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Abstract

Background—The International Classification of Headache Disorders provides criteria for the 

diagnosis and subclassification of migraine. Since there is no objective gold standard by which to 

test these diagnostic criteria, the criteria are based on the consensus opinion of content experts. 

Accurate migraine classifiers consisting of brain structural measures could serve as an objective 

gold standard by which to test and revise diagnostic criteria. The objectives of this study were to 

utilize magnetic resonance imaging measures of brain structure for constructing classifiers: 1) that 

accurately identify individuals as having chronic vs. episodic migraine vs. being a healthy control; 

and 2) that test the currently used threshold of 15 headache days/month for differentiating chronic 

migraine from episodic migraine.

Methods—Study participants underwent magnetic resonance imaging for determination of 

regional cortical thickness, cortical surface area, and volume. Principal components analysis 

combined structural measurements into principal components accounting for 85% of variability in 

brain structure. Models consisting of these principal components were developed to achieve the 

classification objectives. Ten-fold cross validation assessed classification accuracy within each of 

the ten runs, with data from 90% of participants randomly selected for classifier development and 

data from the remaining 10% of participants used to test classification performance. Headache 

frequency thresholds ranging from 5–15 headache days/month were evaluated to determine the 

threshold allowing for the most accurate subclassification of individuals into lower and higher 

frequency subgroups.

Results—Participants were 66 migraineurs and 54 healthy controls, 75.8% female, with an 

average age of 36 +/− 11 years. Average classifier accuracies were: a) 68% for migraine (episodic 

+ chronic) vs. healthy controls; b) 67.2% for episodic migraine vs. healthy controls; c) 86.3% for 

chronic migraine vs. healthy controls; and d) 84.2% for chronic migraine vs. episodic migraine. 

The classifiers contained principal components consisting of several structural measures, 

commonly including the temporal pole, anterior cingulate cortex, superior temporal lobe, 

entorhinal cortex, medial orbital frontal gyrus, and pars triangularis. A threshold of 15 headache 

days/month allowed for the most accurate subclassification of migraineurs into lower frequency 

and higher frequency subgroups.

*Corresponding Author: Todd J. Schwedt, MD. Associate Professor of Neurology. Mayo Clinic. 5777 East Mayo Boulevard. Phoenix, 
AZ 85054. schwedt.todd@mayo.edu. 

HHS Public Access
Author manuscript
Headache. Author manuscript; available in PMC 2016 June 01.

Published in final edited form as:
Headache. 2015 June ; 55(6): 762–777. doi:10.1111/head.12584.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions—Classifiers consisting of cortical surface area, cortical thickness, and regional 

volumes were highly accurate for determining if individuals have chronic migraine. Furthermore, 

results provide objective support for the current use of 15 headache days/month as a threshold for 

dividing migraineurs into lower frequency (i.e. episodic migraine) and higher frequency (i.e. 

chronic migraine) subgroups.
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Introduction

The diagnosis and sub-classification of migraine are based upon a patient’s report of 

symptoms and exclusion of secondary headache disorders. Formal diagnostic criteria for 

migraine are available in the International Classification of Headache Disorders (ICHD), the 

latest version being the ICHD 3 beta.1 These diagnostic criteria were devised according to 

the consensus opinion of a group of headache experts who are members of the International 

Headache Society Classification Committee. Publication of criteria for diagnosing migraine 

and other headache disorders was a substantial advance in the field, providing 

standardization of migraine diagnoses when performing research and guiding clinicians 

when evaluating patients. However, a major limitation during the development of formal 

diagnostic criteria for migraine is that there is not an objective “gold-standard” for making a 

migraine diagnosis that can be used to test the value of individual components of the criteria. 

Thus, some aspects of the diagnostic criteria are mostly arbitrary, such as the division of 

chronic migraine (CM) from episodic migraine (EM) based upon a headache frequency of 

15 headache days per month. Objective biomarkers for diagnosing and subclassifying 

migraine would allow for optimization of migraine diagnostic criteria.

The goal of this study was to utilize brain magnetic resonance imaging (MRI) structural data 

to develop classifiers that can differentiate the brain structure of an individual patient with 

migraine from that of a healthy control subject and that differentiate the brain structure of an 

individual CM patient from that of a patient with EM. This study also investigated the 

headache frequency threshold that allowed for a classifier to most accurately assign 

individual migraine patients to a lower frequency migraine subgroup or a higher frequency 

migraine subgroup based upon brain structure. In doing so, this study investigated whether 

the threshold of 15 headache days per month that is currently used to differentiate CM from 

EM is supported by brain structural differences between these two headache frequency 

subgroups.

