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Coregulation of Ion Channel Conductances Preserves Qutput
in a Computational Model of a Crustacean Cardiac Motor Neuron
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Similar activity patterns at both neuron and network levels can arise from different combinations of membrane and synaptic conduc-
tance values. A strategy by which neurons may preserve their electrical output is via cell type-dependent balances of inward and outward
currents. Measurements of mRNA transcripts that encode ion channel proteins within motor neurons in the crustacean cardiac ganglion
recently revealed correlations between certain channel types. To determine whether balances of intrinsic currents potentially resulting
from such correlations preserve certain electrical cell outputs, we developed a nominal biophysical model of the crustacean cardiac
ganglion using biological data. Predictions from the nominal model showed that coregulation of ionic currents may preserve the key
characteristics of motor neuron activity. We then developed a methodology of sampling a multidimensional parameter space to select an
appropriate model set for meaningful comparison with variations in correlations seen in biological datasets.

Introduction

Neurons of the same cell type may be expected to have identical
intrinsic membrane properties, both within an animal and across
individuals. Yet recent work has argued that similar activity pat-
terns, both at single neuron and network levels, can arise from
variable levels and combinations of membrane and synaptic con-
ductance levels (Prinz et al., 2004; Swensen and Bean, 2005;
Achard and De Schutter, 2006; Marder and Goaillard, 2006;
Schulz et al., 2006; Tobin and Calabrese, 2006; Marder et al.,
2007; Taylor et al., 2009). Similarly, such variability also exists in
levels of mRNAs that encode for channels that carry ionic cur-
rents (Schulz et al., 2006, 2007). However, these examples of
variability are constrained in that different sets of ionic conduc-
tances (Khorkova and Golowasch, 2007) and ion channel mRNA
levels (Schulz et al., 2007; Tobin et al., 2009) are strongly corre-
lated with one another in different classes of identified neurons.
These results suggest that cellular output in the nervous sys-
tem may not be of a fixed, developmental origin, but rather be
determined in part by an ongoing regulation of characteristic
sets of correlated or coregulated ionic conductances and/or
channels. Such an understanding of basic neuronal function
has a profound impact on our understanding of nervous sys-
tem function in general, from cellular, network, and behav-
ioral perspectives.
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Computational models have been used to explore the param-
eter space to determine how groups of conductances both alter
and preserve neuronal output. Prinz et al. (2003) explored the
maximal conductance space of a single-compartment model
neuron to quantify the numerous types of spiking and bursting
models that emerged. This database of resulting model neurons
was used to demonstrate that similar patterns of activity could be
produced by many different parameter sets, both for single neu-
rons (Prinz et al., 2003) and within small networks (Prinz et al.,
2004). Such a model-based parameter space exploration also has
been used to explore the effects of varying conductance densities
on output patterns for a globus pallidus neuron (Gtinay et al.,
2008), demonstrating the interdependent effects of multiple con-
ductances on neuronal output. More recently, a search of the
parameter space of a multicompartment model of a lateral pylo-
ric neuron suggested that correlated levels of multiple conduc-
tances are not necessary to maintain output (Taylor et al., 2009).
These studies share a common hypothesis that, given biological
variability in underlying properties among a population of neu-
rons, no single model may be sufficient to capture the range of
intrinsic properties suitable to producing a given output or range
of outputs (Marder et al., 2007).

The present study was motivated by these kinds of model
database approaches as well as recent biological measurements of
ion channel mRNA within large-cell (LC) motor neurons of the
crustacean cardiac ganglion (CG) that showed correlations
among various channel mRNA types (Tobin et al., 2009). We
developed a population of model LC neurons to investigate
whether such covariations might serve to stabilize one of the key
outputs, the “driver potential” (DP) of motor neurons. Because
driver potentials underlie the organization of CG action poten-
tials into bursts that drive cardiac muscle contractions, for the
purposes of this study, the preservation of driver potentials was
considered to be representative of the overall output of cardiac
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motor neurons and the primary focus for conserved “output” in
this system.

Materials and Methods

Cardiac ganglion model development

The nine-neuron cardiac ganglion consists of five LC motor neurons and
four small pacemaker cells that are electrically coupled and burst syn-
chronously (Maynard, 1955; Hartline, 1967, 1979; Mayeri, 1973; Tazaki
and Cooke, 1979a). This bursting is initiated by spontaneous small-cell
bursting, and the strong electrotonic coupling among the large and small
cells allows all nine cells to burst simultaneously. In a tetrodotoxin-
perfused intact ganglion, LCs were found to exhibit a slow, calcium-
driven depolarization to —30 mV from a rest potential of —54 mV that
lasts an average of 250 ms, and this depolarization has been termed the
driver potential (Tazaki and Cooke, 1979b). All five LCs exhibit nearly
identical driver potentials when a short (<<50 ms) current injection pulse
is delivered to any single LC soma (Tazaki and Cooke, 1979b; Berlind,
1982). Because of the strong electrical coupling and nearly identical
properties of the multiple neurons of the same type within the networks,
a two-cell model of the CG was found to be sufficient to capture the
essential network dynamics of CG electrical output. Large and small-cell
models were independently developed (see below), and then synaptic
and electrical coupling strengths between the small cell and the somatic
compartment of the LC were tuned to produce spontaneous, synchro-
nous bursting in both cells. The models were developed using the GEn-
eral NEural SImulation System (GENESIS) (Bower and Beeman, 1998),
with an integration time step of 10 us.

LC model
A two-compartment conductance-based model was developed for the
LC, based on experimental data (Tazaki and Cooke, 1979a,b,c, 1983a,
1986, 1990; Berlind, 1982; Cooke, 2002). The LC model is similar to that
in the study by Soto-Trevifio et al. (2005) for rhythmically active pyloric
dilator and anterior burster (AB) cells of the crustacean stomatogastric
ganglion (STG). In the study by Soto-Trevifio et al. (2005), calcium
currents in the somatic/primary neurite compartment are primarily re-
sponsible for the slower underlying potentials of the burst, and an axonal
compartment is responsible for producing the action potentials. In LCs,
similarly, driver potential generation and its associated conductances
appear to be located in or near the soma, whereas action potentials are
produced distally in the axon (Tazaki and Cooke, 1979b). Studies of LCs
have shown that an inward calcium current is responsible for depolariza-
tion in the driver potential (Tazaki and Cooke, 1979b,c, 1983a, 1986,
1990). Analyses of tail currents (Tazaki and Cooke, 1990) revealed that
calcium current inactivation occurs with two apparent time constants, a
shorter time constant of 40 ms, followed by a longer time constant of 180
ms. Two types of calcium currents were implemented in the model to
reproduce this behavior: a persistent calcium current I, and a transient
calcium current I,;. Three outward potassium currents have been
found in LCs (Tazaki and Cooke, 1979¢, 1986): an early outward current
1,, a delayed outward current Iy, and a calcium-dependent potassium
current [i,. The soma was modeled with these five active currents and a
leak current. The axonal compartment was modeled with a leak current
and with I and a transient sodium current I, to produce action po-
tentials in response to depolarizing currents.

