrates Expression pattern 
LAT1 SLC7A5 Leu, Ile, Phe, Met, Tyr, His, Trp, Val Brain, spleen, placenta, ovary, testis, colon, blood-brain  

barrier, fetal liver, activated lymphocytes [5, 6]
LAT2 SLC7A8 Gly, Ala, Ser, Thr, Asn, Gln, Met, 

Leu, Ile, Val, Phe, Tyr, Trp, His
Jejunum, ileum, kidney, placenta, brain, liver, skeletal  

muscle, prostate, ovaries, fetal liver, testis and heart [7-9]
LAT3 SLC43A1 Met, Leu, Ile, Val, Phe Pancreas, skin, muscle, liver, kidney podocytes, prostate  

[10, 20, 23, 25]
LAT4 SLC43A2 Met, Leu, Ile, Val, Phe Placenta, kidney, peripheral blood leukocytes [11]
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respectively, with multiple publications on the 
critical role of LAT3 in prostate cancer [17, 18, 
23-25]. Table 2 shows the potential utility of 
targeting the LAT family in a variety of cancers, 
as well as highlighting a number of cancers that 
require further analysis of LAT family expres-
sion and function. 

Immunohistochemical analysis in patient co- 
horts have shown that LAT1 is overexpressed in 
cancer and its expression correlates with cell 
proliferation and cancer progression. LAT1 is 
highly expressed in 52% of the large cell neuro-
endocrine carcinomas of the lung [26, 27], 50% 
of pleural mesothelioma [28], 75% of thymic 
carcinomas [29], 25% of high-grade gliomas 
[30], 61% of tongue cancer [31], 53% of pancre-
atic cancer [32] and 61% in hepatocellular car-
cinoma [33]. In these studies, a significant cor-
relation was found between LAT1 expression 
and proliferation marker Ki-67, suggesting that 

LAT1 is important for proliferation in cancer 
cells [27, 29, 31-37]. 

LAT1 has also been used as biomarker for ma- 
lignant cancer. Using Kaplan-Meier analysis of 
patients, low LAT1 expression patients showed 
a significant longer overall survival compared to 
high LAT1 expression patients, indicating that 
LAT1 could be a prognostic marker for predict-
ing poor outcome after surgery [32, 33, 38]. In 
prostate cancer, LAT1 expression is correlated 
with prognosis in poor survival patients [39]. In 
breast cancer, LAT1 (SLC7A5) is also part of the 
5 gene MammostratTM immunohistochemistry 
panel, where high expression is used to predict 
recurrence in ER+ breast cancer during endo-
crine therapy [40, 41].

Studies determining the function of LAT1 in 
cancer have utilized a well characterized LAT 
family inhibitor, BCH (2-aminobicyclo-(2,2,1)-

Table 2. LAT expression in tumors
LAT1 (SLC7A5) LAT2 (SLC7A8) LAT3 (SLC43A1) LAT4 (SLC43A2) 4F2hc (SLC3A2)

Cancer REF ONC REF ONC REF ONC REF ONC REF ONC
Bladder [92-94] 2/12

Brain/CNS [30, 42] 3/35

Breast [34, 77, 95-97] 15/52 10/50 1/45 [34] 1/53

Cervical [98]

Cholangiocarcinoma [66]

Colorectal [34] 23/34 4/34   2/34 [99] [34] 6/37

Esophageal [100]   3/9 1/6 1/9

Gastric [36] 1/23

Head and Neck [34, 42, 99, 101] 7/32 2/32 [99] [34] 3/32

Kidney 1/24 1/20 1/10 1/24

Leukemia [87, 102] 4/28 4/27 [103]   2/31

Liver [102, 104-107] [108] [33]

Lung [26, 35, 37, 67] 14/31   [37, 67]

Lymphoma 8/30 1/29 2/21

Melanoma [15, 109] 3/7 1/7 1/7

Myeloma [110-112] 1/8 [110]

Ovarian [113, 114] 3/14

Pancreatic [32, 115, 116]

Pleural mesothelioma [28]