Methods

Approvals

Approvals were obtained from the Institutional Review Boards of the Mayo Clinic and 

Washington University in St. Louis. Each subject underwent an informed consent process 

and provided written informed consent prior to participation.
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Subject Inclusion and Exclusion Criteria

Healthy controls without migraine, people with EM, and people with CM were enrolled as 

participants. Headache diagnoses were made according to ICHD 2 diagnostic criteria. 

Potential participants were excluded if they had acute or chronic pain conditions other than 

migraine, if they had contraindications to MRI, if they had neurologic disorders other than 

migraine, if they used daily medications that could be considered migraine prophylactic 

medications (e.g. anti-seizure medications, anti-depressants, blood pressure medications), if 

they used opioids, if they met criteria for medication overuse, and if they had abnormal brain 

MRI scans according to usual clinical interpretation.

Collection and Analyses of Participant Characteristics

Participants were studied when they were in their usual state of health. Data collected from 

all participants included age, sex, medication use, medical history, Beck Depression 

Inventory-II (BDI-II) score, and State-Trait Anxiety Inventory (STAI) scores.2–4 Additional 

data collected from migraine participants included headache frequency, number of years 

with migraine, and Migraine Disability Assessment (MIDAS) score.5 Data were compared 

amongst subject groups using two-tailed t-tests or Fisher’s exact test, as appropriate.

Imaging Parameters

Participants were imaged on one of two Siemens (Erlangen, Germany) MRI machines, each 

at a different institution: 1) MAGNETOM Trio 3T scanner using a 12-channel head matrix 

coil; or 2) MAGNETOM Skyra 3T scanner using a 20-channel head matrix coil. Structural 

scans included a high-resolution 3D T1-weighted sagittal magnetization prepared rapid 

gradient echo (MP-RAGE) series (Trio parameters: TE=3.16 ms, TR=2.4 s, 1x1x1 mm 

voxels, 256x256 mm field of view (FOV), acquisition matrix 256 x 256; Skyra parameters: 

TE=3.03 ms; TR=2.4 s; 1x1x1.3 mm voxels; 256x256 mm FOV, acquisition matrix 256 x 

256) and T2-weighted images in axial plane (Trio parameters: TE=88 ms, TR=6280 ms, 

1x1x4 mm voxels, 256x256 mm FOV, acquisition matrix 256 x 256; Skyra parameters: 

TE=84 ms; TR=6800 ms; 1x1x4 mm voxels; 256x256 mm FOV, acquisition matrix 256 x 

256). Nearly equal proportions of migraine and healthy control participants were imaged on 

each of the two MRI scanners: 32 of 54 (59%) healthy control participants were imaged on 

scanner one and 38 of 66 (58%) migraine participants were imaged on scanner one, 

including 28 of 51 (55%) EM participants and 10 of 15 (66%) CM participants.

Cortical Reconstruction and Segmentation

T1 MP-RAGE sequence image processing was performed using the automated FreeSurfer 

image analysis suite (version 5.3, http://surfer.nmr.mgh.harvard.edu/). All image post-

processing was conducted using a single Mac workstation running OS X Lion 10.7.5 

software, so as to prevent post-processing irregularities derived from using multiple 

workstations.6 FreeSurfer methodology is well described in prior papers.7 Briefly, 

processing includes skull stripping, automated Talairach transformation, segmentation of 

subcortical gray and white matter, intensity normalization, and gray-white mater boundary 

tessellation and surface deformation. 7–10 This automatic segmentation and parcellation 
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process provides information used to calculate regional volumes, cortical surface areas, and 

cortical thicknesses over the left and right hemispheres.

In order to validate the accuracy of the brain reconstruction process and to avoid inclusion of 

erroneous datasets into the final analysis, the automated segmentations and parcellations of 

each individual participant were manually inspected for errors before including the data for 

statistical analysis.

Mean thickness, surface area, and volume estimates were then extracted from FreeSurfer 

and exported to MATLAB (2007a, MathWorks) for further analyses. Overall, there were 

204 structural measures including 68 measures of cortical thickness, 68 measures of cortical 

surface area, and 68 measures of regional volume.

Statistical analysis

Statistical analyses aimed to accomplish the following tasks: (1) classify migraine patients 

(CM and EM together, EM alone, and CM alone) vs. healthy controls; (2) classify CM vs. 