Equations 1 and 2 represent the membrane voltage equation for the
two compartments of the LC as follows:

v
Cs% = —g(V.—E,) —g(V,—V,) — EILS — Iy — Iy, (1)

dv,
Ca? = _gLa(Va - ELa) - gc(va - Vs) - z Ii,a’ (2)

where V/V, are the somatic/axonal membrane potentials, I; /I, , are the
intrinsic active currents in the soma/axon compartments, ./, are the
synaptic/gap junction components of the current from the small cell
(where the resistance between the somas of the large and small cells, Rgap,
is 33.3 M{}), C/C, are the membrane capacitances of the soma/axon
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Table 1. Model parameters: large-cell model parameters
Soma Axon

Gonay (MS/cM?) E ey (mV) Gunax (MS/cM?) E., (mV)
Large-cell current
parameters
s — — 600 50
Ia 190 =73 200 =73
I 90.25 =73 — —
e 40 -73 — —
leas 6.83 Nernst — —
lear 2.4 Nernst — —
heak 0.04 —55 0.04 —55
Other parameters
Surface area 8.88 X 10 *m? 0.98 X 10 *cm?
Capacitance 20.84 nF 2.084 nF
[(a 2+:|rest 05 M -
Tear+ 640 ms —
FCa” 0.256 [LM/nA —
Raxial 1.5MQ -
33.3MQ —

9ap
Note that the model adapted for use as the endogenously bursting small cell does not make use of per-unit
parameters.

compartments, g; /g;, and E; /E, , represent the leak conductance and
reversal potential for the soma/axon compartments, and g. is the cou-
pling conductance between the soma and the axon. The passive proper-
ties of the model were adjusted to reproduce the input resistance and
resting potential of LCs recorded in vitro, as described later. The values
for the leak conductance, membrane capacitance, and cytoplasmic (ax-
ial) resistance are listed in Table 1.

Current kinetics. The cells in the crustacean cardiac ganglion share
many similarities in form and function with those in the well studied STG
(Buchholtz et al., 1992; Golowasch et al., 1992; Turrigiano et al., 1995;
Prinz et al., 2003, 2004). Accordingly, kinetics of the currents in the LC
model and the ranges for maximal conductances were based on the cur-
rent models in a database of model STG neurons (Prinz et al., 2003). The
ionic current for active channel i was modeled as I; = gm”hi(V — E,),
where g; is its maximal conductance, m is its activation variable (with
exponent p), h is its inactivation variable (with exponent g), and E; is its
reversal potential. The kinetic equation for each of the gating variables x
(m or h) takes the following form:

dx  x.(V,[Ca®"]) — x

i awm 3
where x., is the voltage- and/or calcium-dependent steady state, and 7, is
the voltage-dependent time constant. The maximal conductances for all
ionic currents and the expressions for the gating variables x., and 7,, most
being the same as in the STG database (Prinz et al., 2003), are listed in
Tables 1 and 2, respectively.

Calcium dynamics. Intracellular calcium modulates the conductance
of the calcium-activated potassium current and influences the magni-
tude of the inward calcium current in the LC (Tazaki and Cooke, 1990).
A calcium pool was modeled in the LC with its concentration governed
by the first-order dynamics of Equation 4 (Prinz et al., 2003; Soto-
Trevino et al., 2005) as follows:

d C 2+
TCa [ dat ] = —FXlI,— ([Caz+:| - [CaZJr]rest)) (4)

where F = 0.256 um/nA is the constant specifying the amount of calcium
influx that results per unit (nanoamperes) inward calcium current, 7,
represents the calcium removal rate from the pool, and [Ca®"], ., = 0.5
M. Voltage-clamp experiments of the calcium current in the LC (Tazaki
and Cooke, 1990) showed the intracellular calcium buffering time con-
stant to be 640 ms, and so this value was used for 7. The sum of calcium
currents, I, + I,q, is denoted by I,. This calcium concentration was
also used in the Nernst equation to determine the reversal potential for
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Table 2. Model current gating functions: large cell
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lion xP x,.(VinmV; [Ca] in um) 7, ms (V/inmV)
s m’ 2.52
2.64 —
- - [V+225) - V+ 120
P\ 529 P\ =25
h 1.34 < [15 + 1
.  [V+489) V+ 629 ' V +34.9
Xp\ g 1+ exp T 1 + exp 3.6
leas m? 1 14
2.8 +
L+ [V +35) V+27 N V+70
exp expl —; exp 3
4 . 120 + 500
 (V+e2) V+ 55 V+ 65
1+ exp 62 exp 9 + exp ~16
h, 13 640
13 + [Ca]
I m? 42.6
@ 434 —
N (V4271 V +68.1
1+exp|l—=+— 1+ exp 2505
h 179.6
210 —
- [v+321) L+ V+55
P\ =55 P\ =169
Iy m? 20.8
232 —
 [V+292) N V+ 329
1+expl ——5— 78 1+ exp 152
h - 58.4
- [V +569) ’ - [V +389)
exXpl g exp\ 55
I m* 12.8
144 —
- [V +183) N  [v+283)
expl—g o 1+expl—a5 “192
I m* Ca 1 150.2
K [Cal X 180.6 —
[Ca] +3 - V+28.3 - [V +46)
P\ 126 P\ =227
calcium currents, assuming an extracellular calcium concentration of 13 Table 3. Model parameters: small-cell model parameters
mM, at a temperature of 25°C, as used in electrophysiological experi- Soma Axon
ments by Tazaki and Cooke (1979a,b,c).
Input from the small cell. Although there have been numerous studies Omax (1) freu (mV) Omax (1) Fre, (MV)
of the cardiac ganglion using extracellular and intracellular recordings  Small-cell current parameters
from the somata of the LCs (Bullock and Terzuolo, 1957; Hagiwara and Ina — — 300 50
Bullock, 1957; Hagiwara et al., 1959; Berlind, 1993; Fort et al., 2007), Inap 40.7 50 — —
intracellular recordings from the small-cell somata have been reported in Ika 2362.5 —80 26.3 —80
only one study, in the crab Portunus sanguinolentus (Tazaki and Cooke, Ikca 6 —80 - -
1979a). Hence, a computational model of an AB cell in the study by Iy 60 —80 - -
Soto-Trevifio et al. (2005) that produces endogenous rhythmic bursting lear 552 Nernst - -
was used as the basis for the small-cell model, and the model was tuned leak 0.045 —50 0.0018 —60
using published intracellular recordings of the small cell during sponta- Other parameters
. . S . Capacitance 45nF 0.45 nF
neous bursting and during current injection protocols (Tazaki and [a2*] 05 o
Cooke, 1979a). The structure and equations governing the small-cell 3 et 2 N
. Tzt 303 ms —
model were the same as in the large-cell model. The parameters and
- . . Fepo 1.38 um/nA —
current gating functions for the small cell are shown in Tables 3 and 4, R 333MQ _

respectively. In the cardiac ganglion, all cells have been shown to be
electrically coupled with one another (Cooke, 2002), and EPSPs are vis-
ible in the intracellular traces of the LC somata, whereas no synaptic
potentials are visible in intracellular small-cell traces (Tazaki and Cooke,
1979a). Therefore, electrical coupling was modeled by ohmic contact
between the coupled soma compartments (Soto-Trevifio et al., 2005),
with a chemical synaptic connection from the small-cell axon to the LC
soma (see Fig. 1A).

axial

Note that the model adapted for use as the endogenously bursting small cell does not make use of per-unit
parameters.

