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Abstract

In this paper, we propose a novel predictor for the conversion from mild cognitive impairment 

(MCI) to Alzheimer’s disease (AD). This predictor is based on the shape diffeomorphometry 

patterns of subcortical and ventricular structures (left and right amygdala, hippocampus, thalamus, 

caudate, putamen, globus pallidus, and lateral ventricle) of 607 baseline scans from the 

Alzheimer’s Disease Neuroimaging Initiative database, including a total of 210 healthy control 

subjects, 222 MCI subjects, and 175 AD subjects. The optimal predictor is obtained via a feature 

selection procedure applied to all of the 14 sets of shape features via linear discriminant analysis, 

resulting in a combination of the shape diffeomorphometry patterns of the left hippocampus, the 

left lateral ventricle, the right thalamus, the right caudate, and the bilateral putamen. Via 10-fold 

cross-validation, we substantiate our method by successfully differentiating 77.04% (104/135) of 

the MCI subjects who converted to AD within 36 months and 71.26% (62/87) of the non-

converters. To be specific, for the MCI-converters, we are capable of correctly predicting 82.35% 

(14/17) of subjects converting in 6 months, 77.5% (31/40) of subjects converting in 12 months, 

74.07% (20/27) of subjects converting in 18 months, 78.13% (25/32) of subjects converting in 24 

months, and 73.68% (14/19) of subject converting in 36 months. Statistically significant 

correlation maps were observed between the shape diffeomorphometry features of each of the 14 

structures, especially the bilateral amygdala, hippocampus, lateral ventricle, and two 
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neuropsychological test scores—the Alzheimer’s Disease Assessment Scale-Cognitive Behavior 

Section and the Mini-Mental State Examination.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is predominantly 

diagnosed in people over 65 years of age [1]. It is the most common form of dementia, 

which is characterized by trouble with thinking and language as well as a loss of long-term 

memory. The cause and the mechanism of progression for most AD cases are still unknown. 

AD worsens during its progression until death and currently there are no treatments that can 

cure or reverse this progression. Definite diagnosis of AD can only be made based on 

histopathologic evidence obtained from a biopsy or autopsy [2]. Mild cognitive impairment 

(MCI) is a syndrome that is regarded as a risk state for dementia [3] and is associated with 

an increased risk of progression to probable AD [4]. More than half of the individuals with 

MCI deteriorate to dementia within 5 years [3] at a rate of about 10% to 15% per year. 

Considerable heterogeneity exists among MCI patients: some convert to AD with varying 

progression rates, and others remain stable for a long period of time or even revert to normal 

cognitive status. In this article, the former is named MCI converters (MCI-C) and the latter 

is named MCI non-converters (MCI-NC). Specifically, in this study, the MCI-C subjects 

converted to the AD status within 36 months from their baseline while the MCI-NC did not.

The ability to identify an MCI patient’s risk of developing AD is important for clinical 

decision making and timing therapy. Structural neuroimaging measures have been shown to 

be sensitive to the degeneration that occurs in MCI and AD [5], which may provide robust 

biomarkers for predicting the conversion from MCI to AD. Methods of detecting MCI that 

represents prodromal AD would aid clinical practice by allowing attention to be focused on 

those with the highest risk of conversion. However, accurate prediction of the MCI-to-AD 

conversion is very challenging [6], especially when utilizing only the baseline information. 

This difficulty is due to the “lag” between brain atrophy and cognitive decline. The MCI-to-

AD prediction can be regarded as a classification problem between the MCI-C and the MCI-

NC. During the last decade, there have been many methods developed, using structural 

imaging, to differentiate between MCI-C and MCI-NC [6–20]. A majority of the studies 

focusing on the prediction of MCI-to-AD conversion were based on the information from a 

single scan, the baseline dataset. Recently, longitudinal structural features have been 

proposed as better biomarkers for the prediction of MCI conversion. For a more 

comprehensive literature survey of previous work on predicting the MCI-to-AD conversion 

using structural imaging biomarkers, we refer the reader to [15].

There are typically three different types of structural MCI-to-AD predictors. The most 

widely used one is the cortical thickness [6,7,13,15,17–20] because this measurement is very 

sensitive to small structural changes in the cortex. The second measurement is the volume of 
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specific structure of interest, such as the hippocampus [6,14,19] and the amygdala [14]. The 

third type of predictors is the biomarkers obtained from whole brain based analyses. To be 

specific, methods such as the voxel-based morphometry analysis have been suggested to 

locate the most discriminative regions that are then taken as the biomarkers for the MCI-to-

AD prediction [6,8,10–12,15].

In recent years, the single-scan based shape diffeomorphometry patterns of subcortical and 

ventricular structures have been implicated to provide important anatomical information in 

characterizing the difference between healthy controls (HC) and MCI as well as AD [21–

28]. In diffeomorphometry, one utilizes the diffeomorphisms stemming from a fixed 

coordinate system (the template space) to study the shape morphometrics [29] of the target 

groups rather than the shapes themselves. In our previous study [28], we have demonstrated 

the diffeomorphometric abnormalities detected in MCI and AD populations, when compared 

with HC, of the fourteen subcortical and ventricular structures: the left and right amygdala, 

hippocampus, thalamus, caudate, putamen, globus pallidus, and lateral ventricle. In a 

continuation of the previous work, we herein propose a method for the prediction of MCI-to-

AD conversion using the diffeomorphometry-based shape features of those same fourteen 

structures in the baseline data consisting of 210 HC subjects, 175 AD subjects, and 222 MCI 

subjects, among which 87 MCI subjects did not deteriorate to AD within 36 months from 

baseline.