EM using the ICHD criteria of 15 headache days per month for assigning participants to CM 

or EM groups and determine the actual headache frequency threshold that allows for the 

most accurate classification of individuals to a higher frequency vs. a lower frequency 

migraine subgroup. The same analysis pipeline was used for each of the classification tasks. 

The pipeline consisted of four major steps, as follows:

i. Balancing class sample sizes: Some of the classification problems in the two tasks 

had imbalanced class sample sizes. For example, using 15 headache days per 

month as the headache frequency threshold, the dataset consisted of 51 EM patients 

but only 15 CM patients. A well-known oversampling approach called Synthetic 

Minority Oversampling Technique (SMOTE) was used to handle class imbalance 

and match the minority and majority class sample sizes.11

ii. Dimension reduction: Since a total of 204 features were used in the classification, 

the dimensionality of the features exceeded the sample size, creating difficulty in 

classification. Thus, principal components analysis (PCA) was used to achieve 

dimension reduction. PCA works by finding linear combinations of features, called 

principal components (PCs). Usually, a few PCs sufficiently account for the 

majority of the variability in the original feature space, leading to dimension 

reduction. In this study PCs for the area, thickness, and volume features were 

derived separately (i.e., three sets of PCs). The PCs that accounted for 85% of the 

variability in the area, thickness, and volume were kept for further analyses.

iii. Classification: The PCs produced from (ii) were used to build classification 

models. Four different classification algorithms, including diagonal linear 

discriminate analysis (DLDA), diagonal quadratic discriminate analysis (DQDA), 

support vector machine (SVM), and decision tree (DT), were used so that results 

could be cross-referenced. To avoid over-fitting, 10-fold cross validation was used 

to assess classification accuracy. Specifically, in each of the 10 cross validation 

runs, 10% of the subjects (randomly) were put aside to test the classification 

performance, and the remaining 90% of the subjects were used to develop the 
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classifier. The average performance of the 10 runs and the best performance 

amongst the 10 runs were collected and reported.

iv. Interpretation: To facilitate interpretation of the classification results, for each 

classification algorithm, a step-wise search was performed to identify the best 

subset of PCs. The search started with finding the PC that achieved the highest 

cross validation accuracy (e.g. PC1). Next, the remaining PCs were searched for the 

one PC that when used in conjunction with PC1, improved the cross validation 

accuracy the most (e.g. PC2). The search continued until adding more PCs did not 

improve the cross validation accuracy by 1% or more.

Since each PC is a linear combination of the original features, the combination coefficients 

of the original features were assessed for contributions to the PC and further to the 

classification. Specifically, for each original feature, the mean and standard deviation of its 

coefficient were calculated. According to the three-sigma rule, nearly 95% of the 

coefficients lie within two standard deviations of the mean. As a result, the original features 

whose coefficient exceeded two standard deviations were considered to be significant, 

contributing to the PCs and the classification.

Results

Subject Characteristics

Data from 120 subjects were available for this study, including 54 healthy controls, 51 EM 

patients, and 15 CM patients. (Table 1) Mean age of the entire cohort was 36.3 +/− 11.1 

years. Ninety-one participants were female and 29 were male. There were not differences in 

age or sex distribution between the subject cohorts. There were not differences in BDI-II 

scores, state anxiety scores, and trait anxiety scores between subject groups with the 

exception of a slightly higher BDI-II score in the migraine group compared to healthy 

participants. However, the mean BDI-II scores were within normal ranges (not indicative of 

depression) in both groups. As expected, MIDAS scores and headache frequency were 

higher in the CM group compared to the EM group.

Experiment I: Classify Migraine Patients vs. Healthy Controls

There were 66 migraine patients (EM + CM) and 54 healthy controls. This imbalance in 

number of people in each cohort was considered to be unsubstantial, and thereby step (i), 

balancing class sample sizes, was skipped in the analysis pipeline. The remaining steps in 

the analysis pipeline were applied. The classification accuracy is summarized in Table 2. 

Note that among the four classification algorithms in (iii), DQDA and DT produced the best 

results, yielding average overall classification accuracies of 68% and 64.7% respectively. 

Since these accuracies were less than optimal, the second part of step (iv), i.e., examining 

the contributions of original features to the classification, was not performed. We suspected 

that the unsatisfactory classification accuracy might be due to heterogeneity within the 

migraine cohort, such as would be seen if there were subgroups within the migraine cohort.