Model tuning

The model was tuned by adjusting the parameters to match available
experimental data. In particular, the apparent input resistance of the LC
model, the spontaneous activity of the connected LC and SC models, and
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Table 4. Model current gating functions: small cell
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lion X X, (VinmV, [Ca] in um) 7, ms (V/inmV)
Ina m? Sed - 2.56
V+24.7 ' V+ 120
1+ exp( —529 ) 1+ exp(i_25 )
h 1.34 1
V +48.9 Viezo) | T V+34.9
1+ exp( 518 ) 1+ exp<7_ 10 ) 1+ exp<73.6 )
Ina m? 10.7
- 6.8 198 = V+ 265
1+ exp( ) 1+ exp(i_ 8.6 )
h 379
V +48.5 666 + V +33.6
1+ exp( ) 1+ exp<7_ 1.7 )
lear m? 1 55 _ 49.5
V+25 V + 58
1+ exp< —72 ) 1+ exp( —r )
h 1 75
V + 36 875 - V + 50
1 +exp< 7 ) 1 +exp( —16.9)
Iy m? 1 6 — 10.4
V+27 V+ 329
1+ exp( ry ) 1+ exp(i_ 152 )
h 1 29.2
V+56.9 86~ V+38.9
1+ exp( 49 ) 1+ exp(7_26‘5 )
kg m* 1 - 6.4
V+14.2 ’ V+283
1+ exp( 1138 ) 1+ exp<77 192 )
Iea m* [Ca] 1 75.09
[Ca] + 30 V+ 51 203 = V+46
+ exp( 4 1+ exp( _22.7>

the driver potential of the LC in response to depolarization were exam-
ined and compared with recordings from the LCs and small cells of P.
sanguinolentus (Tazaki and Cooke, 1979b; Berlind, 1982).

Experiments in isolating the LC soma-proximal neurite region in both
P. sanguinolentus and Homarus americanus have shown that the soma
and the spike initiation zone of the LC axon can be separated via a
ligature, yielding nearly identical results as in experiments with TTX
perfusion (Tazaki and Cooke, 1983b). In model simulations, ligature of
the axon was reproduced by specifying a very large resistance between the
soma and axonal compartments of the LC, and TTX perfusion was sim-
ulated by setting the maximal conductance of all sodium currents to zero.
Characteristics of driver potentials elicited by depolarization under both
sets of conditions in the model were also found to be nearly identical.
Since driver potential characteristics of biological LCs have been most
often reported in the presence of TTX (Tazaki and Cooke, 1979b), the
model driver potential characteristics reported have been elicited with all
sodium conductances set to zero.

Investigating parameter variations in the LC model that
maintain output

Molecular studies of mRNA expression levels in CG large cells of Cancer
borealis have revealed a number of correlations of varying strengths
among genes that encode for ion channel proteins (Tobin et al., 2009).
The molecular data includes information regarding correlations involv-
ing cacophony, a gene that encodes for a channel that carries an uniden-
tified calcium current. Because the driver potential of the LC relies

heavily on the interplay of calcium and potassium currents in the LC
soma (Tazaki and Cooke, 1979a,b,c, 1986, 1990), we are particularly
interested in the role of calcium currents in possibly preserving the driver
potential. To determine whether coregulation of the ion channels en-
coded by the genes involved in such correlations could serve to maintain
CG driver potentials, we varied the maximal conductances of the cur-
rents of the LC model and characterized the resulting changes in the
driver potential.

First, we characterized the changes in the driver potential features
when each conductance was varied individually, and then in pairs from
0.1 to 5 times their nominal values, with all other maximal conductances
at their nominal values. This exploration was then generalized to study
whether covariations occur in a biologically constrained population by
allowing all maximal conductances of the LC soma model to vary within
this same 0.1- to 5-fold range from their nominal values and determining
the resulting effect on driver potential characteristics as described below.

Measurement of output characteristics

Tazaki and Cooke (1979b) reported an extensive characterization of
driver potentials in P. sanguinolentis. In particular, means and SDs for the
following characteristics of the driver potential of the LC were reported:
(1) duration, (2) peak voltage, (3) afterhyperpolarization (AHP), (4)
maximum rates of rise and fall during its upswing and downswing, and
(5) resting potential. Two phases of the afterhyperpolarization after a
driver potential were reported in P. sanguinolentis (Tazaki and Cooke,
1979b); in the model LC, the AHP was not easily distinguishable into two
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Table 5. Comparison of biological driver potential characteristics with those of the
driver potential response in the large-cell model

Biological LC (TTX)" Model LC

Resting potential (mV) —53 25 —539
Driver potentials

Threshold potential (mV) —46 £ 2 —47

Peak (mV) —32=*3 —317

Max rate of rise (V/s) 0.45 = 0.15 0.27

Max rate of fall (V/s) 0.2 =0.12 0.24

Duration (ms) 250 =50 272
Maximum afterhyperpolarization of afterpotentials

Slow (mV) —55=*2 —

Fast (mV) —58+3 —583

“From Tazaki and Cooke (1979b).

separate phases, and so only the initial maximum AHP was considered.
The maximum rates of rise and fall, measured during the upswing and
downswing of the driver potential, were used to calculate the duration of
the driver potential by Tazaki and Cooke (1979b), and we used the same
method to calculate duration in the model. In P. sanguinolentus LCs,
driver potentials are elicited with 20 ms current injections with magni-
tude larger than 10 nA. Driver potential characteristics were measured in
62 LCs using an unspecified current injection (Tazaki and Cooke,
1979b). Driver potentials were elicited in the model with a 20 nA, 20 ms
current injection; however, a larger current pulse (40 nA, 20 ms) was
chosen for model experiments because this stimulus strength best pro-
duced driver potentials for a large range of the maximal conductance sets
used. Although the exact stimulus used to produce the table of driver
potential measurements reported by Tazaki and Cooke (1979b) (whose
measurements are used for comparison in the present study) is not spec-
ified, stimulus durations of 20 ms are used to elicit driver potentials for
the majority (8 of 10) of the experiments they describe. Furthermore,
they show that individual LCs produce uniform driver potentials in re-
sponse to varying stimuli. In accordance with these findings, current
pulse strengths of this duration ranging from 20 to 50 nA in the model, in
addition to pulses of varying strength and duration, did not produce
significantly different driver potentials (see Results). Current pulses were
injected into the LC soma model after a 5 s period of rest, and the five
cited characteristics were measured for the model driver potentials.

Quantification of output preservation

We used the following approach to quantify how well the driver potential
of a model conformed to biologically measured driver potentials. Gauss-
ian distributions were assumed for each of the biological driver potential
characteristics shown in Table 5. Using these distributions, a sum of
standardized variations was calculated for each cell model using three
characteristics of the LC model driver potential (peak, duration, and
maximum afterhyperpolarization) for each model cell. These three char-
acteristics were chosen because they most likely affect the rhythm of
bursting in the CG as well as the number and frequency of action poten-
tials during bursts. This sum was calculated using the following equation:
2(x — Wi/ 0’,2 , where x; is the value of driver potential feature 7, u; is its

biological mean value, and o; is its biological SD (Tazaki and Cooke,
1979b) (Table 5). In this way, a measure of each model was produced that
represented its likelihood of existing in a sample of biological LCs based
on their reported driver potential features. Because this sum follows a
multivariate normal probability distribution, specifically a x?* distribu-
tion, this sum generated for each model cell has been referred in the
following as its x> value.

Such y* values were computed for driver potentials elicited at all com-
binations of maximal conductances in the five-dimensional conductance
space, using the same set of X-fold values, where X = {0.1, 0.25, 0.5, 0.75,
1.0,1.25,1.5,1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}, yielding 15° = 759,375
cell models. This five-dimensional grid of driver potential features was
used to better understand the behavior of the LC model when all five
maximum conductances of the LC soma were allowed to vary. It was
found that, for a large proportion of this set (83%), the resulting LC
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model produced one of two behaviors that were not consistent with
reported biological behavior: (1) Some did not respond to a 20 ms cur-
rent pulse with a driver potential; for these models, larger current pulses
were not usually able to produce a driver potential, likely because of large
I, current, preventing sufficient activation of I -4 (see Results); (2) other
models for which the magnitude of I, was large compared with that of
I, produced repetitive driver potentials even in the absence of current
injection. Since both of these cases do not represent biological behavior
of LCs, these models (grid points in the five-dimensional space) were
omitted from additional consideration.

