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ABSTRACT A device comprising two interconnected net-
works of osciliators exhibiting spatiotemporal chaos is consid-
ered. An external cue stabilizes input specific unstable periodic
orbits of the first network, thus creating an "attentive" state.
Only in this state is the device able to perform pattern
discrimination and motion detection. We discuss the relevance
of the procedure to the information processing of the brain.

Electrical activity of cerebral cortex can be measured non-
invasively from the scalp. The electroencephalograms
(EEGs) thus obtained are local averaged activity of millions
of cells. According to the behavioral states of the brain, the
EEG shows well-defined ethology. Some pathologies such
as, for example, the "petit-mal" epilepsy or Creutzfeld-
Jackob coma generate very characteristic waves. Thus, be-
fore the advent of more sophisticated medical imagery tech-
niques the EEG was a diagnostic tool for assessing neuro-
logical diseases. It still is a common tool for assessing sleep
disorders.

In the past decade the techniques of nonlinear time series
analysis were applied by Babloyantz and her colleagues to
the human EEG (1-4). They could show that in several
behavioral states as well as in petit-mal epilepsy and
Creutzfeld-Jackob coma the EEG may be described by
deterministic chaotic dynamics. Several groups have con-
firmed the existence of chaotic dynamics in the human cortex
(see refs. 5 and 6 and references therein).
Drawing on these findings a model of cerebral cortex was

recently constructed (7). In this model, the various behav-
ioral states of the cortex are seen as spatiotemporal chaotic
cortical activity of increasing coherence generated by the
nature of the input from the thalamus. The space average of
network activity over an area of the cortex provides EEG-
like signals, which are akin to behavioral states of human
brain activity. Such models led to the concept that the
dynamics of cerebral cortex is of spatiotemporal chaotic
nature. Thus, it seems that information processing in the
brain is performed at a global network level. The information
processing capacity of neuronal networks was demonstrated
recently by measuring the active neuronal population in the
Aplysia abdominal ganglion network during spontaneous and
evoked behaviors using multineuronal optical measurements
(8). It was found that a distributed organization involving a
large number ofneurons ofthe network may generate the two
behaviors. These functional behaviors stem from altered
activities of a large ensemble of neurons and thus they are a
network property. This assumption raises the following ques-
tion: If brain dynamics is of a chaotic nature then how does
such a system process information?
The importance of providing an answer to this question is

2-fold. First, it may give a clue for the understanding of brain
processes. Second, the relevant concepts could be integrated
into artificial neural networks in order to produce a more

efficient computational device by mimicking more closely
brain dynamics and its awesome capacity for storage and
rapid processing of a great amount of complex information.

Indeed, the classical neural networks generally rely on
fixed-point attractor dynamics, thus limiting the capacity of
small or moderate-sized networks. On the other hand, cha-
otic dynamics, even with few degrees of freedom, can in
principle provide an infinite means of coding, as it is a
" reservoir" of an infinite number of unstable periodic orbits
(9-11). In our approach, the periodic orbits are used as coding
devices.
The aim of this paper is to propose a neural network model

based on chaotic dynamics, which not only encompasses the
parallel computation seen in brain dynamics but also intro-
duces layered chaotic structures that exhibit somewhat more
brain-like architecture and features such brain attributes as a
state of attentiveness. Indeed, cerebral cortex is a multilayer
structure with specific interconnections between different
layers (12). Each layer is a network of densely connected
neurons. Moreover, different layers are thought to have
functional specificities in the processing of information, and
it is widely assumed that information is embedded in the links
or synapses joining the neurons. On the other hand, in all
sensory processing the first task is to become receptive to
incoming information. Once such an "attentive" state is
reached, the information to be treated could flow through the
specific pathways. For instance, in a busy airport it is
perfectly possible to become oblivious to the environmental
noise. A conversation extracted from the background noise
will convey information only if one pays attention deliber-
ately. This is also the case for the visual system. It is possible
to look intensively at an object without seeing it. Seeing
requires a deliberate will to become attentive. Once this
attentive state is reached, the brain is ready to process the
incoming information. Usually the attentive state is reached
very rapidly and has a finite time span.
The model we propose is an interconnected two-layered