The shape features are obtained in the framework of large deformation diffeomorphic metric 

mapping (LDDMM) [30], in which a diffeomorphism is computed as the end point of an 

energy-minimizing path (a geodesic) through the group of diffeomorphisms. Given a fixed 

template, the anatomical variability in the targets is encoded by the geodesics from the 

template to each target. The fundamental “conservation of momentum” property of these 

geodesics [31] allows for representing the entire flow of a geodesic with the initial 

momentum configuration. This means that, once a template is fixed, the space of initial 

momenta becomes an appropriate linear vector space [32–34] for studying shape. 

Anatomical patterns that are specific to MCI and AD can therefore be studied by applying 

linear statistical techniques, such as principal component analysis (PCA), to the initial 

momentum vectors, which was already demonstrated in [26,28].

In this experiment, the primary training process, including feature extraction and 

dimensionality reduction, was performed on the baseline HC and AD subjects while the 

optimization over possible structure combinations utilized the addition of the baseline MCI 

subjects. The testing process was carried out on the baseline MCI subjects. Such a design 

comes from the observation that the differences, in terms of the shape diffeomorphometry 

patterns, between MCI-C and MCI-NC are similar to those detected between AD and HC, 

which has been shown in [28]. It has also been reported that other patterns of change, within 

the brain, of MCI-C are similar to those of AD while those of MCI-NC are similar to HC 

[35]. Predicting the conversion from MCI to AD using classifiers built from HC-versus-AD 

information has also been successfully demonstrated in [35–38].

In this article, we first describe the procedure for generating the possible HC-versus-AD 

linear discriminant analysis (LDA) classifiers to be used in the prediction of MCI-to-AD 
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conversion, which are built from the diffeomorphometry-based shape features of subsets of 

the fourteen subcortical and ventricular structures from 210 HC subjects and 175 AD 

subjects, all of which come from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

baseline dataset. We then demonstrate the optimization procedure over possible 

combinations of structure-specific shape features by utilizing data from 222 MCI subjects in 

a 10-fold cross-validation fashion, thus yielding 10 optimal LDA MCI-to-AD predictors. 

After that, we cross-validate the predictors on the 222 MCI subjects, including 135 MCI-C 

subjects and 87 MCI-NC subjects, the conversion of which is determined by a follow-up of 

36 months. At the end of this paper, we evaluate the correlation between the vertex-based 

shape diffeomorphometry patterns of the fourteen structures and two neuropsychological 

test scores for the Alzheimer dementia – the Alzheimer’s Disease Assessment Scale-

Cognitive Behavior Section (ADAS-cog) [39] and the Mini-Mental State Examination 

(MMSE) [40].

MATERIALS AND METHODS

Data used in the preparation of this article were obtained from the ADNI database (http://

adni.loni.usc.edu/). The ADNI was launched in 2003 by the National Institute on Aging 

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food 

and Drug Administration (FDA), private pharmaceutical companies and non-profit 

organizations, as a $60 million, 5-year public-private partnership. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. 

Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California – San Francisco. ADNI is the result of efforts of many 

coinvestigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research, 

approximately 200 cognitively normal aging individuals to be followed for 3 years, 400 

people with MCI to be followed for 3 years and 200 people with early AD to be followed for 

2 years. For up-to-date information, see http://www.adni-info.org/. In this study, we 

included data from 210 HC subjects, 222 subjects with MCI, and 175 subjects with AD. 

Within the MCI group, 135 subjects converted to AD (MCI-C) within a follow-up of 36 

months. The conversion time within the MCI-C group is heterogeneous since an MCI 

patient may convert at any time over the course of 6 months to 3 years. In the case of this 

study, 17 subjects converted in 6 months, 40 in 12 months, 27 in 18 months, 34 in 24 

months, and the remaining 17 in 36 months. For the group MCI-NC, we only included those 

MCI subjects that were followed for at least 3 years, yielding a total of 87 subjects in MCI-

NC. Clinical and demographic data for the three groups (HC, MCI, and AD) are presented in 

Table 1. In brief, subjects are 55–92 years old, and are not depressed. The control subjects 

have MMSE scores of 25–30 and a Clinical Dementia Rating (CDR) score of 0. The 
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subjects with MCI have MMSE scores of 23–30, a CDR of 0.5, preserved ability to perform 

daily living activities, and an absence of dementia. The subjects with AD have MMSE 

scores of 20–28, a CDR of 0.5 or 1.0, and meet the criteria for probable AD. The three 

groups did not differ significantly in terms of age (F = 2.53, p = 0.081). All groups differed 

on MMSE and CDR-sum of boxes (CDR-SB) as expected based on diagnostic criteria (all p 

< 0.001). Table 2 lists the demographics of the two sub-groups of MCI: MCI-C and MCI-

NC. According to Student’s t-tests, the two MCI sub-groups did not differ significantly in 

age (p = 0.734), but had statistically significant difference in terms of both MMSE (p = 

5.262e−5) and CDR-SB (p = 2.364e−4).