Methodology to capture biological variability in a model

A single model cannot, by itself, capture the effects of variability in con-
ductances seen naturally in a biological dataset. We wanted to generate a
set of model cells that possessed variability that was consistent with that
seen in the biological dataset. Ideally, a probabilistic sampling method
using observed measurements of neuronal properties would produce a
model population that most closely resembles biological variability. Such
amethod would use a probability distribution function parametrized by
the measured characteristics of the biological cells. In the absence of such
complete data, we used the best fit of a Gaussian distribution to each
driver potential characteristic as specified by its mean and SD. As cited
previously, the sum of standardized variations for these characteristics
then follows a x> probability distribution. To this end, we used x> values,
calculated for individual cell models as described above, to constrain
model cells based on their driver potential characteristics. This was ac-
complished as follows: random maximum conductances were selected
for each active LC current (using a continuous uniform distribution of
within 0.1- to 5-fold range of their nominal values) and simulated. If this
model cell generated a driver potential (defined as a depolarization by
>10 mV after a 20 ms current pulse), a X value for this model cell was
calculated using the method cited above. Each cell was retained or dis-
carded according to the corresponding probability of existence predicted
for its y? value from a x? probability distribution function with 2 df
(because three features of LC model driver potentials were considered,
and 1 df is lost because of the formulation of the covariance matrix). If a
random number generated uniformly between 0 and 1 was less than this
probability, this model cell was retained; otherwise, it was discarded. We
repeated this process, generating and retaining or discarding cell models
using their individual y* values and corresponding probabilities of sur-
vival, until 1000 model cells were retained. Then, coefficients of determi-
nation (R? values) were computed for each pair of conductances in the
retained population of LC model cells. Such a methodology thus pro-
duced a set of model cells with variability in maximal conductances for
comparison with the biological dataset.

Outlier analysis

For the sets of model LCs generated as described above, univariate
outlier analyses were performed on values of measured driver poten-
tial characteristics by converting their values to standard z-scores
usingz = (X — X)/SD, where X is the characteristic in question, X is its
mean from the model set, and SD is its SD. Values with z scores beyond 4
were excluded from reported values. As a result, for the set of 1000
models for which the sum of standard variations was used as a selection
device, 6 values were excluded from the maximum rate of rise, 1 value
was excluded for the maximum rate of fall, and 5 values were excluded for
the resting potential. For the set of 1000 models for which the general
sum of variations using the covariance matrix was instead used as a
selection device, 13 values were excluded from the maximum rate of rise,
1 value was excluded for the maximum rate of fall, and 4 values were
excluded for the resting potential.

Results

Model validation

Resting potential and input resistance

Using current clamp, Tazaki and Cooke (1979a) measured an
input resistance in P. sanguinolentus LCs of 2.8 = 0.8 M) in
control LCs, and 3.6 = 0.9 MQ with 0.3 um TTX perfusion. We
replicated these experiments in the model, simulating current-
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clamp steps of varying magnitudes and measuring the membrane
potential changes in the isolated somatic compartment model.
Choosing a gj... of 0.04 uS/cm? and E,., of —55 mV yielded a
linear voltage-versus-current curve with an input resistance
(slope) of 2.9 MQ. The resulting V.., is —53.9 mV (mean in
biological data was —53 = 2.5 mV) (Tazaki and Cooke, 1979b).
The input resistance, as well as the driver potential and other
somatically recorded events, likely results from membrane prop-
erties encompassing more area than the soma alone. Therefore,
the model somatic compartment represents the soma and the re-
gions of the proximal neurites that are electrotonically close to the

soma, with a total compartmental surface area of 8.88 X 10 > cm?.

Tuning the LC model currents

Starting with nominal values from the STG database (Prinz et al.,
2003), the maximal conductances of LC currents were adjusted to
match experimental measurements of LC output as follows:
Maximal conductances of I, and I, as well as their activation
and inactivation functions were tuned to reproduce qualitative
features related to driver potential generation (Tazaki and Cooke,
1990). The conductance of I, was increased to produce appro-
priate afterburst repolarization (Tazaki and Cooke, 1979b), and
the conductance of I, was increased to obtain the characteristic
initial latency of the driver potential. Some parameters were ad-
justed [compared with those in the study by Prinz et al. (2003)] to
match the experimental traces reported by Tazaki and Cooke
(1979a,b,c): the slope of the activation function of I, was de-
creased by 0.9 mV to match the latency to the upswing of the
driver potential, the half-activation voltage for the inactivation
function of I, was increased by 2 mV to better reproduce the
driver potential threshold of the LC (Tazaki and Cooke, 1979b),
and the half-activation voltage for the activation function of I ;4
was increased by 6 mV (and its slope decreased by 2 mV) to match
the peak of the driver potential. Finally, an additional inactiva-
tion function (h,) was implemented with I,5 to produce the
calcium-dependent inactivation of inward calcium current ex-
hibited by CG LCs (Tazaki and Cooke, 1990). The optimized
values for LC model parameters are listed in Table 1, and the
activation and inactivation functions for the model currents are
given in Table 2.

The network model (Fig. 1A) was tuned to reproduce the
salient features seen in the biological data (Fig. 1 B) (from Tazaki
and Cooke, 1979a). The combination of EPSPs and electrical
coupling between the large and small cells caused a 400—600 ms
burst of action potentials in the LCs (Cooke, 2002). Figure 1B
shows that, as in the biological recordings, the small-cell and LC
models produced simultaneous bursts of action potentials pre-
ceded by small-cell pacemaker potentials. The small-cell model
produced approximately as many spikes per burst as its biological
counterpart (~12). Small-cell model bursting evoked a burst in
the LC model that repolarized within 300500 ms, at which time
current passing from the LC model to the small-cell model
through electrical coupling ended the small-cell model burst. Ad-
ditionally, the model network reproduced (data not shown) the
phase advances and delays during bursting that are caused by the
injection of depolarizing or hyperpolarizing currents reported by
Tazaki and Cooke (1979a).

The LC model reproduces biological driver potential response

When the CG network (large plus small cell) model was simu-
lated under conditions representing TTX perfusion, the LC soma
produced driver potentials similar to those seen experimentally
(Fig. 2 A, B). Simulating repeated current pulses in the isolated LC
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Figure 1. A, Schematic of the coupled large- and small-cell model. Resistances between
soma and axon compartments represent cytoplasmic (axial) resistance, and the resistance be-
tween the large- and small-cell somata represents the electrotonic coupling between the two
types of cells. EPSPs in the large cell resulting from small-cell action potentials have been
implemented with an excitatory chemical synapse linking the small-cell axon to the large-cell
soma (filled triangle). B, Comparison of biological and model G bursting for the network
model. Top, Spontaneous bursting activity in P. sanguinolentus as reported by Tazaki and Cooke
(1979a). Top trace, Intracellular recording of an anterior large cell. Middle trace, Small-cell
recording. Bottom trace, Extracellular recording from main trunk of CG showing action poten-
tials from large cells (large spikes) and small cells (shorter spikes). Bottom, Spontaneous bursts
generated in the synaptically coupled large- and small-cell models. Top trace, Large-cell soma
voltage. Bottom trace, Small-cell soma voltage.

model produced driver potential responses in a pulse strength-
dependent manner similar to that encountered in the biological
LC (Tazaki and Cooke, 1979b). With a pulse strength of 20 nA,
driver potentials were reliably produced with a stimulus frequency as
high as 0.5 Hz. This refractory period of driver potential generation is
likely related to the slow phase of AHP seen in the LCs of P. sanguino-
lentus as well as to the calcium-dependent inactivation of the inward
calcium current (Tazaki and Cooke, 1990), the characteristics of
which are not well understood presently.