To test the possibility of there being headache frequency subgroups within the entire 

migraine cohort, we went on to classify CM vs. healthy controls and EM vs. healthy 
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controls. The average overall accuracy for classifying CM vs. healthy controls was 86.3% in 

the DQDA model and 74.6% in the DT model. (Table 3) Although DQDA produced 

significantly better classification results, we chose to still present the results by DT for 

consistency with our other experiments. Table 4 and Figure 1 show the features that 

contribute to the classification of CM vs. healthy controls. Although structural measures of 

several regions contribute to the classification, structure of the anterior cingulate cortex, 

entorhinal cortex, temporal pole, and transverse temporal gyrus were frequently represented. 

The average overall accuracy for classifying EM vs. healthy controls was 67.2% in the 

DQDA model and 66.5% in the DT model. (Table 2) Since these accuracies were less than 

optimal, we chose not to proceed with the second part of step (iv), i.e., examining the 

contributions of original features to the classification.

Experiment II: Classify CM vs. EM and Determine the Headache Frequency Threshold that 
Allows for the Most Accurate Classification of Higher Frequency vs. Lower Frequency 
Migraine

Different headache frequency (headache days/month) thresholds were investigated to find 

the number of headache days that most accurately divided the migraine participants into 

lower frequency and higher frequency subpopulations based upon measures of brain 

structure. Headache thresholds of 5, 6, 7, 8, 9, 10, 11, 12, and 15 days per month were 

explored. Thresholds of 13 and 14 days resulted in the same partition of patients as 15 days 

and thus were not separately analyzed. Table 5 summarizes the class sample sizes 

corresponding to each threshold. It can be seen that class imbalance existed for most of the 

thresholds. Therefore, we applied SMOTE, i.e., step (i) in the analysis pipeline, to the 

analysis of those thresholds. Then, we applied steps (ii) and (iii). Figure 2 shows the 10-fold 

cross validation classification accuracies with respect to the different thresholds produced by 

four classification algorithms. As shown in Figure 2, using a headache frequency of 15 

headache days per month to divide the migraine patients into two headache frequency 

subgroups allowed for the most accurate classification. This observation was consistently 

obtained from all four different classification algorithms. Nine days with headache per 

month was the second most optimal headache frequency threshold for differentiating 

migraine subpopulations. It is our intention to explore the sensitivity of this threshold (9 

days) in future studies.

With 15 headache days per month used to divide the migraine group into CM and EM 

subgroups, we proceeded with CM vs. EM classification. Application of the stepwise search, 

step (iv) in the analysis pipeline, reduced the number of PCs used in the classification to 1–7 

across all four classification algorithms. Figure 3 shows an example of the process of the 

step-wise search (the example classification algorithm is DQDA). The search first found 

PC17, which when used alone achieved 65.7% cross validation accuracy. Then, PC14 was 

identified, which when used together with PC17 achieved an accuracy of 71.6%. The best 

classification accuracy (91.2%) is achieved with six PCs (PC17, PC14, PC45, PC5, PC26, and 

PC39). The accuracy improvement from adding more PCs to the model was less than 1% and 

thus the model consisting of 6 PCs was considered complete. The average overall accuracy 

of differentiating CM from EM was 84.2% in the DQDA model and 83% in the DT model. 

Table 3 shows the overall and best accuracies for classifying CM vs. EM.
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Finally, we looked for the original features that comprised the PCs used in the final 

classification model. (Table 6, Figure 4) Although several different brain regions were 

included in these PCs, a few were most frequently present, including the temporal pole, 

anterior cingulate cortex, superior temporal lobe, medial orbital frontal gyrus, and the pars 

triangularis.

Discussion

The main finding of this study is that multivariate models consisting of brain cortical 

thickness, cortical surface area, and regional volumes were highly accurate for classifying 

individual people with migraine as having CM vs. EM and for classifying individuals as 

having CM vs. being a healthy control. Classifiers based upon these structural measures 

could be of practical use since these structural data can be generated from brain MRI scans 

typically used in the clinical setting. Exploration of the headache frequency threshold that 

allowed for the most accurate differentiation of migraine frequency subcohorts showed that 

15 days per month was the best threshold, supporting the current ICHD diagnostic criterion 

of 15 headache days per month to differentiate CM from EM. In our analyses, brain 

structure differences in participants with migraine (EM + CM) vs. healthy control subjects 

and EM vs. healthy control subjects did not allow for highly accurate classification of 

participants as having migraine of any frequency or being a healthy control or as having EM 

vs. being a healthy control.

