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Axonal sorting and transport of fully assembled pseudorabies virus (PRV) virions is dependent on the viral protein Us9. Here we
identify a Us9-independent mechanism for axonal localization of viral glycoprotein M (gM). We detected gM-mCherry assem-
blies transporting in the anterograde direction in axons. Furthermore, unlabeled gM, but not glycoprotein B, was detected by
Western blotting in isolated axons during Us9-null PRV infection. These results suggest that gM differs from other viral proteins
regarding axonal transport properties.

Pseudorabies virus (PRV) is a member of the family Herpesviri-
dae and infects the peripheral nervous system (PNS) (1).

Spread of PRV infections within the nervous system is directional,
with virions moving from peripheral sites to neuronal cell bodies
(retrograde) or from the neuronal cell body to the periphery (an-
terograde) (2, 3). Anterograde spread requires the sorting of viri-
ons from the cell body into axons with subsequent transport away
from the cell body. The PRV protein Us9, a nonglycosylated viral
type II membrane protein, is essential for anterograde transport
and spread. In the absence of Us9 expression, PRV virions are
excluded from the axon (4, 5). Us9 interacts with the molecular
motor Kif1A to direct sorting and transport (6). While Us9 is
known to mediate transport of infectious virions, its role in axonal
transport of other viral assemblies is unclear.

Alphaherpesvirus assembly is a complex multistep process in-
volving interactions of virus proteins with cellular membranes as
well as several membrane budding and fusion events that produce
distinct structures besides infectious virions (7, 8). Herpesviral
proteins can assemble into noninfectious particles called light par-
ticles, or L particles (9, 10). These noninfectious particles, which
have an envelope and tegument proteins but lack a capsid, can be
detected in axons in vitro and in vivo (11–14). Furthermore, in
HSV-infected neurons, glycoproteins C and D have been detected
in axons on structures devoid of capsid protein during infection
by Us9-null mutants (15). While distinct structures can be sorted
into axons and transported, their functional relevance to antero-
grade spread of infection and the requirement of Us9 for their
transport is unknown. In this study, we focused on the Us9-inde-
pendent axonal transport of viral glycoprotein M (gM).

We constructed a plasmid encoding mCherry-tagged glyco-
protein M (gM) through de novo synthesis, designated pML124
(11). Two single fluorescent PRV strains expressing this fusion
were then derived: PRV 347 (gM-mCherry/wild-type Becker) and
PRV 437 (gM-mCherry/Us9-null). PRV 347 and 437 were isolated
following cotransfection of linearized pML124 and nucleocapsid
DNA from PRV Becker (WT) or PRV 161 (Us9-null) (16), as
previously described (11). We performed live-cell imaging of PRV
347 and PRV 437 in dissociated rat superior cervical ganglion
(SCG) cultures under conditions previously described (11). As for
other PRV membrane proteins (6, 17), substantially more fluores-
cent signal was detected in neuronal cell bodies than on puncta in
axons. As expected, mCherry-labeled puncta trafficked in the an-

terograde direction after infection with PRV 347, similar to the
previously characterized gM-mCherry/GFP-Us9 dually labeled
puncta (11). However, we also observed anterograde transport of
gM-mCherry puncta after infection with PRV 437 (Us9-null) (see
Movie S1 in the supplemental material). Puncta moving in an
anterograde direction were detected beginning at 8 h postinfec-
tion (Fig. 1A). The motility of these structures was qualitatively
different between PRV 347 and PRV 437, with Us9-null mCherry
puncta appearing less motile with an apparently higher stall fre-
quency due to the high number of immobile mCherry puncta. To
our knowledge, this is the first observation of definitive antero-
grade transport of a PRV membrane protein in the absence of Us9
expression.