device. Each layer is a chaotic network of oscillatory units.
A small external or internal input brings the device into an
attentive state. We show that once the device is in an
attentive state, it can perform such tasks as pattern catego-
rization, motion detection, and discrimination between
clockwise and counterclockwise rotation. The dynamics of
the device makes use of unstable periodic orbits contained in
a chaotic attractor, which are stabilized by small fluctuations
with the help of an algorithm proposed by Ott, Grebogi, and
Yorke (13, 14). The number of such orbits is infinite; thus,
even small chaotic networks may in principle process an
infinite amount of information.
We begin by introducing the model and proceed to dis-

cussing pattern discrimination and motion detection. In a
final section, we discuss the relevance of the model as a
paradigm of brain function.

Abbreviation: EEG, electroencephalogram.
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MODEL
Chaotic Categorizer. Let us consider a device, hereafter

called a chaotic categorizer, made of two interconnected
layers as shown in Fig. 1 (15). Each layer comprises N X N
oscillating elements. The elements of the two layers are
connected in a one-to-one correspondence with links that are
active and represent a given pattern only if an external
stimulus activates the first layer. The details ofthis procedure
will become apparent in the sequel.
The pacemaker P sends micropulses only to layer I as

shown in Fig. 1. In the absence of external stimuli, the
activities of the two layers are independent and both show
spatiotemporal chaotic behavior.
The device is described by the following differential equa-

tions:

d= Zjk - (1 + i1B)IZjkl2Zjk + (1 + ia)D2CjklmZlm + Pjk(t)
dt I'm

d= Wk- (1 + iB) IWjkI2Wjk + (1 + ia)DEXCjmWdt I'lm
WI

+ Ijk(Zik Wjk) U, k, 1, m = 1, . . ., N). Ill

The variables Zjk are the complex amplitudes describing the
oscillators in layer I, whereas Wjk refers to the corresponding
variables in layer Il. The first two terms in each equation are
related to the complex Ginzburg-Landau description of am-
plitude equations for each oscillator. The diffusive connec-
tivity Cjjdm relating the oscillators is defined as

ZCjklmZlm = Zj(k+l) + Zj(k-1) + Z(j+l)k + Z(j-l)k 4Zjk.I'm

The parameters a, (3, D, and yare real-valued. a andD reflect
the coupling strength between units. The term Pjk(t) repre-
sents the influence of the pacemaker P on each oscillator of
layer I. The boundary conditions are of the zero-flux type.
The information to be processed is sent to the device via a

binary matrix Ijk. If Ijk = 0 then the connection between
elements jk of the two layers is nonexistent. However, if Ijk
= 1 then the two layers are connected via elements jk, and y
describes the strength ofthe binding. Moreover, in this model
if Pjk(t) 0 then 'y = 0. Thus, it is only when the pacemaker
P is active, and therefore a periodic orbit has been stabilized
in layer I, that there is entrainment of the second layer by the
first layer. The entrainment can be total if all Ijk = 1, and it
is partial if only some of the Ijk are nonzero. Moreover, the
dynamics of the second layer is critically dependent on the
parameter y. If 'y = 0 then the two layers have independent
dynamics, whereas large values of y with a large number of

....... .. .
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,

FIG. 1. Chaotic categorizer. The pacemakerP sends micropulses
to layer I, thus stabilizing one of the unstable periodic orbits. The
oscillators of layers I and II are connected with a one-to-one
correspondence. The distribution of active links (solid arrows) and
inactive ones (dashed arrows) is determined by a pattern to be
processed. A response is measured from output layer II.

"on" links representing incoming information can synchro-
nize the activities of the two layers.