Image protocol and volumetric segmentation

The raw MR scans, in the format of DICOM, were downloaded from the public ADNI 

website (http://adni.loni.usc.edu/data-samples/mri/). Locally, the raw MR data were 

automatically corrected for spatial distortion due to gradient nonlinearity [41] and B1 field 

inhomogeneity [42]. Each subject was scanned twice with a 3D MPRAGE protocol at 1.5 

Tesla. The two T1-weighted images were rigid-body aligned to each other, averaged to 

improve the signal-to-noise ratio, and then resampled to isotropic 1-mm voxels. Description 

of the rigid-body alignment algorithm is detailed in [43], wherein it served as a first step of a 

longitudinal registration pipeline. Averaging the two scans of the same subject allowed an 

increase in the signal-to-noise ratio. Volumetric segmentations of the fourteen subcortical 

and ventricular structures were obtained using FreeSurfer [44]. Based on the transformation 

of the full brain mask into atlas space, the total cranial vault value was estimated from the 

atlas scaling factor [45] to control individual differences in head size. The quality of the 

automated volumetric segmentations has been reviewed by technicians who have been 

trained by an expert neuroanatomist with more than 10 years of experience. Images that 

have been degraded due to motion artifacts, technical problems (a change in scanner model 

or change in the radiofrequency coil during the time-series), or significant clinical 

abnormalities (e.g., hemispheric infarction) were excluded from our analysis.

Baseline shape processing

The processing of the baseline shapes of all the fourteen structures for each individual 

subject was detailed in [28], for which we will briefly summarize the steps here. For each 

structure, the 2-D surface that contours the boundary of the 3-D volume segmentation was 

approximated by a diffeomorphically deformed atlas surface to ensure correct topology and 

smoothness. The deformation was created by aligning the atlas segmentations (manually 

labeled) and the subject segmentations (from FreeSurfer) using a multi-channel LDDMM-

image mapping. More details and validation of this surface-generation methodology can be 

found in [28,46].

To obtain the baseline shape diffeomorphometry features associated with the surface of each 

structure for each individual subject, we created a common template surface for each 

structure using the algorithm proposed and validated in [47]. Briefly, for each single 

structure, every subject surface was first rigidly aligned (rotation and translation) to a 

common spatial position. The rigid registration algorithm computes an optimal 

transformation between the vertex sets of two surfaces by minimizing a score which 
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combines registration and soft assignment. After rigid registration, each observed subject 

surface is modeled as a random deformation of a hidden template plus additive Gaussian 

noise. Given this model, the template is estimated from the subject surfaces using an 

approximation of the expectation-maximization algorithm, subject to some topology 

constraints. It is enacted by ensuring that the hidden template surface is a diffeomorphic 

deformation of a reference shape, called the hyper-template.

The LDDMM-surface mapping algorithm [48] was then employed to align the common 

template surface to each subject surface, creating the deformation associated with each 

structure surface of each subject. The readers are referred to [28] for more details about the 

mathematical foundations and the experimental steps of this procedure.

Generation of the baseline shape diffeomorphometry features

For each single structure, we generate its baseline shape diffeomorphometry features 

separately as follows. From each LDDMM-surface mapping, we obtain initial momentum 

vectors α0 that are defined at all vertices of the template surface. The initial momentum 

vectors characterize the shape variations in the subject surface relative to the template 

surface. Similar to the “conservation of momentum” concept in physics, given the vertices 

on the template surface and the initial momentum vectors α0, the evolution of the entire 

diffeomorphic flow is uniquely determined [31]. The initial momentum vectors α0 encode 

the geodesic connecting the template surface to the subject surface. Therefore, we selected 

the initial momentum vectors α0 to be our features for prediction. These vectors form an 

extremely high dimensional space and thus, for each structure, we performed PCA on the 

initial momentum vectors of all the HC and the AD subjects to construct an orthonormal 

basis. The initial momentum vectors of all the MCI subjects were projected onto that PCA 

basis. It is worth noting that, in our context, the inner product used in the PCA is derived 

from the Riemannian metric that leads to the geodesic equation in LDDMM. Details of PCA 

on the initial momentum space can be found in [32–34]. To reduce the dimension of the 

feature space, we retained only the first M principal components (PCs) that account for 95% 

of the total variance. We then selected only those PCs that show significant group difference 

between HC and AD. To make this selection, for each PC, we performed a Student’s t-test 

between the PC coefficients for HC and those for AD, and selected the PCs with a p-value 

less than 0.05. We also retained the corresponding PC coefficients for all the MCI test 

subjects. This established our training and testing features for cross-validation.