Prostate [24, 25, 39] 1/20 [17, 18, 24, 25] 4/20 1/21

Sarcoma [34, 42] 1/20 [34]

Tongue cancer [31] [31]

Thymic carcinomas [29]

Urinary tract [92, 117]

Uterine leiomyoma [118] [79] [79]

Other (seminoma) 3/3  

Other (skin) 4/4 4/4 1/4

Other (parathyroid) 3/3
Expression of LAT family members in a variety of cancers was assessed using Pubmed to find published references (REF) and Oncomine (ONC) to detect significant 
upregulation (P < 0.05, fold change > 2) for each transporter. Oncomine numbers represent Datasets with Significant Upregulation/Total Number of Datasets. 
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heptane-2-carboxylic acid). BCH can inhibit all 
members of LAT family at a concentration 
above 10 mM. BCH treatment decreases leu-
cine transport and suppresses mTORC1 signal-
ing [13, 24]. Expression of cell cycle regulators 
is altered, such as up-regulation of p21 in glio-
ma cells [30] and p27 in prostate cancer cells 
[24], down-regulation of CDK1, CDC20 and 
E2F1 [25]. Therefore, cell proliferation and DNA 
synthesis are suppressed. 

When LAT1 is blocked by BCH, several studies 
also showed that apoptosis was enhanced in 
glioma cells [30], oral epidermoid carcinoma 
cells, osteogenic sarcoma cells [42]. Cleaved 
caspase 3 and cleaved PARP levels are in- 
creased after BCH treatment [30]. However, no 
apoptosis was observed using either BCH or 
knockdown LAT1 or LAT3 in prostate cancer 
cell lines [24]. This suggests that LAT-related 
cell apoptosis may be dependent on the cell 
type. 

LATs and mTORC1 signaling 

Perhaps the most important role of LATs is to 
transport neutral amino acids for protein syn-
thesis. One of the major LAT substrates, leu-
cine, is not only an essential amino acid, but 
also a regulator of mTORC1 (mammalian target 
of rapamycin complex 1) signaling. mTOR is a 
member of the phosphoinositide-3-kinase re- 
lated kinase (PIKK) family that possess cata-
lytic activity as a protein serine-threonine ki- 
nase. mTOR is present within the cell bound in 
two major complexes, mTORC1 and mTORC2. 
mTORC1 is formed by mTOR complexed with 
mLST8, RAPTOR, PRAS40 and DEPTOR, acti-
vating S6 kinase while repressing eIF-4E-bind-
ing protein (4E-BP1), thereby regulating protein 
translation [43, 44]. mTORC2 is formed by 
mTOR complexed with mLST8, RICTOR and 
mSin1, which can phosphorylate and activate 
Akt at Ser473 [45-47]. 

Both PI3K/Akt signaling and amino acids (espe-
cially leucine, arginine and glutamine) are re- 
quired to activate mTORC1 signaling [13, 44, 
48]. While the PI3K/Akt signaling pathway is 
well understood, the exact mechanism by which 
amino acids are sensed and activate mTORC1 
remains unclear. Activated Akt phosphorylates 
TSC2 leading to the suppression of TSC2 activ-
ity. The inactivated TSC2 dissociates from the 
surface of lysosomes, releasing Rheb, a small 

GTPase, to activate mTORC1 on the lysosomal 
surface [49-53]. Recent studies have suggest-
ed that the intracellular level of leucine can be 
detected by a leucyl-tRNA synthetase (LRS), 
which can then catalyze the ATP-dependent 
ligation of L-leucine to leucyl-tRNA during pro-
tein synthesis [54, 55]. In the leucine rich envi-
ronment, LRS with leucine may then interact 
and activate the Rag GTPase complex. Rag pro-
teins are Ras-related small GTP-binding pro-
teins that include four mammalian members, 
RagA, RagB, RagC and RagD. They form heter- 
odimers consisting of RagA or RagB with RagC 
or RagD [56, 57]. Recent work showed that Rag 
GTPases are only essential for leucine- or argi-
nine-activated mTORC1 signaling [58]. Gluta- 
mine-activated mTORC1 activation depends on 
adenosine diphosphate ribosylation factor-1 
GTPase (Arf1) [58]. LRS may also bind to 
RAPTOR to activate mTORC1 signaling on the 
surface of lysosome [54, 55]. While the mecha-
nism of leucine sensing remains unclear, low 
levels of intracellular amino acids lead to Rag 
heterodimer binding and recruitment of the TSC 
complex to the lysosome, thereby inhibiting 
Rheb and mTORC1 signaling [52, 53]. 