If Pjk(t) = 0, y= 0, N = 9, a = -10,/3= 2, andD = 1.3,
then both layers follow spatiotemporal chaotic activity. The
dynamics of each network separately could be viewed as
evolving on a chaotic attractor embedded in a 2(N x N)
dimensional space. It is well known that such a strange
attractor comprises an infinite number of unstable periodic
orbits (9-11). Recently, with the help ofa technique proposed
by Ott, Grebogi, and Yorke (13), one could stabilize four
different orbits out of the global attractor of the network by
applying micropulses to the system with the help of the
pacemaker P (14). Fig. 2 displays three orbits that exhibit
spatiotemporal structure. The nature of the stabilized orbit is
a function of the pacemaker P. More details can be found in
ref. 14.
The orbit Co corresponds to the bulk oscillation of the

network, where all the oscillators are in-phase. The period of
this oscillation is T = ir. Although the orbits C1, C2, and C3
are periodic at the level of the 2N2 dimensional dynamics,
when viewed at the network level they exhibit spatiotemporal
structures. Phase differences are seen between individual
oscillators ofthe network. The orbit C1 with T = 13.66 shows
a rotating wave activity of the amplitude of individual units
around the central unit of the network. The amplitude of the
latter is zero; that is, we are in the presence of a "phase
defect." In this case, the rotation is clockwise. The orbits C2
and C3 show stationary waves of different symmetries. Orbit
C2 is antisymmetric and shows a polar structure. The activity
is high on one side and low on the opposite side. The situation
reverses with constant period T = 15.4. In orbit C3, spa-
tiotemporal phenomena show a different structure. The ac-
tivity is high in units along one of the diagonals and near the
corners of the network, whereas the oscillators on the other
diagonal show lower activity close to the corners. Again, as
in C2, the situation changes regularly with constant fre-
quency. The period of C3 is T = 2.25. In principle, an infinite
number of other periodic orbits could be stabilized in this
system. We have not considered them in this paper.

Let us go back to our device as shown in Fig. 1 and describe
how it can process information. The total input into the
system is divided into two parts. The pacemaker P, which
emits the appropriate micropulses, and the input, which must
be processed. Thus, the information is captured on the first
layer and on the links relating the latter to the second layer.

Re C ReC ReC3

ImCm O f IM C

FIG. 2. Snapshots of network activity W corresponding to the
unstable periodic orbits C1, C2, and C3 with periods T = 13.66, 15.4,
and 2.25, respectively. Vertical axes span the interval [-1.2, 1.2].
Parameter values are N = 9, a = -10, 0 = 2, andD = 1.3. For orbit
C1, arrows show the direction ofrotation ofthe wave ofactivity (from
ref. 14).
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The response of the second layer defines the output of the
system. The pacemaker P, according to the nature of the
information to be processed, stabilizes the first layer into one
of the orbits described in Fig. 2. In analogy with the human
brain, where the first act in any cognitive process is to
become attentive to an external input, we call these orbits the
"attentive states" of the device. Now the device is ready for
processing the input. The latter is imprinted in the links Ijk,
which are nonzero only if they represent a part of the input.
The attentive state, which represents well-defined spatiotem-
poral structure, entrains the output layer according to the
number and location of "on" links in the device. Thus, in the
second layer each input pattern generates its own specific
spatiotemporal structure.
The dynamics of the output layer can remain chaotic or be

of a quasi-periodic or periodic nature. To discriminate be-
tween various inputs, we need to quantify the spatiotemporal
activity of the response layer. Unfortunately, so far there are
no satisfactory methods for quantification of spatiotemporal
chaotic activity. However, as we are interested in the differ-
ential change in the network coherence of layer II as a result
of the input, the evaluation of the global activity of that layer
will be sufficient. Throughout this paper we use the average
value of the squared amplitude ofthe forced layer (I W12)(t) as
the output function. The brackets ( ) denote a space average
over the entire network.
We have also computed other quantities such as the mean

value of the real part of W over the network. The time
evolution of the cross-correlation function between the two
layers was also computed. It is defined as

Ct-R zj~~k~k(t)Wjk(t)C(t) = Re YJ,kyij)Wk~
() (yEj klzjk(t) 21/(Yl;kl jk(t)12)112'

In our simulations, the function (1W2)(t) seemed in general
more appropriate for pattern and motion discrimination than
the other monitored functions.
The chaotic categorizer of Fig. 1 can be used as a pattern

recognition device as well as a motion detector. The ability
of the device to perform a given task is a function of the
attentive state that is generated by the device under the action
of the input to be processed. With our categorizer the orbits
C2 and C3 are suitable for pattern recognition and also for
detection of linear motion, whereas C1 is an orbit that leads
to detection of clockwise and counterclockwise motion.