Selecting the optimal baseline classifier and validation

After performing PCA on the initial momentum space and an ensuing selection of PC 

coefficients, we had feature matrices for fourteen structures. In each feature matrix, every 

row contains the PC coefficients for a different subject while each column contains the 

coefficients for all of the projections onto a specific PC basis vector. As we have shown in 

[28], it is plausible that the combination of features from a subset of structures is the most 

discriminating. To find the optimal combination, we tested all of the possible classifiers we 

could build from the PCs of the fourteen structures. We used linear discriminant analysis 

(LDA) to construct our classifiers. Considering each possible combination, we built a total 

of 16383 (214–1) different classifiers and compared their classification performance with 
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each other. The procedure of sifting the optimal LDA classifier for the MCI-to-AD 

prediction is demonstrated in Fig. 1.

To estimate the accuracy of our predictor in classifying MCI-C versus MCI-NC, we adopted 

10-fold cross-validation; about 22 MCI subjects (8 from MCI-NC and 14 from MCI-C) were 

excluded before we selected the optimal LDA classifier. To be specific, we excluded those 

22 MCI subjects at the very beginning and then sifted the optimal LDA classifier based on 

the feature information from the other 200 MCI subjects (called “data from MCI” in Fig. 1) 

and the 210 HC and 175 AD subjects (the “data from HC and AD” in Fig. 1), as described in 

the previous section. We then used that sifted optimal LDA classifier to determine the 

subgrouping of the MCI subjects excluded at the beginning. The 10-fold cross-validation 

procedure is demonstrated in Fig. 2. It is important to notice that we would obtain a unique 

optimal classifier for each of the 10-fold tests. Since the test subjects were removed from 

both the initial PCA and the process of selecting the optimal classifier, we avoid any bias or 

overestimation of the accuracy of the predictor in forecasting the conversion from MCI to 

AD.

Comparison with the hippocampal volume based biomarker

The hippocampal volume has been suggested to play a critical role in predicting the MCI-to-

AD conversion [6,14,19]. We therefore treat it as a benchmark for evaluating our shape 

diffeomorphometry based MCI-to-AD predictor. We compared the prediction accuracy from 

our shape diffeomorphometry informatics with that from the hippocampal volumes. 

Following the work presented in [19] and [6], we combined the volumes of the left and right 

hippocampus together. Furthermore, we did not use the HC and AD hippocampal volumes 

as the training features. Instead, we performed 10-fold cross-validation with respect to the 

MCI hippocampal volumes. To be consistent with our shape-based procedure and the two 

aforementioned works, we again used LDA as the classification technique. It is noticeable 

that in [19], the hippocampal segmentations were not obtained from FreeSurfer but from the 

authors’ own approach.

Correlating the shape diffeomorphometrics and neuropsychological test scores

Imaging based biomarkers would not be useful in clinical trials if they could not be 

significantly associated with cognitive deterioration. In this study, we evaluated the 

correlation between the shape diffeomorphometrics of each structure and two 

neuropsychological test scores (ADAS-cog and MMSE). ADAS-cog measures a number of 

cognitive domains, including components of memory, language, and praxis. This scale is 

scored from 0 to 70 with higher values indicating greater cognitive impairment. MMSE 

provides a continuous scale to assess primary cognitive functions that affect the dementia of 

the Alzheimer type, including orientation, registration, attention, recall, language, and 

constructional praxis [40]. The MMSE score ranges from 0 to 30. In contrast to ADAS-cog, 

lower MMSE scores indicate more severe cognitive impairment.

For the correlation analysis, instead of the initial momentum vectors α0, we used a scalar 

field—the log-determinant of the Jacobian matrix of the diffeomorphism from the LDDMM-

surface mapping. The log-determinant of the Jacobian is defined at each vertex of the 
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template surface, quantifying the factor by which the diffeomorphism expands or shrinks the 

surface area at each vertex [28]. We calculated the Pearson product-moment correlation 

coefficients (PCCs) between the scalar field at each vertex and the two cognitive test scores, 

co-varying for the age, gender, and the estimated intracranial volume. Statistical significance 

of the correlation at each vertex is measured by a p-value obtained from non-parametric 

permutation tests, in which a total of 40,000 permutations were performed. Since multiple 

correlation tests were performed simultaneously at all vertices of the template surface, for 

each structure, we corrected for multiple comparison by adjusting the p-values in a way that 

controls the familywise error rate (FWER) at a level of 0.05 based on the “maximum 

statistic” method described in [49].

RESULTS

The PCA procedure resulted in 48 PCs for the left hippocampus, 49 PCs for the right 

hippocampus, 21 PCs for the left amygdala, 24 PCs for the right amygdala, 44 PCs for the 

left lateral ventricle, 39 PCs for the right lateral ventricle, 61 PCs for the left thalamus, 60 

PCs for the right thalamus, 45 PCs for the left caudate, 45 PCs for the right caudate, 58 PCs 

for the left putamen, 59 PCs for the right putamen, 30 PCs for the left globus pallidus, and 

29 PCs for the right globus pallidus. After a further reduction via the Student’s t-tests 

between HC and AD, we retained 9 PCs for the left hippocampus, 11 PCs for the right 

hippocampus, 5 PCs for the left amygdala, 6 PCs for the right amygdala, 16 PCs for the left 

lateral ventricle, 15 PCs for the right lateral ventricle, 8 PCs for the left thalamus, 16 PCs for 

the right thalamus, 5 PCs for the left caudate, 7 PCs for the right caudate, 9 PCs for the left 

putamen, 15 PCs for the right putamen, 6 PCs for the left globus pallidus, and 7 PCs for the 

right globus pallidus.