Effects of parameter variations on CG output

Currents in the model LC soma during the driver potential

To understand how coregulations of current conductances in the
LC could preserve output, we first investigated the activity and
contributions of each ionic current in the LC soma to the driver
potential shape. During the initial latency to the driver potential,
the slow calcium current I, and the early outward current I,
were the most prominent currents, opposing one another (Fig.
2C). During the later depolarizing phase of the driver potential,
all LC soma currents except for Iy, activated, and I, and I 4
were the most prominent currents. During the peak of the driver
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Figure 2.  The driver potential response. Comparison of driver potential ( p, peak; d, dura-
tion; ¢, threshold; r, line tangent to the maximum rate of rise; £, line tangent to the maximum
rate of fall) and subthreshold responses in an anterior large cell of Portunus (A) (Tazaki and
Cooke, 1979b) with those in the large-cell model (B). Current pulses in the model: DP, 20 nA, 20
ms. Subthreshold, 17 nA, 20 ms. C, Currents in the large-cell soma model during a driver
potential.

potential, I, and I, began to inactivate before the inactivation
of I-,s and I4. Finally, I, activated and reached its peak during
the repolarization of the driver potential and the inactivation of
the four remaining currents. To test how varying the maximal
conductances of the LC currents affected the driver potential, we
elicited driver potentials in cell models with various combina-
tions of maximal conductances by setting the sodium conduc-
tance to zero in each case and injecting a 40 nA, 20 ms current
pulse into the LC soma compartment. This current amplitude
was chosen for its ability to elicit driver potentials in the largest
number of conductance combinations, whereas current pulses of
this duration with varying amplitudes (Fig. 3A) as well those with
varying durations and amplitudes (Fig. 3B) were found to pro-
duce nearly identical driver potentials in a given LC model.

Covariation of Ge,r and Gy, preserved driver potential form

Covarying Gyg and Gg,r in a pairwise manner while all other
maximal conductances were held at their nominal values (Table
1) revealed that the overall form of the driver potential was best
preserved when they were changed in equal proportion. To in-
vestigate how these currents could balance one another to pre-
serve output, we evaluated the peak voltage and duration of the
driver potential, two of its primary features, as only G, and Gyqy
were varied (Fig. 4 A). Increasing G, alone depolarized the peak
of the driver potential and decreased its duration, while increas-
ing G4 alone had the opposite effect on these two measurements.
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Figure3. Driver potential formin the canonical large-cell model did not change significantly
for different stimulus amplitudes or durations. A, Driver potential responses to 20 ms current
injections ranging from 20 to 50 nA at 5 nA steps are overlaid with their peak voltages aligned.
Longer latencies to the peak voltage correspond to weaker current injections. The trace with the
lowest peak and least hyperpolarized afterpotential corresponds to a stimulus of 20 nA, which
was just above threshold fora 20 ms current pulse. B, Driver potential responses (top) to current
pulses (bottom) of varying duration with sufficient amplitudes to evoke full responses. Identical
colors have been used for the stimulus and the corresponding membrane potential response.

When these maximal conductances were varied in equal propor-
tions, the duration was preserved, and varied by <7% of its nom-
inal value over a fivefold range of parameter values. The peak
voltage, in contrast, was best preserved when G, was varied in a
nonlinear relationship to Gyg, requiring somewhat larger in-
creases in G, to balance increases of Gyq to high values; how-
ever, varying Gg,r and Ggq in the same linear manner that
preserves the DP duration changed the peak by <20% of its nom-
inal value over the large range. This finding is consistent with the
fact that more than two parameters must be varied to preserve
two independent characteristics of a model neuron, which is
shown clearly by Olypher and Calabrese (2007). Figure 4 B shows
a comparison of generated driver potential responses in the
model when G, and Gg4 were varied together by onefold, two-
fold, threefold, fourfold, and fivefold increases in each. The initial
latency to the driver potential decreased, but the form of the
driver potential was preserved. Figure 4C shows the x* values for
the driver potential (see Materials and Methods) for the G4 and
Gc,r adjustments indicated on the X and Y axes with all other
conductances held at their nominal values. Note that a relative
Gear—Ggq multiplier ratio near 1:1 preserved DP form, as re-
flected by a diagonal region in the G,1—Gyq4 space within which
X’ values approach a minimum.

Balancing G, and G, was required for driver potential
generation

When G, and G, were varied (while all other maximal conduc-
tances were held to their nominal values) (Table 1) in such a way
that they balanced one another, the overall output was preserved
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(Fig. 5A). However, increasing G, with-
out a compensatory increase in G, pre-
vented the LC soma from generating
driver potential responses to a 20 ms cur-
rent injection (Fig. 5A—C,H ). This limita-
tion resulted from the inward current
(primarily I-,) being insufficient to over-

140
100

60 |

come the outward current (primarily I,)

near rest, rather than from a graded opposi- oo
tion to depolarization via current injection 20 ..
(see Materials and Methods). Conversely, 0=

increasing G, alone without also increas-
ing G, unbalanced the LC currents near
rest (primarily I, and I,), resulting in
endogenous, repetitive driver potentials
(Fig. 5E-G).

DP Duration Difference (%) >

Effect of other pairwise covariations

Linear coregulation of any pairs of maxi-
mal conductances alone other than G —
Gyq and G,s—G, (Fig. 5) did not preserve
the driver potential features. For all pair-
wise covariations involving G, or Gg,s,
other than the two together, it was found
that attempts to change a second conduc-
tance would not yield a driver potential
once it was lost because of an increase to
G, (Fig. 5B,C,H), and could not prevent
spontaneous driver potential oscillations
that arose because of an increase in Gg,g
(Fig. 5E-G). Also, although changes to
Gyca caused modest shifts in driver po-

tential characteristics (particularly during B
repolarization, when activation of I, is
partially responsible for setting DP dura-
tion and the maximum AHP), these ad-
justments could not preserve DP form to
compensate for changes to either Gy or
Ge,r (Fig. 5D,1).

DP Peak Difference (%)

Full variability of maximal conductances
in the LC

To test whether correlations are preserved
in a population in which all conductances
are allowed to vary fully, we randomly
chose model cells and retained or rejected
them in a “sample set” by using their x*
values (representing the fitness of the re-
sulting driver potential) calculated from
their measured driver potential character-
istics (see Materials and Methods). Our
rejection sampling technique generated
~12,000 model cells that had a driver po-
tential before 1000 were found to meet the
criteria using our probabilistic sampling method. All cells in the
resulting model dataset had driver potentials (20 ms pulse input)
with the following characteristics (Table 6): DP duration of 254 =
38 ms; DP peak of —33.5 £ 2.0 mV; maximum AHP of —60.3 +
2.0 mV; maximum rate of rise of 0.29 * 0.13 mV/ms; maximum
rate of fall of 0.30 = 0.08 mV/ms; and the rest potential was
—53.2 = 0.9 mV. Together, these data suggest that the model cells
did produce DPs with features similar to that seen in the biolog-
ical data. A histogram of the x? values for driver potentials in the
sample set of LC models revealed that the distribution of values

Figure 4.
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Variability of the driver potential response among varying maximal conductances for /,; and /4. A, Percentage
change of the driver potential duration (top) and peak voltage (bottom) for changes to Gy, and G,;. The duration and peak are
preserved for equal G¢,; and Gy, multiples. B, Comparisons of driver potentials in the large-cell model for multiples of G ,; and G4
of 1X,2X,3X,4X,and 5X with peaks aligned. As the two maximal conductances increase, the onset of the driver potential
upswing is advanced, although the form of the driver potential itself is mostly unchanged. €, x* values of driver potential
characteristics in the large-cell model for x-fold variations in G4 and G, with all other model parameters held to their nominal
values. The grayed-out region indicates combinations of conductances for which driver potentials were not produced in response
to a 20 ms current injection or else the x % value was > 100.

conformed well to a x> probability distribution with 2 df for x> >
2 (data not shown). However, for x* < 2, the distribution better
resembled a y* distribution with 3 df. This result possibly reflects
characteristics of the underlying model cells; it is possible that,
although the maximal conductances were chosen from a uniform
range of values, the resulting driver potential characteristics were
not uniformly distributed in their y* values.