Another study has suggested that glutaminoly-
sis and α-ketoglutarate are involved in gluta-
mine and leucine sensing to activate mTORC1 
signaling [48]. The enzyme glutaminase releas-
es the amide group of glutamine to form gluta-
mate. Leucine can directly bind and activate 
glutamate dehydrogenase, which subsequently 
converts glutamate to α-ketoglutarate (α-KG) 
[59]. α-KG is sufficient to stimulate recruitment 
of mTORC1 to the lysosome by activating RagB. 
The activated LRS or α-KG stimulates the tran-
sition of RagA/RagB GDP-RagC/RagD GTP to 
RagA/RagB GTP-RagC/RagD GDP [48]. 

Lysosomal membrane proteins, vacuolar ade-
nosine triphosphatase (v-ATPase) and SLC- 
36A1, have been shown to interact with Rag 
GTPases, and may be necessary for mTORC1 
activation by amino acids [60]. Lysosomal me- 
mbrane amino acid transporter SLC38A9 was 
recently shown to interact with Ragulator/LA- 
MTOR complex, four RAG GTPases and VA0D1 
of the v-ATPase [61, 62]. Purified SLC38A9 
directly interacts with arginine making it a 
potential amino acid sensor for mTORC1 signal-
ing [62]. When arginine binds to SLC38A9 sub-
strate-binding site, SLC38A9 may undergo a 
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conformational change which affects its inter-
actors, such as v-ATPase, RAG GTPases and 
Ragulator. 

Amino acid-activated signaling is also tightly 
regulated by proteins which interact with Rag 
GTPase or Ragulator. For example, folliculin and 
its interacting partner FNIP1/2 form a complex 
to activate RagC/D as a GTPase activating pro-
tein (GAP) [63]. Sestrins also bind to the het-
erodimeric Rag complexes and negatively regu-
late the activity of Rag complexes [64]. GATOR 
complexes interact with the Rag GTPase com-
plex to negatively regulate leucine signaling. 
GATOR is composed of two subcomplexes na- 
med GATOR1 (DEPDC5, Nprl2 and Nprl3) and 
GATOR2 (Mios, WDR24, WDR59, Seh1L and Se- 
c13) [65]. GATOR1 has GTPase-activating pro-
tein activity for RagA and RagB. GATOR1 com-
ponents, such as NPRL2 and DEPDC5, contain 
deletion or mutation in multiple cancer cell 
lines, leading to hyperactivation of mTORC1 sig-
naling and insensitivity to amino acid depriva-
tion [65]. 

The role of LAT in metastasis 

Several studies have suggested that LAT1 ex- 
pression also correlates with metastasis. Th- 
ese data are across a range of cancers, includ-
ing colon, breast, prostate, head and neck, 
lung, genital as well as soft-tissue sarcomas, all 
showing that LAT1 expression is significantly 
higher in the metastatic sites than in the pri-
mary sites [24, 27, 34]. LAT1 transport function 
may be critical in providing nutrients for meta-
static cancer cells, as BCH treatment or knock-
down of LAT1 expression by shRNA has been 
shown to decrease cell migration and invasion 
in cholangiocarcinoma cells in vitro [66]. This 
was also seen in prostate cancer, where LAT1 
or LAT3 shRNA significantly inhibited metasta-
sis in vivo, however this was confounded by a 
significant reduction in tumor size [25]. These 
effects were likely due to the transport function 
of the LATs, as microarray analysis showed sig-
nificant downregulation of genes involved in 
cell cycle regulation, including CDK1, CDC20 
and transcription factors E2F1 and E2F2 [25]. 
These same genes are highly expressed in met-
astatic prostate cancer, suggesting inhibition 
of LAT transporters may suppress metastatic 
prostate cancer proliferation [25].  