From the 10-fold cross-validation, we obtained 10 optimal LDA classifiers. For 7 out of 10, 

the optimal LDA classifiers came from the same combination of structures: the left 

hippocampus, the left lateral ventricle, the right thalamus, the right caudate, and the bilateral 

putamen. For 2 out of 10, the optimal combination came from four structures: the left 

hippocampus, the left lateral ventricle, the right thalamus, and the right caudate. For the 

remaining classifier, the optimal combination came from six structures: the bilateral 

hippocampus, the left amygdala, the right thalamus, the right caudate, and the left globus 

pallidus. Applying the optimal LDA selection procedure to the complete MCI sample (all 

222 MCI subject), we obtained a combination of the left hippocampus, the left lateral 

ventricle, the right thalamus, the right caudate, and the bilateral putamen. Based on this 

experimental result, to predict the conversion for future MCI scans using the shape 

diffeomorphometry patterns built from the HC and AD population, we consider the 

combination of those six structures to be the optimal LDA predictor.

According to the 10-fold cross-validation results, we are capable of achieving a total 

classification accuracy of 74.77%, a sensitivity of 77.04% (classifying MCI-C) and a 

specificity of 71.26% (classifying MCI-NC). The area under the receiving operating 

characteristic curve (AUC) is found to be 73.81%. The accuracy of our approach in 

predicting the outcome for the MCI-C subjects varies depending on the subject’s conversion 

time. To be specific, we correctly predicted 82.35% (14/17) of the MCI subjects converting 
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in 6 months, 77.5% (31/40) of the MCI subjects converting in 12 months, 74.07% (20/27) of 

the MCI subjects converting in 18 months, 78.13% (25/32) of the MCI subjects converting 

in 24 months, and 73.68% (14/19) of the MCI subjects converting in 36 months. Generally, 

the closer the MCI subject is about to convert, the more accurately the classifier can predict 

that conversion.

Using the hippocampal volume to predict the MCI-to-AD conversion for our MCI dataset, 

we successfully predicted the outcome for 57 out of 87 MCI-NC subjects and 83 out of 135 

MCI-C subjects, yielding a specificity of 65.52% and a sensitivity of 61.48%. For the MCI-

C subjects, the hippocampal volume predicted 58.82% (10/17) of the MCI subjects 

converting in 6 months, 62.5% (25/40) of the MCI subjects converting in 12 months, 

62.96% (17/27) of the MCI subjects converting in 18 months, 68.75% (22/32) of the MCI 

subjects converting in 24 months, and 47.37% (9/19) of the MCI subjects converting in 36 

months. A comparison of the prediction accuracy given by using our shape 

diffeomorphometry patterns and the hippocampal volumes for the dataset in this study as 

well as the prediction results reported in [19] and [6] are listed in Table 3. Compared with 

the hippocampal volume biomarker, our shape diffeomorphometry biomarker boosted the 

overall prediction accuracy by 12%. Comparing the prediction accuracy from the 

hippocampal volume biomarker applied to three different subsets of ADNI dataset (the first 

three rows in Table 3), we observed that all three prediction results are in the same range 

with only slight differences. These differences may have been caused by variations in the 

MCI dataset used in each study, especially the MCI-C subjects; [6] only examined MCI-Cs 

with conversion periods of up to 18 months which are generally considered as relatively 

easy cases for prediction. Also the hippocampal volumes examined in [19] were not 

obtained from FreeSurfer but from the authors’ own segmentation approach. This difference 

in the hippocampal definition may have also contributed to the slight differences in the 

prediction accuracy of the three works.

For each of the 14 subcortical and ventricular structures, the vertex-based correlation maps 

between the two neuropsychological test scores (ADAS-cog and MMSE) and the shape 

diffeomorphometry patterns, as quantified by the log-determinant of the Jacobian matrix, are 

demonstrated in Fig. 3. In that figure, PCCs are assigned non-zero values only for vertices 

where the shape diffeomorphometry correlated statistically significantly with the 

corresponding score after performing multiple comparison correction by controlling the 

FWER at a level of 0.05.

As shown in Fig. 3, for a majority of vertices on each structure surface, especially the 

surfaces of the bilateral hippocampus, amygdala, and lateral ventricle, significant 

correlations were observed between the shape diffeomorphometrics and the values of 

ADAS-cog and MMSE. The shape diffeomorphometrics of the bilateral hippocampus and 

amygdala were mostly negatively correlated with the ADAS-cog value and positively 

correlated with the MMSE value. The opposite trend was observed for the lateral ventricle; 

the shape diffeomorphometrics of the bilateral ventricles were positively correlated with the 

ADAS-cog value and negatively correlated with the MMSE value. This observation implies 

that the atrophy of a majority of regions on the hippocampus and the amygdala, as well as 

the ventricular expansion, is indicative of the cognitive deterioration that occurs in the 
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progression toward AD. Inhomogeneous correlation maps were observed across the surface 

of the basal ganglia structures and the thalamus; some vertices were positively correlated 

with the ADAS-cog score while others were negatively correlated. This observation may 

explain why, globally, the basal ganglia and the thalamus are not significantly different in 

the MCI and AD population when compared to normally aging subjects in general. We also 

notice that the spatial maps of the ADAS-cog and MMSE correlations are highly consistent 

with each other, revealing vertex-wise reverse correlation trends on the template surfaces.