This study shows that CM is associated with aberrant brain structure and that the structural 

differences in CM are of a magnitude that allows for accurate differentiation from the brains 

of people with EM and from healthy controls. These data suggest that either, 1) more 

frequent migraine attacks lead to more extensive brain structural change; or 2) more severe 

brain structural aberrations predispose a migraine patient to a more severe form of migraine 

(i.e. CM). Longitudinal imaging studies that investigate relationships between changing 

migraine patterns and brain structure would help to clarify the direction of the relationship 

between migraine frequency and brain structure.

These study findings support the use of 15 headache days per month as the threshold 

between CM and EM. Despite testing several different headache frequency thresholds that 

were less than 15, models of brain structure most accurately differentiated subcohorts of 

migraineurs based upon headache frequency when 15 headache days per month was used. 

Although the selection of 15 headache days per month to differentiate CM from EM in the 

ICHD diagnostic criteria was mostly arbitrary, these study findings suggest that this is likely 

a good choice, corresponding to significant differences in brain structure. It is possible, and 

our data suggest, that there may be additional headache frequency thresholds that allow for 

accurate subclassification of patients with migraine. As illustrated in Figure 2, headache 

frequency thresholds of 5 days per month (or perhaps less) and 9 days per month might also 

allow for accurate subclassification based on brain structure. These additional 

subclassifications could be consistent with and might be helpful to further define the criteria 

for the “low-frequency EM” and “high-frequency EM” classifications that are often used.12
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Structural measures of the temporal pole, anterior cingulate cortex, superior temporal lobe, 

entorhinal cortex, medial orbital frontal gyrus, and pars triangularis were frequently present 

within the PCs that comprised the models that classified CM vs. EM and CM vs. healthy 

control. Each of these structures has previously been shown to be involved in pain 

processing and several of these regions have previously been identified as having abnormal 

structure and/or function in patients with migraine. The temporal pole and the anterior 

cingulate cortex have frequently been identified as regions with atypical structure and 

function in migraine.

The temporal pole and the superior temporal lobe participate in multisensory integration. 

The temporal pole is a multisensory region that integrates visual, auditory, olfactory and 

somatosensory stimuli. 13–15 Several research neuroimaging studies have demonstrated that 

compared to healthy controls, migraineurs have greater stimulus-induced activation of the 

temporal pole, atypical resting state functional connectivity of the temporal pole, and 

atypical structure of the temporal pole.14, 16–20 The superior temporal sulcus participates in 

multisensory integration and in determining the social salience of someone else’s pain.21, 22 

The upper bank of the superior temporal sulcus receives and integrates inputs from 

somatosensory, visual, and auditory cortices.23 Because of the potentially important role for 

multisensory integration in production of migraine symptoms, such as worsening headache 

intensity with exposure to visual and auditory stimuli and triggering of migraine attacks by 

sensory stimuli, the temporal pole and other regions that mediate multisensory integration 

might be particularly important in migraine physiology.14, 15

The anterior cingulate cortex, medial orbital frontal gyrus, entorhinal cortex, and pars 

triangularis participate in affective and cognitive aspects of pain processing. The anterior 

cingulate cortex is involved in affective and cognitive pain processing, in pain anticipation, 

and it is a key component of the salience network, a network of functionally connected brain 

regions that mediates the segregation of important environmental stimuli from those that are 

less relevant.24–26 Prior studies have demonstrated atypical activation, functional 

connectivity, and structure of the anterior cingulate cortex in migraineurs.20, 27–35 The 

orbital frontal cortex participates in the affective response to pleasant and painful stimuli and 

in emotion-based decision making.36, 37 Brodmann’s area 10 of the orbitofrontal cortex 

activates during the premonitory and headache phases of a migraine attack and parts of the 

orbital frontal cortex have been shown to have atypical gray matter volume and atypical 

functional connectivity in people with migraine compared to healthy controls.27, 34, 35, 38, 39 

