Skip to main content
. Author manuscript; available in PMC: 2015 Jun 19.
Published in final edited form as: Adv Appl Stat. 2014 Nov 1;42(2):95–117.

Table 1. Functional forms of growth models.

Growth Model Functional form: f(t) Parameters with expected signs
Cubic α + β * t + γ * t2 + θ * t3 α, β, γ, θ
Exponential M + α * exp[−β * t] M, α, β
Logistic
M1+αexp[βt]
M, α, β (M > 0, β > 0)
Log-logistic
M1+αexp[βlog(t)]
M, α, β (M > 0, β > 0)
Weibull M − α * exp(−β * tγ) M, α, β,γ (M > 0, β > 0)
Gompertz M * exp[−α * exp(−β * t)] M, α, β (M > 0, β > 0)
H1
M1+αexp[βtγarcsinh(t)]
M, α, β, γ (M > 0, β > 0)
H2
M1+αarcsinh[exp(βtγ)]
M, α, β,γ (M > 0, β >0)
H3 M−α * exp[−β * tγ − arcsinh(θ * t)] M, α, β, γ,θ (M>0, β >0)

Recall that arcsinht=ln(t+t2+1) is the inverse hyperbolic sine function of t.