DISCUSSION

In this paper, we proposed a new structural imaging based biomarker for the prediction of 

conversion from MCI to AD. The features were extracted from the shape 

diffeomorphometry patterns of fourteen subcortical and ventricular structures (the left and 

right amygdala, hippocampus, thalamus, caudate, putamen, globus pallidus, and lateral 

ventricle) of baseline HC and AD subjects from the ADNI database. Shape 

diffeomorphometry patterns offer new biomarkers in addition to the more conventional 

structural biomarkers: cortical volumes [6,14,18–20,50] and cortical thickness [6,7,17–

20,50]. So far, there have been very few studies exploring the possibility of predicting MCI-

to-AD conversion via the shape diffeomorphometry patterns in those fourteen subcortical 

and ventricular structures. That said, the shapes of subcortical and ventricle structures have 

been shown to be affected by the dementia of Alzheimer type [9,21–26,28,51,52], which 

may suggest discriminant features for the prediction of MCI-to-AD. The application of 

diffeomorphometry patterns to the classification of AD from HC has already been 

successfully demonstrated in several other studies [11,26,27] and one can see the possibility 

for this given the fact that, for a fixed template, the evolution of the target is completely 

determined by the deformation. In the same sense, the diffeomorphisms stemming from a 

single template to different targets can be used to characterize the morphometrics in those 

targets. Statistical inference based on the metric, the geodesic length of the flows of 

diffeomorphisms connecting human biological shapes, enables machine learning of the 

statistical representation of shape [53]. Indeed, we have found that the shape 

diffeomorphometrics of the 14 structures, especially the amygdala-hippocampus memory 

circuit and the adjacent lateral ventricles, are statistically significantly correlated with two 

neuropsychological test scores—ADAS-cog and MMSE (Fig. 3). This clearly suggests that 

the shape diffeomorphometrics can be indicative of the cognitive impairment in the 

pathology of AD.

In recent years, compared to single-structure approaches, multi-structure based 

diffeomorphometry has become widely employed in application to shape abnormality 

detection in various disorders [28,54,55]. In this study, we developed and validated a shape 

diffeomorphometry based biomarker from multiple subcortical and ventricular structures to 

predict the conversion from MCI to AD. To the best of our knowledge, this is the most 

detailed application of machine learning to diffeomorphometry markers from multiple 

structures and the first one applied to the MCI-to-AD prediction. Instead of using the shape 

patterns from all of the fourteen structures, we developed an automated feature selection 

procedure, as demonstrated in Fig. 1, to select the optimal subset for predicting the MCI-to-

AD conversion. In our experiment, the optimal LDA predictor arises from a combination of 
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the shape diffeomorphometry patterns of a subset containing six of the original structures: 

the left hippocampus, the left lateral ventricle, the right thalamus, the right caudate, and the 

left and right putamen. In reaching this conclusion, all the shape diffeomorphometry patterns 

were obtained from the HC and AD baseline datasets while the MCI baseline dataset was 

used in the optimization procedure to determine which combination yields the highest 

prediction accuracy. According to a 10-fold cross-validation, our pipeline achieved a 

classification accuracy of 74.77%, a sensitivity of 77.04%, a specificity of 71.26% and an 

AUC of 73.81%, which are superior or comparable to results reported in other classification 

methods (Tables 4 and 5).

The performance of the LDA classifier, in the prediction of MCI-to-AD conversion, is 

affected by the conversion times of the MCI-C subjects (82.35% for MCI subjects 

converting in 6 months, 77.5% for MCI subjects converting in 12 months, 74.07% for MCI 

subjects converting in 18 months, 78.13% for MCI subjects converting in 24 months, and 

73.68% for MCI subjects converting in 36 months). As expected, the accuracy for the 

prediction of MCI-C subjects that converted within 6 months after the baseline is the highest 

while the accuracy for those who had not converted until 36 months later from baseline is 

the lowest. This suggests that it is relatively easier to predict the conversion of MCI subjects 

who will convert sooner since their patterns have more similarities with those of AD 

subjects.