The entorhinal cortex participates in modulating expectations for pain and in anxiety-driven 

hyperalgesia.40 The pars triangularis of the inferior frontal gyrus plays a role in determining 

the empathy for pain in others, an empathy that is likely to be affected by frequently 

recurring attacks of migraine.41, 42 The inferior frontal gyrus (unclear if specifically the pars 

triangularis) has been demonstrated as having atypical stimulus-induced activation and 

atypical functional connectivity in patients with migraine compared to healthy 

controls.20, 43–45

Few studies have investigated brain structure and function of patients with CM, comparing 

them to healthy controls or to patients with EM. A small voxel-based morphometry study 

found that patients with CM have less gray matter in the anterior cingulate cortex than 
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patients with EM and that there were correlations between headache frequency and gray 

matter volume in anterior cingulate cortex and temporal pole.32 A resting state functional 

connectivity study of 20 patients with CM vs. 20 healthy controls identified atypical 

functional connectivity of the anterior cingulate cortex in participants with CM.31 Studies 

comparing patients who have high frequency EM (i.e. 8–14 headache days per month) to 

those with lower frequency EM (i.e. 1–2 headache days per month) have found differences 

in stimulus-induced activations, resting functional connectivity and structure of the temporal 

pole and anterior cingulate cortex.46–48

There are aspects of the study design and available data that need to be considered when 

interpreting the results of this study: 1) Headache frequency was determined via patient self-

report. Some error in estimation of headache frequency was likely. Future studies should 

employ prospective headache diary maintenance prior to imaging in order to better 

determine headache frequency. 2) There were a limited number of patients with headache 

frequencies less than 5 headache days per month and greater than 15 headache days per 

month, making it unfeasible to test headache frequency thresholds that were less than 5 and 

more than 15. Future studies are required to determine if there are additional headache 

frequency subgroups of migraine patients defined according to headache frequencies of less 

than 5 or greater than 15 headache days per month. 3) Two MRI scanners were used in this 

study. As detailed in the Methods section, nearly equal proportions of participants in each 

subject cohort were imaged on each of the two MRI scanners and thus the use of two 

scanners likely had little effect on our study results. The use of two MRI machines may in 

fact make our results more generalizable than if all data were collected from one scanner.

Conclusions

In conclusion, classifiers containing MRI measures of brain cortical thickness, cortical 

surface area, and regional volumes accurately classified individuals as having CM vs. EM 

and as having CM vs. being a healthy control. Fifteen headache days per month was the 

headache frequency threshold that allowed for the most accurate classification of migraine 

patients into higher and lower frequency headache subgroups according to their brain 

structure, providing support for the currently used threshold of 15 headache days per month 

for differentiating CM from EM. Future studies will investigate the utility of other structural 

measures (e.g. those obtained via diffusion tensor imaging) and the utility of functional MRI 

data for building classifiers that differentiate migraine from healthy controls and that 

differentiate EM from CM. It is anticipated that these additional data will enhance the 

accuracy of such classifiers. Future studies will also construct classifiers that differentiate 

migraine from other headache disorders. Such classifiers would help to determine brain 

structural and functional aberrations that are specific to migraine and could eventually be 

developed into computer aided diagnostic tools that might help to clinically differentiate 

migraine from other headache disorders when that differentiation is otherwise difficult.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BDI Beck Depression Inventory

CM chronic migraine

DLDA diagonal linear discriminate analysis

DQDA diagonal quadratic discriminate analysis

DT decision tree

EM episodic migraine

FOV field of view

ICHD International Classification of Headache Disorders

MIDAS Migraine Disability Assessment

MP-RAGE magnetization prepared rapid gradient echo

MRI magnetic resonance imaging

PC principal component

PCA principal component analysis

SMOTE Synthetic Minority Oversampling Technique

STAI State-Trait Anxiety Inventory

SVM support vector machine
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Figure 1. Regions that comprise the chronic migraine vs. healthy control classifiers
Brain regions for which surface area, thickness or volume measures contributed to a 

classifier differentiating patients with CM from healthy controls are demonstrated on a 3-D 

rendering of the brain. The principal components to which these regions contribute are listed 

in Table 4. transv = transverse; sup = superior; temp = temporal; ant = anterior; post = 

posterior.
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Figure 2. Ten-fold cross validation classification accuracies with respect to the different 
headache frequency thresholds produced by four classification algorithms
The accuracy of each classifier for identifying individual migraine participants as belonging 

to a lower-frequency migraine group or a higher-frequency migraine group according to 

different headache frequency thresholds is demonstrated. These plots show that classifiers 

based upon DQDA and DT were the most accurate and that the most accurate classification 

occurred when a headache frequency threshold of 15 headache days per month was used. 