RESULTS
Pattern Discrimination. All three attentive states brought

about by orbits C1, C2, and C3 are suitable in some degree for
pattern discrimination. However, because of symmetries
inherent in orbits C2 and C3, these are more suitable than C1
for pattern processing.
We start with the device in the attentive state C2. In this

state, the stabilized orbit in the first layer shows a polarity
that oscillates in time. At a given time one may see a high
activity at the right hand side of the network, while the
activity is at its lowest level at the left hand side. The situation
reverses periodically. In this attentive state, the device is
presented with a bar that activates the nine middle links
between the two layers and is parallel to the direction of
polarity of the orbit C2. When these links are "on" there
follows an entrainment of layer II by layer I. The value of the
space average (IWi2) is a measure of this entrainment and is
shown in Fig. 3. One sees a constant value of 0.68. In another
experiment, the bar is presented again to the middle links of
the network but perpendicularly to the polarity of C2. The
response of the system as seen in Fig. 3 is irregular, with high
amplitude and a decreased mean value. If the bar is presented
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FIG. 3. Space average of the squared amplitude (1I112) measured
from layer II. Orbit C2 is stabilized in layer L. Three patterns are
presented to the device: a bar activating the nine middle links and
parallel to the direction of polarity of C2 (dot-dashed line), a bar
activating nine links perpendicularly to the direction ofpolarity (solid
line), and a bar activating nine links along one of the diagonals of the
network (dotted line). y = 2.44; all other parameters are as in Fig. 2.

along the diagonal, the response is periodic with a time
averaged value of0.53 (see also Fig. 3). Therefore, our simple
device when in the attentive state C2 can discriminate be-
tween different orientations on the plane.

Ifthe same type ofexperiment is conducted in the attentive
state C3, the device can discriminate only between a bar
perpendicular to the side of the network and one presented
along the diagonal. This property stems from the fact that
orbit C3 has a reflection symmetry with respect to the two
diagonals and therefore the two axes perpendicular to the
side of the network entrain layer II in the same manner.
Because of the quasi-circular symmetry of orbit C1, the
corresponding attentive state is not suitable for the type of
pattern processing mentioned above.

Fig. 4 shows the output of layer HI when two patterns, +
and x, are presented to the system when it is in the attentive
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FIG. 4. Responses (I 12)(t) of the output layer in the presence of
the patterns + and x. With orbit C2, the response is shown as a
dot-dashed line for pattern + and as a dotted line forpattern x. When
orbit C3 is used, the response corresponding to pattern + is shown
as a dashed line, whereas the solid line is obtained with pattern x.
Parameter values are as in Fig. 3.

.1~~~~~~~II k~~~~~~~~ 'J~~~~l

I

Biophysics: Babloyantz and Lourengo



9030 Biophysics: Babloyantz and Lourengo

state C2. We see that the two patterns are discriminated by
the system. The same is true for the attentive state C3 (see
Fig. 4). However, we notice that the form and amplitude of
responses for a given pattern are not identical for the two
attentive states.
Let us consider another pair of patterns, N and Z. The first

letter can be recovered by a 900 rotation of the second. From
symmetry considerations and the result of experiments with
single bars, we expect that the attentive state C2 will dis-
criminate between patterns N and Z, whereas the state C3 will
give the same answer for both patterns. Our simulations
confirmed these conjectures.
Motion Detection. The device of Fig. 1 is able to discrim-

inate between clockwise and counterclockwise rotation. To
this end we assume that the attentive state of the system is
achieved by the stabilization of the first layer into orbit C1,
which shows a phase rotation of period T = 13.66 (see Fig.
2). As we have stated already, in this example the phase
motion of the stabilized orbit is clockwise. Because of the
phase rotation of the orbit, the attentive state C( is able to
discriminate between clockwise and counterclockwise mo-
tion.
To see this, let us consider the motion ofa small object that

activates three links at a time. In this experiment, y = 30. As
the object moves, only the next neighboring link is activated
and one of the previous "on" links is deactivated. Thus, the
successive activation and deactivation of links represents a
circular motion. In our example, the diameter of the circular
trajectory spans over five network units and the rotation
period of the object varies from T = 6 to T = 25.