LAT1 expression closely correlates with 4F2hc 
expression in human cancers, and has been 

shown to have a critical role in the metastatic 
process of diverse human neoplasms [31, 33, 
34, 37, 67]. Apart from the transport activity of 
LAT1, regulation of metastasis may be mediat-
ed through integrin signaling, since 4F2hc has 
been shown to interact with β1-integrin and 
regulate β1-integrin affinity [68] and expression 
[69]. It was shown that the amino acid trans-
porter function of LAT1 is not required for this 
effect of 4F2hc on integrin function. Further 
studies showed that 4F2hc interacts with the 
cytoplasmic domain of β1A integrin to reverse 
the suppression of integrin activation [70, 71]. 
The 4F2hc transmembrane domain also binds 
to integrin αvβ3 [72], suggesting that perhaps 
LAT1/4F2hc may be important in interactions 
with the metastatic niche. It is also possible 
that 4F2hc binding to integrins allows the cell 
to use LAT1 to “probe” the environment for 
nutrients. 

Induction of LAT expression 

Several factors, such as hormone stimulation, 
Myc/Rb oncogenic transcription, nutrient star-
vation and environmental stress have been 
shown to induce LAT expression, thereby pro-
viding the neutral amino acids required for can-
cer cell growth, survival and progression. The 
diverse nature of these stimuli highlight the 
critical requirement for nutrient supply to the 
cancer cell. For example, in prostate cancer 
LAT3 expression is driven by androgen receptor 
(AR) signaling, leading to high expression in pri-
mary prostate cancer [24, 25]. This is driven by 
direct AR transcription, confirmed by chromatin 
immunoprecipitation (ChIP) and promoter lucif-
erase assays [24]. However, during anti-andro-
gen therapies, LAT3 levels decrease, causing 
nutrient starvation. The reduction of amino 
acid levels activate the ATF4 nutrient stress sig-
naling pathway through uncharged tRNAs in the 
cytoplasm. The general control non-derepress-
ible 2 (GCN2) kinase binds to uncharged tRNAs, 
leading to phosphorylation of the eukaryotic 
translation initiation factor 2α (eIF2α) on Serine 
51 [73]. Activated eIF2α initiates the rapid 
translation of ATF4, which translocates to the 
nucleus, driving an adaptive response that 
includes transcription of amino acid transport-
ers. The ATF4 knockout mice showed decreased 
expression of a number of amino acid trans-
porters, with recent ChIP and promoter lucifer-
ase assays used to confirm ATF4 binding to 
amino acid response elements (AAREs) in LAT1, 
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LAT family inhibitors 

Amino acids such as leucine (Figure 1A) con-
tain amine and carboxylic acid groups, as well 
as side chains, which are recognized by sub-
strate binding sites of transporters. Generation 
of LAT inhibitors has therefore focused primari-
ly on compounds that mimic LAT substrates, 
and can therefore compete for amino acid bind-
ing. However, this strategy has in general re- 
sulted in high effective concentrations of inhibi-
tors, as is seen with the leucine analogue BCH 
(Figure 1B; ~10 mM). Furthermore, since the 
LAT family shares the majority of substrates, 
BCH targets all members of LAT family, which is 
undesirable for clinical development. Recently, 
several new inhibitors were developed to more 
potently target LAT1 and/or LAT3 (Figure 1). 