The plots also indicated that there was a large improvement in classification accuracy when 

moving from a threshold of 8 headache days per month to 9 headache days per month, 

suggesting the possible existence of headache frequency subgroups in addition to those 

based on 15 headache days per month.
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Figure 3. Step-wise addition of principal components to the chronic migraine vs. episodic 
migraine classifier
This figure illustrates the accuracy of the CM vs. EM classifier (this example is based on 

diagonal quadratic discriminate analysis or DQDA) as individual principal components 

(PCs) were added to the classifier. For example, a classifier containing PC17 alone had 

65.7% accuracy for classifying individuals with migraine as having CM vs. EM. When PC14 

was added to the model, the accuracy improved to 71.6% and when all 6 PCs were included 

in the model, the accuracy improved to 91.2%.
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Figure 4. Regions that comprise the chronic migraine vs. episodic migraine classifiers
Brain regions for which surface area, thickness or volume measures contributed to a 

classifier differentiating patients with CM from those with EM are demonstrated on a 3-D 

rendering of the brain. The principal components to which these regions contribute are listed 

in Table 6. transv = transverse; sup = superior; temp = temporal; ant = anterior; post = 

posterior.
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Table 2

Migraine vs. Healthy Control and Episodic Migraine vs. Healthy Control classification accuracies.

DQDA DT

Migraine (Episodic Migraine + Chronic Migraine) vs. Healthy Control

 Average accuracy ± SD over 10 runs

Overall accuracy 68.0%±2.3% 64.7%±2.4%

Migraine accuracy 77.9%±4.2% 69.6%±4.1%

Healthy Control accuracy 55.9%±9.7% 58.7%±6.6%

vBest accuracy among 10 runs

Overall accuracy 72.5% 70%

Migraine accuracy 74.2% 71.2%

Healthy Control accuracy 70.4% 68.5%

Episodic Migraine vs. Healthy Control

 Average accuracy ± SD over 10 runs

Overall accuracy 67.2%±2.4% 66.5%±6.0%

EM accuracy 57.5%±5.5% 65.7%±5.4%

Healthy Control accuracy 76.5%±2.6% 67.2%±8.3%

 Best accuracy among 10 runs

Overall accuracy 73.3% 77.1%

EM accuracy 70.6% 72.5%

Healthy Control accuracy 75.9% 81.5%

The average and best accuracies for classifying migraine (EM + CM) vs. healthy controls and EM vs. healthy controls are listed when using DQDA 
and DT. For example, when using DQDA the average overall accuracy for classifying migraine vs. healthy control was 68% while the best 
accuracy achieved was 72.5%.
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Table 3

Chronic Migraine vs. Healthy Control and Chronic Migraine vs. Episodic Migraine classification accuracies.

DQDA DT

Chronic Migraine vs. Healthy Control

 Average accuracy ± SD over 10 runs

Overall accuracy 86.3%±1.9% 74.6%±3.5%

CM accuracy 90.6%±2.9% 74.7%±5.9%

Healthy Control accuracy 82.2%±2.6% 74.4%±4.4%

 Best accuracy among 10 runs

Overall accuracy 88.6% 80.0%

CM accuracy 94.1% 78.4%

Healthy Control accuracy 83.3% 81.5%

Chronic Migraine vs. Episodic Migraine

 Average accuracy ± SD over 10 runs

Overall accuracy 84.2%±4.2% 83.0%±5.2%

EM accuracy 81.8%±4.9% 84.3%±8.3%

CM accuracy 86.7%±4.2% 81.8%±4.7%

 Best accuracy among 10 runs

Overall accuracy 91.2% 90.2%

EM accuracy 88.2% 96.1%

CM accuracy 94.1% 84.3%

The average and best accuracies for classifying CM vs. healthy controls and CM vs. EM are listed when using DQDA and DT. For example, when 
using DQDA the average overall accuracy for classifying CM vs. EM was 84.2% while the best accuracy achieved was 91.2%.
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Table 4

Principal components of the Chronic Migraine vs. Healthy Control classification model.

DQDA DT Brain Hemisphere MRI Features in PCs

Cortical Surface Area PCs

7 X

R Caudal Anterior Cingulate

R Entorhinal

R Transverse Temporal

L Transverse Temporal

8 X
R Entorhinal

R Rostral Anterior Cingulate

9 X
R Transverse Temporal

L Temporal Pole

10 X

R Caudal Anterior Cingulate

R Rostral Anterior Cingulate

L Entorhinal

L Transverse Temporal

11 X X

R Transverse Temporal

R Insula

L Parahippocampal

L Insula

15 X X

R Superior Temporal

R Temporal Pole

L Pars Triangularis

L Temporal Pole

17 X
R Frontal Pole

L Superior Temporal

18 X
L Entorhinal

L Supramarginal

Cortical Thickness PCs

21 X X

R Caudal Anterior Cingulate

R Isthmus Cingulate

R Posterior Cingulate

23 X

R Isthmus Cingulate

R Parahippocampal

R Pars Orbitalis

R Rostral Anterior Cingulate

R Temporal Pole

L Parahippocampal

L Rostral Anterior Cingulate

27 X R Medial Orbital Frontal
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DQDA DT Brain Hemisphere MRI Features in PCs