In a first experiment, when in the attentive state C1, the
device perceives the clockwise motion ofthe object, which is
imprinted in the links. The response of layer II is shown in
Fig. 5 when the period of rotation of the object is T = 18.96.
The value of the space average of the squared amplitude
(Iw12) = 0.65 is almost constant in time. However, at very fine
resolution small-amplitude oscillations are seen around this
value (not apparent in Fig. 5). The same response is seen for
all values of the rotation periods considered. Thus, in the
attentive state C1, the device is not sensitive to the speed of
clockwise motion of the object.

Presently we reverse the direction of rotation of the object
and keep all other conditions as described above. The re-
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FIG. 5. (IW12)(t) computed in the attentive state C1for a clockwise
(dashed line) and a counterclockwise (dotted line) motion with period
of rotation T = 18.96. If the object rotates in the counterclockwise
direction with a period T = 12.48 (solid line), a higher amplitude
response with a lower time average value is seen. -y = 30; other
parameters are as in Fig. 2.

sponse of layer IH to counterclockwise motion is very differ-
ent and is sensitive to the rotation speed. For T= 6 the motion
generates a chaotic response (IW12) around a time-averaged
value of 0.5. As the speed decreases, the time behavior ofthe
response becomes less and less chaotic and gradually a time
periodic output function appears. Fig. 5 shows the responses
associated with the counterclockwise motions of periods T =
12.48 and T = 18.96. The corresponding time-averaged values
of (1W12) are 0.54 and 0.57, respectively. For the range of T
considered, the value of (IW12) corresponding to counter-
clockwise motion is always smaller than that for clockwise
motion. The time-averaged value and the shape of the re-
sponse in the case of counterclockwise motion are sensitive
to the speed of rotation. If we restrict the range of T to
12<T<25, we observe that the time-averaged value of (1W12)
is an increasing function of T. Thus, in this range not only our
device discriminates between clockwise and counterclock-
wise motion, but it also evaluates the speed of counterclock-
wise motion. For slow motions, T>26, and very fast motions,
T<0.5, the response to clockwise and counterclockwise
rotation is practically identical. A difference may be seen
only in the fine structure of the (IW12) output function. Thus,
for these velocities the device is "blind" with respect to the
direction of rotation. The responses in these ranges are
similar to the response to clockwise rotation for6<T<24 (see
Fig. 5). For values of 0.5<T<6, the response of the system
does not follow the smooth change that was described above.
A static object could be considered as rotating with period T
X-*0 and thus it is perceived in the same manner as other
objects rotating with long periods-that is, 7>26.
Motion detection is not limited to the orbit C1. The atten-

tive states corresponding to orbits C2 and C3 are able to
perceive a moving object and discriminate between perpen-
dicular and diagonal motions.
Let us consider the attentive state C3 and a moving object

that activates only one link at a time. The motion starts from
the middle of the boundary of the device and continues along
a straight line perpendicular to that boundary. Each link is
activated during 11 time units. The response of layer IH is
monitored in the usual way and is markedly different from the
one when the object moves along the diagonal. However,
opposite directions of motion along any one of these paths
cannot be distinguished. With orbit C3 the two perpendicular
orientations cannot be distinguished, and the same happens
regarding the two diagonal ones. The distinction between the
two perpendicular orientations is possible only if the device
is in the attentive state C2. The latter is also unable to
discriminate between the two opposite directions along any
one of the two diagonals as well as along each of the two
perpendicular axes.