In a majority of existing studies on the prediction of MCI-to-AD conversion, we find a lack 

of details on the variability of prediction accuracy with respect to the conversion times of the 

MCI-C subjects. This is largely due to the fact that many studies focused entirely on the 

MCI-C subjects with a follow-up time of no longer than 18 months or had a relatively small 

number of subjects with longer conversion times. In our study, we presented the prediction 

results for MCI-C subjects with a variety of conversion times, and compared them with two 

recently published works that proceeded similarly [12,15]. The comparison is shown in 

Table 4. Compared with the results reported in [15], our approach is capable of achieving a 

higher prediction accuracy at each conversion time. However, more subjects were examined 

in [15]. The small number of MCI-C subjects investigated in [12] at each conversion time (2 

MCI subjects that converted within 6 months, 9 MCI subjects that converted with 12 

months, 8 MCI subjects that converted within 18 months, 10 MCI subjects that converted 

within 24 months, 6 MCI subjects that converted within 36 months, and 3 MCI subjects that 

converted within 48 months) makes it difficult to compare with our proposed method, 

considering that at least twice as many MCI-C subjects were included in our study at each 

conversion time. These small numbers of testing subjects are explained by the use of 

longitudinal and multimodality data in the classification in [12], which largely restricted the 

number of available subjects. A comprehensive comparison between the proposed methods 

and recent work on MCI-to-AD predictors is summarized in Table 5.

According to the comparison results illustrated in Table 3 and results from previous 

publications [6,19], the structural definitions can make a difference to the prediction 

accuracy; in this case, the hippocampal volumes produced by different segmentation 

methods vary from each other in terms of the MCI-to-AD prediction accuracy. This 

observation motivates us in future to adopt more advanced segmentation methods for 
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producing more precise subcortical and ventricular structures [56], which may potentially 

enhance the prediction power of our shape diffeomorphometry biomarker. Another 

improvement may be found in looking to the class of structures we analyze. Currently, many 

studies are focusing on extracting features from whole brain regions [6,8,10,11,15,16,19]. It 

is thus natural to consider extending the proposed framework to incorporate the shape 

diffeomorphometry patterns from regions other than the fourteen structures analyzed herein.

In this study, the shape PCs were computed for each structure separately and then combined 

directly. This may potentially ignore important information since different structures may be 

correlated. For example, the expansion of the lateral ventricle is directly related with the 

compression of the hippocampus and the amygdala, which should be taken into 

consideration when combining the features from those three structures. Future work should 

focus on taking the correlation between the shape features from different regions into 

consideration when designing the feature matrix, similar to the work done in [20]. In 

addition, instead of directly grouping the shape features from different structures and then 

performing a single LDA, the technique of multi-kernel learning, such as those 

demonstrated in [57,58], may improve the results. It is likely that the clearest avenue for 

further exploration in this work lies in our utilization of only the baseline information. In the 

future, an important extension will be to incorporate longitudinal information [10,12,13,57] 

into the prediction procedure.

In conclusion, we have developed and validated a novel structural imaging based biomarker, 

for the prediction of MCI-to-AD conversion, using patterns of shape diffeomorphometry in 

the framework of LDDMM. These patterns were extracted from a subset of subcortical 

structures and the lateral ventricles, based on a training dataset of 210 HC and 175 AD 

subjects. The optimal combination of structure-specific shape diffeomorphometry patterns 

was determined using 222 MCI subjects. The procedure was validated on a total of 135 

progressive MCI subjects and 87 MCI subjects who remained stable after a follow-up of 3 

years. The prediction accuracy on each subgroup of MCI-C, grouped according to the 

conversion time, was demonstrated to be superior or comparable to previously reported 

results.
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Fig. 1. 
Flowchart demonstrating the procedure of selecting the optimal linear discriminant analysis 

(LDA) classifier in classifying MCI-C from MCI-NC. PC, principal component.
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Fig. 2. 
Flowchart demonstrating the procedure of performing 10-fold cross-validation without being 

biased by the subjects removed at the beginning. This process is repeated for the N MCI 

subjects in each fold. NHC indicates the number of HC subjects, NMCI indicates the number 

of MCI subjects, and NAD indicates the number of AD subjects.
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Fig. 3. 
Statistically significant correlation maps between the vertex-based shape 

diffeomorphometrics of the 14 subcortical and ventricular structures and the values of 

ADAS-cog (top panel) and MMSE (bottom panel). Colors represent the Pearson product-

moment correlation coefficients. For each correlation map, two views are presented. vent, 

lateral ventricle; am, amygdala; hi, hippocampus; ca, caudate; thal, thalamus; put, putamen; 

gp, globus pallidus.
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Table 1

Demographic data for the three groups: Healthy controls (HC), mild cognitive impairment (MCI), and 

Alzheimer's disease (AD). The statistics for age, Mini-Mental State Examination (MMSE), and Clinical 

Dementia Rating-sum of boxes (CDR-SB) are displayed as mean ± SD

Parameter HC Group
(n = 210)

MCI Group
(n = 222)

AD Group
(n = 175)

Subject age (y) 76.25 ± 5.01 74.73 ± 7.55 75.28 ± 7.49

No. of male subjects 109 150 94

MMSE score 29.12 ± 1.02 27.57 ± 1.76 23.43 ± 2.01

CDR-SB score 0.03 ± 0.12 1.3 ± 0.60 4.23 ± 1.64

HC, healthy controls; MCI, mild cognitive impairment; AD, Alzheimer's disease; MMSE, Mini-Mental State Examination; CDR-SB, Clinical 
Dementia Rating-sum of boxes.
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Table 2

Demographic data for the two subgroups of MCI: MCI-C and MCI- NC. The statistics for age, MMSE, and 

CDR-SB are displayed as mean ± SD

Parameter MCI-C (135) MCI-NC (87)