Figure 6 A shows two representative plots of the conductances
in the 1000 model LC set in three dimensions: Gy, versus G,
and Gyg, and G,y versus Gg,s and G,. The conductances of the
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these results are consistent with those
found using only pairwise covariations
of maximal conductances. A strong cor-
relation between G.,5 and G, was seen
consistently (R* = 0.76). This can be ex-
plained by the limiting condition that ran-
domly chosen model cells must produce
driver potential responses to a 20 ms cur-
rent pulse. After the G,s—G, pair, the
next largest correlation was that for the

Gyq—Geyr pair (R? = 0.27). This result is
again consistent with the pairwise con-
ductance variations presented above; a
balance of Iy and I, preserved driver
potential form even when the remaining
three maximal conductances were al-
lowed full freedom within the sampled
range of values. The maximal conduc-
tances for I versus I,p and I-,q versus [,
for the cells in the model set are shown in

Figure 7A. These conductances, as well as

Figure5.

Gyca- G, Geys VETSUS Ge,r. H, Gyq versus Gy. 1, Gy versus Gy,

LC set agreed qualitatively with the conductance relationship
findings in Figure 5. Namely, in models with low values of Ggc,,
lower values of Gyq4 (Fig. 5D) and higher values of G, (Fig. 5I)
were required to maintain a y* value near zero. Figure 6 A, top,
reinforces this idea; models with lower values of G, possessed
lower values of Gg4 and higher values of G, 1. A similar three-
way relationship is suggested in Figure 5: models with relatively
high G, had higher values of G, (Fig. 5C) and lower values of
Ge,s (Fig. 5G) to preserve driver potential generation. This is
demonstrated in Figure 6 A, bottom, in which models with higher
values of G, possessed higher values of G, and lower values of
Ge,s- As suggested by Figure 5, E and H, an opposite effect on
values of G, and G, was seen with increased Gy 4; however, this
effect was not as pronounced (data not shown). Changes to Ggc,
had little apparent effect on values in the G,4—G plane. Analysis
of additional combinations of three conductances revealed rela-
tionships among conductances that agreed with those already
presented here.

We hypothesized that model cells constrained by reported
output data should possess maximal conductance correlations
that are consistent with their biological counterparts. Correla-
tions among the maximal conductances of the resulting model
cells were quantified using coefficients of determination (R?).
The R? values for each pair of maximal conductances in the 1000
cell sample model set are shown in Figure 6 B. Predominantly,

X % values for the driver potential for pairwise x-fold variations of two maximal conductances while all other maximal
conductances are held to their nominal values. The grayed areas indicate parameter combinations for which driver potentials were
not elicited for a 20 ms, 40 nA pulse, endogenous driver potentials occurred regardless of stimulus strength, or the x> value was
=100 (for ease of viewing). A, G, versus G,. B, G, versus Gy, , Gc,p versus Gy. D, Gyc, versus Gygy. E, G, versus Gyy. F, Geys versus

20 the correlations shown in Figure 6B, re-
veal that G, and Gy need not correlate
as strongly as was necessary for G,s and
G, to preserve the driver potential. How-

10 ever, the maximal conductances shown in

Figure 6 A indicate that, for differing val-

ues of Gy, different ratios of G, to Gygq

were required for driver potential preser-

vation. When Gy, was allowed to vary, a

relatively weak correlation between Gg, 1

and Gyy was evident, as in Figure 7A.

However, when subsets of the 1000 model

set were analyzed by tighter constraints on

variations in Ggc, (e.g., multipliers be-

tween a lower and upper bound), the R?

value for G, and Gy, increased, becom-

ing as high as 0.7 for Gg, values between
four and five times its nominal value. In contrast, the boundaries
for G¢,s and G, that were required for driver potential generation

showed little variation with other conductances, and as a result, a

high R? value was present for G,5 and G, in the entire 1000

model LC set. For no other maximal conductance pairs were R*

values found >0.1.

Manipulation of output distributions used for model selection

To test how the variability in the features used to filter model cell
selection affects the relationships between maximal conduc-
tances in the resulting population, we explored a hypothetical
scenario in which the features of the driver potential are more
tightly constrained than indicated by Tazaki and Cooke (1979b)
(i.e., that driver potential features deviate less from their aver-
ages). To simulate these conditions, two such scenarios were ex-
plored: the SDs for driver potential features were divided by
factors of 2 and then 3. These changes increased the x* values for
driver potentials in all model cells, decreasing the relative proba-
bilities of survival for cell models with already large x* values. In
these situations, R* values for most pairs of maximal conduc-
tances increased somewhat, but most notably for G, versus Gy
(R* = 0.46 and R* = 0.52 with all SDs divided by 2 and 3,
respectively). This result is consistent with Figure 4; imposing a
requirement of less variability on driver potential form necessi-
tated a tighter ratio between G, and Gy4. Additionally, a nega-
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Table 6. Measurements of LC driver potential features used for calculating x*
values and for retaining or discarding model cells  biological set; data taken from
Tazaki and Cooke (1979b)] and those determined from a sampled population of
1000 model cells (model set)

DP feature Biological set Model set
Duration (ms) 250 =50 254 + 38
Peak (mV) —32+30 —335+20
AHP (mV) —58£3.0 —60.3 + 2.0
Maximum rate of rise (mV/ms)? 0.45 £ 0.15 0.29 £ 0.13
Maximum rate of fall (mV/ms)“ 0.20 = 0.12 0.30 == 0.08
Resting potential (mV)“ —53+25 —532+09

“Note that these features of the LC soma were not used to constrain model cells.