DISCUSSION
We have shown that a simple device, made of two intercon-
nected layers of oscillators and featuring spatiotemporal
chaotic dynamics, is capable of pattern selection and motion
detection. This capability is intrinsic to the system and is
unsupervised. As a result of algorithmic complexities inher-
ent in the Ott-Grebogi-Yorke method, in this simple example
only three orbits with spatiotemporal structure and the bulk
oscillation were stabilized in the first layer. However, in
principle there are an infinite number of unstable orbits in a
chaotic attractor that could be stabilized. With the stabiliza-
tion of higher-order orbits one would expect more intricate
symmetries or more complex spatiotemporal phenomena,
especially iflarger networks are considered. Thus, one would
think that such a chaotic device could process a great variety
of information relative to static as well as moving objects.

Spatiotemporal chaos may arise also in artificial neural
networks. Usually one tries to avoid such situations in
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classical computational techniques, as chaos is perceived
generally as a nuisance. Instead ofavoiding chaos, we believe
that more elaborate devices, based on principles underlined
in this paper, could make chaotic dynamics a desirable tool
for unsupervised computations. Chaotic attractors are loci of
an infinite number of unstable periodic orbits. Therefore,
even small networks may exhibit high capacity.
Another important aspect of our model is that it is a

paradigm for understanding some aspects of cerebral cortical
activity. The system described in this paper embodies several
key features of cortical architecture, which consists of inter-
connected layers of neurons, each layer with its own specific
input-output pathways. On the other hand, measurements
from EEGs as well as model systems and the nature of
cortical tissue suggest that the activity at the cortical layers
could be of a spatiotemporal chaotic nature (1-7). Moreover,
all information processing becomes possible ifone is in a state
of attentiveness. This state can be reached by external or
internal cues.

Building on the properties ofour device, let us speculate on
the nature ofthe state of attentiveness in cerebral cortex. We
propose that the first effect of any sensory cue is to stabilize
one or several unstable periodic orbits in one of the cortical
layers that we call the layer ofattentiveness. Any sensory cue
may be thought of as a sum of different elements, each
representing a particular feature ofincoming information and
thus stabilizing a specific orbit. This fact is plausible in view
of the layered structure of the cortex. For example, a given
sensory cue can stabilize all three orbits of Fig. 2, each in one
sheet of neurons of the attentiveness layer. This in turn
implies that in the presence ofa sensory cue the attentiveness
layer switches from a chaotic or turbulent state to a more
coherent state, which is a superposition of well-defined
oscillatory modes. Overall, one may see a much more syn-
chronized activity in one ofthe layers ofthe cortex during the
attentive state. Only when such a coherent state is reached
may other cortical areas become active and process the
relevant information.
We believe the theory we propose could be tested exper-

imentally in the following manner. During in vivo animal
experiments, a vertical battery of electrodes could be imple-
mented chronically in a well-defined area of the sensory
cortex-for example, the visual cortex. The multielectrodes
span several layers and sublayers of the cortex. One records
from all electrodes simultaneously in the absence of sensory
cues. The field potentials could then be analyzed by several
techniques ofnonlinear time series analysis (1-4). The values
of dynamical parameters such as entropies and Lyapunov
exponents and dimensions characterize the dynamics of the
signal. A second measurement is performed by presenting a
sensory cue to the animal, and the same type of quantitative
analysis is repeated. If our conjecture is correct, then the
comparison of data from each layer will show an increase in
coherence-that is, a more synchronized dynamics-in one
of the layers. Such an experiment will show the existence of
an attentiveness layer and can determine its location in the
cortex.
Another consequence of our conjecture is that the incom-

ing information is processed by other layers of the cortex in

the form of specific spatiotemporal activities such as limit
cycles, coherent propagation phenomena, and spatiotempo-
ral chaos with various degrees of coherence. This is in sharp
contrast with the manner in which computation is performed
in classical artificial neural networks. Experimental data
pointing in this direction have been reported in the literature
(16-18).

Recently, we could show that stabilization of unstable
periodic orbits could be achieved in model systems describ-
ing more adequately the cortical tissue (19). This model takes
account of propagation delays in neuronal transmission be-
tween excitatory and inhibitory neurons, which are not
oscillating units. The ideas expressed above must presently
be tested with these more brain-like networks.
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