JPH203 (also called KYT-0353; (S)-2-amino-3-
(4-((5-amino-2-phenylbenzo[d]oxazol-7-yl)meth- 
oxy)-3,5-dichlorophenyl) propanoic acid; Figure 
1C) is a novel tyrosine analog, which selectively 
inhibits LAT1 transport activity [85]. JPH203 
showed a dramatic inhibition of leucine uptake 
(IC50=0.06µM) and cell growth (IC50=4.1 µM) in 
human colon cancer cells (HT-29) [85], human 
oral cancer cells (YD-38) [86] and leukemic 
cells [87]. In nude mice, significant inhibitory 
effects on tumor growth were observed after 7 
days treatment with 12.5 mg/kg of this com-
pound [85]. JPH203 suppressed activation of 
mTORC1 and Akt, decreased expression of 
c-myc in T-ALL (T-cell acute lymphoblastic leu-
kemia) and T-LL (T-cell lymphoblastic lympho-
ma) [87]. JPH203 induced ATF4 translation ini-
tiation and an unfolded protein response medi-
ated by CHOP (the C/EBP homologous protein), 
followed by cell death [87]. Importantly, JPH203 
had no toxic effect on normal murine thymo-
cytes, lymphocytes, erythrocytes, platelets, 
bone marrow mature cells, stem cells and early 
progenitors. Preclinical data from four patients 
showed no apoptotic effects of JPH203 on nor-
mal peripheral blood lymphocytes cells or cord 
blood mononuclear cells ex vivo [87]. Therefore, 
therapies targeting LAT1 in T-ALL is an attrac-
tive strategy that appears to have little side 
effects in normal cells. However, JPH203 bio-
transformation via phase II metabolism produc-
es N-acetyl-JPH203 (NAc-JPH203), which may 
accumulate in the liver and kidney, and will 
need to be considered for future pre-clinical 
testing [88, 89]. Combined with chemothera-
peutic drugs, such as rapamycin, dexametha-

4F2hc, ASCT2, ASCT1 and xCT [24, 25, 74-76]. 
Therefore, the ATF4 adaptive response to an- 
ti-androgen therapies restores intracellular 
amino acid levels through transporters includ-
ing LAT1, allowing further protein translation 
and cell growth. 

Other LAT family members also appear to be 
regulated by hormone receptors. In breast can-
cer cells, LAT1 expression is increased in res- 
ponse to estrodial which activates estrogen 
receptor (ER) [77]. LAT2 has been shown to 
increase expression in the presence of dihy-
drotestosterone (DHT), which activates AR [78]. 
Progesterone also activates ER to induce LAT2 
mRNA level increase in primary human uterine 
leiomyoma smooth muscle (LSM) cells and tis-
sues from premenopausal women [79]. These 
hormone driven responses are likely important 
drivers of proliferation during development, 
and their reactivation during oncogenic trans-
formation is critical for subsequent cancer cell 
growth. 

In addition to nutrient deprivation, oxygen-ten-
sion may also contribute to LAT1 expression. 
HIF2α binds to the SLC7A5 proximal promoter, 
increasing expression of LAT1 and activating 
mTORC1 signaling in renal carcinoma cells, as 
well as in normal liver and lung tissues [80]. 
These studies indicate that LAT1 is a key envi-
ronmental sensor to regulate mTORC1 sig- 
naling.  

The development of a LAT1 knockout mouse 
has provided further clues to regulation of LAT1 
expression. Knockout T cells do not respond to 
antigen stimulation, thereby preventing T cell 
clonal expansion or effector cell differentiation 
[81]. Wild type T cells, however, respond to anti-
gen or PKC activation (phorbol ester) by upregu-
lating expression of LAT1 [81, 82]. Conditional 
knockdown of LAT1 in activated T cells sup-
pressed c-Myc translation but not transcrip-
tion. This is an mTORC1 independent process, 
as rapamycin did not prevent TCR-mediated 
elevation of c-Myc expression [81]. Since c-Myc 
has a short half-life (~15 min) [83], sustained 
expression is required for the maintenance of 
c-Myc protein. Therefore, LAT1 is critical in sus-
taining c-Myc levels. c-Myc is also important for 
metabolic processes including glycolytic switch 
and regulation of glutaminolysis, as well as for 
cell proliferation [84]. 
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sone, doxorubicin, Velcade and L-asparaginase, 
JPH203 showed synergistic effects, decreasing 
cell survival. The highest synergy was observed 
in combination with rapamycin [87]. Therefore, 
JPH203 could be an adjuvant therapeutic strat-
egy to treat hematopoietic malignancies. How- 
ever, the specificity of this compound was only 
examined for LAT1 and LAT2 in human colon 
cells HT-29 and mouse renal proximal tubule 
cells S2. It remains to be determined whether 
JPH203 can also inhibit LAT3 or LAT4 [85].  