(0]
=
E]
=
©
O
-
9]
5
o
=
=
=
—
©
O
)
0.8 — N
» 0.6
() -
=
< 04—
S0
B i
[hed [ ]
0.2 —
7 [ ] [ ] [ ]
0.0 e o o o o
| | I, | | 1 1 |
e A
R @ £ o @ @ £ £ o @
S N
& o I P o o o O
Figure6. Maximal conductance relationships in a population of randomly generated large-

cell models constrained by 2 values representing the model output. 4, Distribution of model
cellsin two representative three-dimensional plots: Gyc,, G¢,r, and Gy (top), and G, G, and
G, (bottom). The axes represent conductance values as multiples of those in the nominal model
(Table 1). B, Coefficients of determination (R values) for conductance pairs in the model set.
Gea,s—G, boundaries for driver potential generation persisted throughout the model set. In all
models, Gy, values partly determined the required balance of G.,; and Gy, for driver potential
preservation.
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Figure 7.  Relative maximal conductances (represented as a multiplier of the values in the
nominal model) in a population of randomly generated large-cell models constrained by 2
values representing the model output. 4, Relative conductance values in a population chosen
for biologically realistic output variances. B, Relative conductance values in a population chosen
with one-third the biologically realistic SDs to simulate more stringent constraints on driver
potential features. Model large cells generated using stricter requirements for driver potential
form possess lower maximal conductances for /s and /, but possess values of Gy and G, that
converge to a linear region of the two-dimensional space.

tive correlation emerged between G,y and Gy, (R* = 0.22 and
then 0.32) as well as a small positive correlation between G, and
G, (R? = 0.17 and then 0.21). These correlations are consistent
with the regions in the G, —Ggc, and G¢,1—G, planes that con-
tain low x> values (Fig. 5C,I). However, the correlation between
Gc.s and G, actually decreased (R* = 0.57 and then 0.43). The
maximal conductances for I, versus Iy and I,g versus I, in
model cells constrained with SDs divided by 3 are shown in Fig-
ure 7B. Decreasing driver potential variability caused the range of
maximal conductances of sampled model cells to become further
constrained toward regions of the five-dimensional parameter
space for which the x> values (representing a measure of diver-
gence from mean driver potential characteristics) were very low.
In the case of I, versus Iy, the maximal conductances of model
cells were limited to a linear region, whereas for I, and I, the
conductances were lower without preserving such a strict linear
relationship. A tight balance between G, and G, was required
for driver potential generation, although the tighter constraints
on specific driver potential features caused the desirable model
candidates to cluster within a small region of values in the
Gcas—Ga plane. In this way, it is clear how imposing tighter con-
straints on driver potential form tends to better highlight corre-
lations that serve to preserve the driver potential (e.g., Go,r VS
Ggq) and deemphasize others (e.g., Geus Vs Gu).

This selection method does not account for the possibility that
individual driver potential features are not independent of one
another, a possibility that can typically be investigated if the full
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biological data set were available. For instance, parameter varia-
tions in the LC model suggested that the likelihood of a driver
potential having a short duration would be greater if its peak is
high. In an attempt to accommodate for such dependencies of the
output features, we selected a new set of models using feature
dependence as part of the model selection criteria. To do so, we
used the more general sum of variations (X — @)'S (X — )
for the multivariate normal distribution, where X and W are the
vectors of driver potential features and their mean values, and S is
their covariance matrix, whose diagonal elements are the vari-
ances of the individual driver potential features (Wasserman,
2004). To estimate the off-diagonal elements of S, covariances
were calculated using driver potentials from the original set of
1000 model cells (for this population, S = [1569.7, —24.9, 49.1;
—24.9,4.7, —1;49.1, — 1, 4.0] X 10 °). Then, using this general
x? value calculation, a second set of 1000 model LCs was gener-
ated using the same sampling method. Interestingly, this second
model set possessed driver potential characteristics very close to
the first model set: duration, 251 = 35 ms; peak, —33.0 = 1.8 mV;;
AHP, —59.4 = 1.7 mV; rate of rise, 0.33 = 0.16 mV/ms; rate of
fall, 0.28 *+ 0.08 mV/ms; resting potential, —53.3 = 1.0 mV. The
maximal conductance correlations measured from this set of
model cells were also similar: R? = 0.55 for G, versus G,, R* =
0.30 for G, versus Gyg, and all other values <0.1. Also, similar
to the case discussed above, the effect of reduced variability in
driver potential features (by modifying S) can be investigated by
reducing the elements of S appropriately. These results are similar
to those obtained with the first model set indicating that includ-
ing the interdependence of output features suggested by the LC
models does not significantly change our findings. Tazaki and
Cooke (1979b) report only the means and variances of their bio-
logical dataset. If all the data are available, the covariance matrix
can be generated using the entire set of biological driver potential
characteristics. Alternatively, a probability distribution function
can be empirically determined from these data, to avoid having to
assume that the data follow a multivariate normal distribution.

Features of the multidimensional parameter space

Our analysis of the dependence of y* values on conductances
considered two-dimensional versions of the multidimensional
conductance space as shown in Figures 4C and 5. The plots show
that with stricter constraints on allowable x* values (i.e., lower
SD values), the shapes of the permissible spaces for conductances
changes differently for different pairs of conductances, providing
insights into the underlying mechanisms as we describe below.

If the ranges for the conductances are tightly constrained
(around the nominal model) (i.e., if a relatively smaller parame-
ter space is selected), then correlations among conductances
might not be evident. For instance, if the conductance space of
Gyq and G, (around the nominal model), from which the 1000
cell model population is sampled, is reduced by 50% (i.e., a range
of 0.5- to 2-fold the nominal values), then the correlation be-
tween the parameters drops from 0.27 to 0.04. Similarly, reducing
the sampled conductance ranges for both G, and G4 by 50%
resulted in the correlation between the parameters dropping
from 0.76 to 0.51. These results suggest that correlations among
parameters, if they exist, will be evident only if the parameter
space studied has sufficiently large ranges.

If, however, the features of the driver potential were more
tightly constrained [e.g., by selecting smaller SDs for the output
features (see above)], some correlations become stronger and
others weaker. For instance, reducing the SD of the driver poten-
tial by a factor of 3 in sampled model LCs resulted in a lower
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correlation between G,s and G, (0.43, as opposed to 0.76). This
result seems counterintuitive, given that a balance between these
two conductances is required in the model for driver potential
generation. But Figure 5A suggests that this may be a conse-
quence of the change in shape of the “permissible x*” space in the
Geas—Ga plane; a functional correlation is seen when y* is loosely
constrained (yellow space), but not when it is more tightly con-
strained (white space). However, with the same stricter con-
straint on output features, the correlation between G4 and Gg,r
increased, from R* = 0.27 to 0.52. This is consistent with the
change in the shape of the permissible x> when covarying these
conductances. As shown in Figure 4C, when model cells are con-
strained by increasingly stringent sampling (low x*, white space),
the shape of the permissible x> space reveals a sharpened corre-
lation. This difference highlights the roles of these two pairs of
currents as suggested by the model; I, and I, can preserve driver
potential generation but not its form, and so do not correlate
strongly under tight constraints based on DP form; however, the
effects of I+ and Iy, are negligible around rest but need to
balance one another to preserve driver potential form. This sug-
gests that the geometrical shape of these permissible regions can
provide information about correlations among the correspond-
ing conductances.

Discussion

We constructed a biologically realistic computational model of
the crustacean CG consisting of a large and small cell pair to test
the hypothesis that coregulation of maximal conductances in the
LC soma could preserve its driver potential. The present investi-
gation was inspired by a molecular study of the CG of C. borealis
in which mRNA transcripts of LCs that encode for ion channel
proteins were measured, revealing correlations between tran-
script numbers for many genes (Tobin et al., 2009). The CG
network model was developed from biological CG data, espe-
cially the comprehensive studies performed by Tazaki and Cooke
(Tazaki, 1971; Tazaki and Cooke, 1979a,b,c, 1983a,b, 1986, 1990;
Cooke, 2002), and this model reproduced many features of the
CG output, in particular the driver potential response of the LC,
spontaneous bursting of the synaptically coupled large and small
cells, and various essential features of both types of output. In
addition to thoroughly characterizing the contribution of each
ionic current to the properties of the driver potential, we varied
the maximal conductances of the ionic currents in the LC soma
and investigated relationships between the maximal conduc-
tances that preserved the form of the LC driver potential. We then
investigated how constraining maximal conductances of the
model using reported information about the output of LCs
(Tazaki and Cooke, 1979b) revealed required covariations be-
tween maximal conductances in the LC model.