Previous work indicated that glycoproteins gB, gC, and gE as
well as bulk virion envelope epitopes could not be detected in
axons during Us9-null infections by immunofluorescence (4, 18,
19). To reconcile these observations with our finding of Us9-in-
dependent transport of gM, we verified the Us9-null phenotype
and Us9 expression levels of PRV 437. We measured expression of
Us9 by PRV 347, 437, and 161 during infection of PK15 cells by
Western blotting (WB) using a polyclonal rabbit Us9 antiserum
(5). No Us9 was detected for the Us9-null mutants PRV 437 and
PRV 161 (Fig. 1B). The gM-mCherry fusion protein was detected
using a polyclonal rabbit gM antiserum (20) as two distinct bands
at 70 and 50 kDa for PRV 347 and PRV 437, showing the expected
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increase in size over the untagged gM protein. We then assessed
the anterograde-spread capacity of PRV 347 and PRV 437 by in-
fecting primary cultures of rat SCG neurons in modified Campe-
not chambers as described previously (21). No anterograde spread
into the isolated N compartment was observed at 24 h postinfec-
tion with PRV 437, compared to the robust spread of PRV 347
(Fig. 1C), confirming the Us9-null phenotype.

Our results suggest that a vesicle containing gM-mCherry en-
ters and is transported in axons without Us9. Moreover, the live-
cell imaging assay confirmed that gM-mCherry labeled puncta
were mobile and therefore not extracellular inoculum or stalled
particles. To exclude confounding effects on gM localization due
to the mCherry fluorophore tag, we analyzed native untagged pro-
teins in PRV-infected SCG cultures using the modified Campenot
chamber system as described above. Cultures were infected with
PRV Becker or PRV 161, and the contents of each compartment
were harvested separately for WB analysis. The S compartment
samples demonstrated expression of the viral membrane proteins
gB and gM, indicative of productive infection and new protein

synthesis above input virion material (Fig. 2). Us9 was detected in
PRV Becker- but not PRV 161-infected chambers. Robust gM
signal was detected in the N compartment axons at 18 and 24 h
postinfection with both PRV Becker and PRV 161, confirming our
observations with the live-cell imaging assay. These results verified
the Us9-independent entry of untagged, native gM protein into
axons. Furthermore, the viral glycoprotein gB was not detected in
axons after PRV 161 (Us9-null) infection, while the mature
cleaved gB form was detected in axons after wild-type infection
(Fig. 2). These findings confirmed the dependence of glycopro-
teins like gB on Us9 for transport (18) and further suggested that
Us9-independent transport of gM constitutes a process that does
not involve all viral membrane proteins.

It remains unclear if gM is unique in its ability to undergo
Us9-independent axonal sorting and transport. gM is a type III
transmembrane protein expressed as a heterodimer with gN (22)
that mediates secondary envelopment through interactions with
gE and tegument (23–25). gM also facilitates endocytic retrieval
and relocalization of both viral and host proteins from the plasma

FIG 1 Characterization of a Us9-independent pathway for anterograde axonal transport of gM. (A) Live cell imaging stills of anterograde transport of
gM-mCherry in rat SCG neurons at 8 h postinfection with PRV 437. Triangles indicate punctate structures moving in an antergrade direction. Arrows indicates
anterograde directionality. (B) WB assessment of Us9 and gM expression in PK15 whole-cell extracts infected with PRV Becker, PRV 161 (Us9-null parental
strain), PRV 347 (gM-mCherry), and PRV 437 (gM-mCherry, Us9-null). (C) Anterograde spreading capacities of PRV 347 and PRV 437 in chambered neuronal
cultures at 24 h postinfection. Point estimates reflect viral titers in the N compartment for infections performed in quadruplicate for each viral strain. Lines denote
median titers.
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membrane (20, 26). It is possible that the membrane topology of
gM targets it to trans-Golgi-derived vesicles that form part of the
secretory pathway and are sorted constitutively into axons by host
adaptor proteins such as AP3 (27, 28). The host secretory pathway
has already been implicated in transport and egress of infectious
virions (14, 29, 30). It is also possible that gM actively directs the
axonal targeting of these currently uncharacterized vesicles to
modulate the viral life cycle. However, it is difficult to establish a
more precise functionality for gM in anterograde transport, as
deletion of this glycoprotein severely impacts overall viral replica-
tion/assembly (31), resulting in a pleiotropic effect on other steps
of the viral life cycle. Future experiments are needed to detail the
kinesin motor that moves these vesicles in axons and to character-
ize the cohort of gM binding partners.
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