L Entorhinal

L Isthmus Cingulate

28 X

R Entorhinal

R Insula

L Superior Temporal

29 X

R Pars Opercularis

R Pars Triangularis

L Caudal Middle Frontal

30 X

R Superior Temporal

R Frontal Pole

L Entorhinal

L Parahippocampal

32 X X

R Pericalcarine

L Pars Triangularis

L Temporal Pole

Volume PCs

37 X

L Caudal Middle Frontal

L Cuneus

L Lingual

L Paracentral

L Pericalcarine

38 X

R Entorhinal

R Pericalcarine

L Cuneus

L Pericalcarine

L Temporal Pole

40 X

R Entorhinal

R Parahippocampal

R Rostral Anterior Cingulate

R Transverse Temporal

The PCs that comprise the CM vs. Healthy Control classifiers derived via DQDA and DT are presented. The classifiers contained PCs consisting of 
cortical surface area, cortical thickness, and regional volume measurements. The left-most column contains the name of the PC. An “X” under 
“DQDA” or “DT” indicates that the PC was part of the classifier derived using DQDA or DT analyses in at least one of the ten iterations. The 
right-most column lists the brain regions for which structural measures comprise that PC, named according to FreeSurfer terminology. For 
example, PC8 is comprised of cortical surface area measurements of the entorhinal cortex and rostral anterior cingulate. R = right; L = left.
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Table 5

Class sample sizes for different headache frequency thresholds.

Thresholds (headache days/month) Number of participants in low frequency 
class (headache frequency<threshold)

Number of participants in high frequency class 
(headache frequency>=threshold)

5 18 48

6 27 39

7 33 33

8 34 32

9 42 24

10 43 23

11 46 20

12 47 19

15 51 15

The number of study participants in “lower frequency” and “higher frequency” migraine subgroups depended upon the chosen headache frequency 
threshold for dividing the migraine participants into these two headache frequency subgroups.
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Table 6

Principal components of the Chronic Migraine vs. Episodic Migraine classification model.

DQDA DT Brain Hemisphere MRI Features in PCs

Cortical Surface Area PCs

5 X X

R Superior Temporal

L Superior Temporal

L Paracentral

12 X

R Frontal Pole

L Medial Orbital Frontal

L Postcentral

L Posterior Cingulate

L Temporal Pole

14 X X

R Pars Triangularis

L Frontal Pole

L Lingual

Cortical Thickness PCs

17 X X

R Medial Orbital Frontal

L Medial Orbital Frontal

L Rostral Anterior Cingulate

26 X

R Superior Temporal

R Insula

L Temporal Pole

27 X X

R Pericalcarine

L Caudal Anterior Cingulate

L Entorhinal

L Medial Orbital Frontal

29 X
R Pars Opercularis

L Postcentral

32 X

R Rostral Anterior Cingulate

L Rostral Anterior Cingulate

L Rostral Middle Frontal

L Temporal Pole

Volume PCs

45 X

R Caudal Anterior Cingulate

R Pars Triangularis

R Transverse Temporal

L Pars Opercularis

L Pars Triangularis

46 X
R Pars Triangularis

R Precentral
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DQDA DT Brain Hemisphere MRI Features in PCs

L Postcentral

47 X

R Superior Temporal

R Temporal Pole

L Caudal Anterior Cingulate

L Transverse Temporal

The PCs that comprise the CM vs. EM classifiers derived via DQDA and DT are presented. The classifiers contained PCs consisting of cortical 
surface area, cortical thickness, and regional volume measurements. The left-most column contains the name of the PC. An “X” under “DQDA” or 
“DT” indicates that the PC was part of the classifier derived using DQDA or DT analyses in at least one of the ten iterations. The right-most 
column lists the brain regions for which structural measures comprise that PC, named according to FreeSurfer terminology. For example, PC5 is 

comprised of cortical surface area measurements of the right superior temporal lobe, the left superior temporal lobe and the left paracentral lobule. 
R = right; L = left.
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