I,s and I, are correlated for driver potential generation

A balance of the maximal conductances of I, and I, was re-
quired for the model to produce nonendogenous driver poten-
tials in response to a short, strong current injection. A strong
relationship between Ir,s and I, is evident both from the y?
values when these two conductances were covaried in a model
(Fig. 5A) and from the pairwise correlation found in the popula-
tion of randomly chosen models that were constrained by LC
output (Fig. 6). This relationship was not disturbed by variations
in other maximal LC conductances. However, in a population of
models chosen with more tight constraints on output, the corre-
lation between G¢,g and G, decreased. In a study of a lateral
pyloric (LP) STG neuron model (Taylor et al., 2009), a boundary
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determined by maximal conductances of both I, and I, appears
to restrict the ability of the model to produce acceptable LP-like
behavior, although a strong correlation between these two pa-
rameters may not be necessary. Thus, the model results predict
that the maximal conductances of I~,q and I, must balance via
linear coregulation to preserve the generation of driver potentials
in LCs, although a tight coregulation among them does not ap-
pear to be necessary.

I, and I 4 coregulate to preserve the driver potential
Asindicated by mRNA data, levels of shab, a gene that encodes for
Ixq channels, are strongly correlated (R*> = 0.83) to levels of
cacophony, a gene that encodes for a channel that carries a calcium
current with unknown properties (Tobin et al., 2009). We used
the LC model to explore relationships between I 4 and calcium
currents that preserve electrical output. The model demonstrates
how balancing the maximal conductances of I, and I 4 would
maintain driver potential characteristics. Individually varying
Ge,r and Ggq4 produced opposing actions on the driver potential
peak and width. Covarying these conductances preserved the
driver potential form (Fig. 4). In a population of models chosen
to match biological means and variability in driver potential
characteristics, levels of G, and Gyy were correlated. This rela-
tionship persisted despite variations in other maximal LC con-
ductances; however, variations to Gy, caused the required ratio
of G, to Gygy to shift, causing a lower overall correlation be-
tween these two parameters when the conductances of all 1000
random models were considered. Furthermore, when more
stringent requirements for driver potential form were imposed
on the population of models, the correlation between these two
maximal conductances increased. Such findings demonstrate
that G, and Ggq4 can functionally balance to preserve driver
potential output and they predict that, if driver potential features
are tightly constrained in C. borealis using this set of ionic cur-
rents, a strong correlation should emerge for the relative abun-
dances of channels carrying I, and Iy. Thus, in addition to the
prediction that G, and G4 coregulate to preserve driver poten-
tial form, the model also suggests that the cacophony gene in LCs
encodes channels that carry an I,-like current.

It is possible that a single-channel type with complex kinetics
could account for both I, and I, in this system. However, our
data demonstrate that these two currents have distinct and inde-
pendent influences on the driver potential. Furthermore, ran-
domly generated models constrained by LC output produced a
relatively weak negative correlation between Gg,s and G,
These data are therefore consistent with the idea of independent
sources of I, and I, type conductances. If cacophony does
indeed encode for channels carrying both I, and I, a balance
between these two currents may exist through a secondary mech-
anism to regulate cell output such as splice variants or posttrans-
lational modification.

Similar forms of compensation among ionic conductances
that stabilize output have been reported in biological experi-
ments. For example, cultured Drosophila neurons that lack sig-
nificant levels of I, undergo a homeostatic decrease in Iy, and a
subsequent increase in I, thought to stabilize output (Peng and
Wu, 2007). Additionally, STG neurons of the spiny lobster un-
dergo compensatory upregulation of I;; when levels of an oppos-
ing A-type current are artificially upregulated (MacLean et al.,
2003, 2005). However, modeling-based approaches have sug-
gested that such correlated conductances can maintain function-
ally relevant output, but are not necessary. For example, our first
approach is similar to that of MacLean et al. (2005), who used a
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conductance-based model with systematic covarying of conduc-
tances, to indicate that increasing I, or I;; singly changes the
output of bursting cells, but increasing them together maintains
target neuronal activity. Conversely, our second approach is sim-
ilar to that of Taylor et al. (2009), who created a population of
model neurons that encompasses variability akin to a biological
population, to suggest that such correlations among conduc-
tances are not necessary to generate conserved functional output.
By combining these two approaches in the same study, we ob-
tained results consistent between the two methods, namely that
correlated conductances maintain driver potential features in
large cells. Our bilateral approach is strongly suggestive that cor-
relations measured in ion channel mRNA, particularly that of
cacophony—shab (I, and Iy), (Tobin et al., 2009), exist because
they are functionally relevant in this system.

Conclusions

Biophysical models of neurons and neuronal networks developed
using biological data typically capture nominal behavior. More
recently, it has become clear that production of a given neuronal
output via a single, canonical set of underlying properties (a pop-
ulation mean per se) may be less reflective of true biological pop-
ulations (for a review of this idea, see Marder et al., 2007).
Motivated by this emerging concept, if a specific output of a
model is of interest, it is pertinent to ask the question, “Would
another set of model parameters yield the same output?” The
model developed in the present study, for instance, was moti-
vated by such a question, “In the presence of the large variability
in mRNA expression for CG cells, are there multiple maximal
conductance sets that might provide the same driver potential,
and if so, what relationships govern such sets?” As cited in Mate-
rials and Methods, we adapt an approach reminiscent of “rejec-
tion sampling” (Robert and Casella, 2004) in a novel approach to
sample the multidimensional parameter space and develop met-
rics to quantify the driver potential features. In short, a canonical
model was developed to match existing biological data. Random
values were selected for parameters whose impact on model be-
havior was to be examined (in this case, the effect of maximal
conductances on LC driver potential). Models were generated
from the random parameter sets and the model outputs were
characterized for key outputs (in this case, peak voltage, duration,
and maximum AHP of the driver potential) using a sum of stan-
dardized variations. Models were retained or discarded using an
assumed probability distribution function (in this case, a x> dis-
tribution with 2 df) until the desired sample size was obtained (in
this case, 1000 cell models). The primary result of our method is
the production of a randomly sampled set of model cells con-
strained by a biologically measured distribution of output data.
In this way, cell models possessing output considered to be an
outlier in biological distributions will also be outliers in the sam-
ple model set. Although the resulting model cells in the present
study were used to quantify correlation coefficients between dif-
ferent pairs of maximal conductances, the model sets could have
been investigated to evaluate other biological features such as
action potential height, width, firing rates, slow-wave ampli-
tudes, and burst periods. By allowing full variability of the model
conductances, but constraining the population based on biolog-
ically accurate variability in output, we were able to assess how
pairwise correlations could emerge in the face of more realistic
biological variability (Marder et al., 2007).
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Limitations

Although we have performed these experiments with a thorough
treatment of the biological data at hand, limitations in the biological
knowledge of the system leave three possibilities that may confound
the specific results presented here. First, output preservation may
not simply entail balancing maximal conductance, but also result
from posttranslational mechanisms modifying channel kinetics. Al-
though compensatory changes that stabilize neuronal output in the
absence of changes in channel kinetics have been demonstrated in
Drosophila neurons (Peng and Wu, 2007), homeostatic regulation
may occur at multiple levels of processing. Second, the model as-
sumes colocalization for all conductances known to generate the
driver potential. Little is known about functional compartmental-
ization of channel types in these cells, and such localization would
not be apparent from correlations between total mRNA transcripts
for the cells. Third, coregulation of ion channel densities may serve
additional purposes for maintenance of output or other cellular
properties than investigated here. In the future, the reported CG
model can be extended to include posttranslational and other rele-
vant mechanisms as they become better understood biologically,
and can then be used to study their effect on preserving output
function.
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