Subject age (y) 74.39 ± 7.04 74.73 ± 7.57

No. of male subjects 81 69

MMSE score 26.68 ± 1.72 27.57 ± 1.76

CDR-SB score 1.84 ± 0.96 1.30 ± 0.60

MCI, mild cognitive impairment; MCI-C, MCI converters; MCI-NC, MCI non-converters; MMSE, Mini-Mental State Examination; CDR-SB, 
Clinical Dementia Rating-sum of boxes.
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Table 3

Comparisons of the shape diffeomorphometry and the hippocampal volume as biomarkers for the prediction of 

MCI to AD

Study Features Conversion period N (MCI-NC, MCI-C) Acc Sen Spe

Cuingnet et al. [6] Hippocampal volume 0-18 months 134, 76 0.67 0.62 0.69

Wolz et al. [19] Hippocampal volume 0-48 months 238, 167 0.65 0.63 0.67

Proposed Hippocampal volume 0-36 months 87, 135 0.63 0.66 0.61

Shape diffeomorphometry 0-36 months 87, 135 0.75 0.77 0.71

MCI, mild cognitive impairment; MCI-C, MCI converters; MCI-NC, MCI non-oonverters; Acc, accuracy, Sen, sensitivity, Spe, specificity.
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Table 4

A comparison of the success rates of various methods in predicting the conversion of MCI-C patients grouped 

by conversion times. The total number of MCI-C subjects used in each study is given in parenthesis

m06 ml2 ml8 m24 m36 m48

Eskildsen et al. [15]

cortical thickness 78.7% (122) 75.2% (128) - 69.4% (61) 69% (29) -

cortical thickness+age 77.1% (122) 76.6% (128) - 70.5% (61) 72.4% (29) -

Zhang et al. [12] 50% (2) 100% (9) 87.5 (8) 80% (10) 50% (6) 66.67% (3)

Proposed method 82.4% (17) 77.5% (40) 74.07% (27) 78.1% (32) 73.7% (19) -

MCI-C, mild cognitive impairment converters.
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Table 5

A comparison of the proposed method with previous work on predicting conversion from MCI to AD. Some 

results are directly obtained from the ones summarized in [15]

Study Structures Features Conversion period N (MCI-NC, MCI-C) Acc Sen Spe AUC

Zhang et al. [12] Whole brain VBM+PET 0-48 months 50, 38 0.78 0.79 0.78 0.77

Wee et al. [20] Cortical Thickness+Volume 0-36 months 111, 89 0.75 0.63 0.84 0.84

Cho et al. [7] Cortex Thickness 0-18 months 131, 72 0.71 0.63 0.76 NA

Chupin et al. 
[14]

Hippocampus
and amygdala

Volume 0-18 months 134, 76 0.64 0.6 0.65 NA

Cuingnet et al. 
[6]

Hippocampus Atlas based 0-18 months 134, 76 0.67 0.62 0.69 NA

- Whole brain VBM (grey matter) - 0.71 0.57 0.78 NA

- Cortex Cortical thickness - - 0.7 0.32 0.91 NA

Davatzikos et al. 
[8]

Whole brain VBM 0-36 months 170, 69 0.56 0.95 0.38 0.73

Koikkalainen et 
al. [16]

Whole brain TBM, combination of
 classifiers

0-36 months 215, 154 0.72 0.77 0.71 NA

Misra et al. [10] Whole brain VBM, ROIs 0-36 months 76,27 0.82 - - 0.77

Querbes et al. 
[17]

Cortex Cortical thickness 0-24 months 50,72 0.73 0.75 0.69 NA

Westman et al. 
[18]

Cortical and
 subcortical

Thickness and volume 0-12 months 256, 62 0.58 0.74 0.56 NA

Wolz etal. [19] Hippocampus Atlas based 0-48 months 238, 167 0.65 0.63 0.67 NA

- Whole brain TBM - 0.64 0.65 0.62 NA

- Whole brain Manifold learning - 0.65 0.64 0.66 NA

- Cortex Cortical thickness - - 0.56 0.63 0.45 NA

- Combination Combination - - 0.68 0.67 0.69 NA

Liu et al. [50] Hippocampus,
 amygdala, caudate

Volume 0-12 months 79,21 0.69 0.76 0.68 NA

- Inferior temporal 
and
 lateral 
orbitofrontal

Thickness - - 0.59 0.62 0.59 NA

Singh et al. [11] Whole brain Volume deformation
 Pattern

0-48 months 73,54 0.66 0.65 0.67 0.72

Leung et al. [9] Hippocampus Shape atrophy rates 0-12 months 128, 86 NA NA NA 0.67

Proposed method Subcortical Shape
 diffeomorphometry

0-36 months 87, 135 0.75 0.77 0.71 0.74

structure and 
laterary
 ventricle

Acc, accuracy; Sen, sensitivity; Spe, specificity; AUC, area under the receiver operating characteristic curve; MCI-C, MCI converters; MCI-NC, 
MCI non-converters; VBM, voxel-based morphometry; PET, positron emission tomography; NA, not available; TBM, tensor-based morphometry; 
ROI, region of interest.
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