Recent structural analysis of membrane pro-
teins have led to a number of publications mod-
elling transporter structures [90]. The LAT1 

structure was modelled based on the crystal 
structure of the arginine/agmatine transporter 
AdiC from E. coli in the outward–facing confor-
mation. Virtual screening was then performed 
using DOCK3.5.54, to filter compounds from 
KEGG (Kyoto Encyclopedia of Genes and Ge- 
nomes) DRUG and KEGG LIGAND COMP- 
OUND database against the LAT1 model. The 
top-scoring compounds were validated in vitro, 
discovering two novel LAT1 ligands, acivicin 
(Figure 1D) and 3-iodo-L-tyrosine (Figure 1E) 
[90]. The IC50 of 3,5-diiodo-L-tyrosine (similar to 
3-iodo-L-tyrosine) and acivicin is 7.9 µM and 
340 µM, respectively. Both 3-iodo-L-tyrosine 

Figure 1. Structure of L-leucine and LAT family inhibitors. A. L-leucine; B. BCH; C. JPH203; D. Acivicin; E. 3-iodo-L-
tyrosine; F. ESK242; G. ESK246.
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and acivicin were shown to suppress GBM can-
cer proliferation [90].

Other than these in silico screening approach-
es, conventional high throughput screening 
strategies have also led to the discovery of 
novel LAT inhibitors. Using a natural compounds 
library (Nature Bank), two new monoterpene 
glycosides ESK242 (Figure 1F) and ESK246 
(Figure 1G) were isolated, which inhibit LATs 
with a low IC50 [91]. These compounds were 
screened from more than 4500 fractions of 
biota samples, and specificity was determined 
using Xenopus oocytes expressing LAT1/4F2hc, 
LAT2/4F2hc, LAT3 or LAT4. ESK242 was found 
to inhibit LAT1 and LAT3 mediated leucine 
uptake, while ESK246 preferentially inhibits 
LAT3. So far, ESK246 is the first reported LAT3 
specific inhibitor, which may be used to study 
the physiological function of LAT3 in the future. 
Comparison of these new inhibitors with BCH 
(IC50=4060 µM in LNCaP prostate cancer cells), 
showed they are ~2 orders of magnitude more 
effective at inhibiting leucine uptake, with 
ESK246 and ESK242 having IC50 values of 8.1 
µM and 29.6 µM respectively. ESK246 was 
also shown to significantly suppress LNCaP cell 
proliferation and cell cycle regulator expression 
at 50 µM [91]. While these compounds do not 
contain distinct amine and carboxylic acid 
groups, ESK242 has a side chain similar to iso-
leucine and ESK246 similar to leucine. Further 
studies are required to determine if these side 
chains mediate binding to LAT1/3. These data 
would assist in the development of more drug-
like inhibitors in the absence of LAT family 
structural information. 

Conclusion

Over recent years, there has been substantial 
progress made on both the understanding of 
LAT family regulation and function in cancer, as 
well as the development of new inhibitors for 
this family of transporters. However, despite 
these advances, analysis of Oncomine data 
clearly shows that there are many more can-
cers where LAT family proteins may play an 
important role. Furthermore, a number of ques-
tions remain to be answered: 1) Since LAT1 and 
ASCT2 cooperate to regulate leucine transport, 
is it possible to target both transporters to 
more effectively suppress tumor growth? 2) Are 
there any proteins (other than 4F2hc) that 
directly interact with LATs to regulate amino 

acid transport? 3) Are there post-translational 
modifications, such as phosphorylation, that 
can regulate the LAT family? The answer to 
these questions may provide additional ave-
nues for therapeutic strategies modulating  
LAT functions. In conclusion, while increased 
expression of the L-type amino acid transporter 
family is important for cancer growth and pro-
gression, further development of current inhibi-
tors are required in order to reach their full 
therapeutic potential. 
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