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Abstract

Pathogenic Leptospira species cause a prevalent yet neglected zoonotic disease with mild
to life-threatening complications in a variety of susceptible animals and humans. Diagnosis
of leptospirosis, which primarily relies on antiquated serotyping methods, is particularly
challenging due to presentation of non-specific symptoms shared by other febrile ilinesses,
often leading to misdiagnosis. Initiation of antimicrobial therapy during early infection to pre-
vent more serious complications of disseminated infection is often not performed because
of a lack of efficient diagnostic tests. Here we report that specific regions of leptospiral 16S
ribosomal RNA molecules constitute a novel and efficient diagnostic target for PCR-based
detection of pathogenic Leptospira serovars. Our diagnostic test using spiked human blood
was at least 100-fold more sensitive than corresponding leptospiral DNA-based quantitative
PCR assays, targeting the same 16S nucleotide sequence in the RNA and DNA molecules.
The sensitivity and specificity of our RNA assay against laboratory-confirmed human lepto-
spirosis clinical samples were 64% and 100%, respectively, which was superior then an
established parallel DNA detection assay. Remarkably, we discovered that 16S transcripts
remain appreciably stable ex vivo, including untreated and stored human blood samples,
further highlighting their use for clinical detection of L. interrogans. Together, these studies
underscore a novel utility of RNA targets, specifically 16S rRNA, for development of PCR-
based modalities for diagnosis of human leptospirosis, and also may serve as paradigm for
detection of additional bacterial pathogens for which early diagnosis is warranted.

Introduction

Leptospirosis is a prominent zoonotic disease caused by a diverse group of pathogenic lepto-
spires that includes at least nine genospecies and over 200 serovars [1-7]. There are an
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estimated more than 800,000 cases and 50,000 deaths annually due to leptospirosis [8]. The
greatest disease burden occurs in subsistence farmers [9, 10] and urban slum dwellers [2, 11-
13], especially in resource-poor settings. In endemic regions, epidemics have frequently been
reported following heavy rainfalls [2, 13]. Even in industrialized nations including the United
States, outbreaks have been reported following sporting events [14-16], within military person-
nel [17-19], and in tourists [20, 21]. Additionally, there are increasing cases of the disease
involving inner-city populations [7, 22], climate changes [23, 24], and expansion of urban slum
populations [13, 25]. L. interrogans are transmitted from contaminated water, soil, or urine to
hosts during contact with abraded skin or mucous membrane. Unlike other pathogenic spiro-
chetes, which cause borreliosis or syphilis in humans and are unable to persist outside of a host
body, leptospires can persist in aqueous environments for extended periods of time [26, 27].
The pathogen can quickly upregulate genes associated with host adaptation and virulence and
can establish serious systemic infection via hematogenous dissemination to multiple internal
organs, particularly the kidneys and liver [5, 28, 29]. While wild rodents serve as major natural
reservoir hosts, humans and many other domesticated animals are accidental hosts in the
transmission cycle of leptospirosis [1, 3, 28].

Pathogenic Leptospira spp cause a spectrum of clinical symptoms ranging from mild febrile
disease to severe manifestations such as Weil’s disease and pulmonary hemorrhage syndrome,
with case fatalities of >10% and >50%, respectively [1, 3, 5, 30]. Although whole cell and
recombinant vaccines are shown to interfere with Leptospira infection [31-33], none of these
vaccines offer complete protection. Moreover, they fail to block chronic renal colonization or
urinary shedding, can elicit moderate side effects and are mostly effective against local host-
adapted serovars [32, 34, 35]. Thus, given an absence of effective vaccines, prevention of disease
progression is primarily reliant on timely diagnosis and antibiotic treatment. Early diagnosis of
leptospirosis generally leads to effective antibiotic treatment, thereby preventing the more
severe form of disseminated disease; however, there is a lack of rapid diagnostics [8]. Due to
the non-specific clinical manifestations of leptospirosis, failure to diagnose the infection, or
misdiagnosis, has become a significant problem in many developing countries where dengue,
malaria, typhoid and other causes of acute fever are endemic [5, 36]. Diagnosis of leptospirosis
still relies on classical laboratory tests including immunoassays against spirochetes or recombi-
nant proteins, direct cultivation of bacteria grown from body fluids, or a microscopic aggluti-
nation test (MAT) using paired serum samples and Leptospira cultures [8, 37]. Although some
of the immunoassays are highly sensitive, they suffer from inherent delays and variability of
host immune responses as well as sequence divergence in target antigens, potentially limiting
their use for early diagnosis of leptospirosis. Even the gold standard methods of direct culture
and the MAT, require either weeks to grow spirochetes from body fluids or highly trained labo-
ratory personnel and paired sera. Therefore, there is a critical need for rapid and effective diag-
nostics, especially for detection of early infection.

Leptospires disseminate hematogenously and spirochetemia is detectable for many days fol-
lowing initial exposure [3, 8, 38]. Although PCR-based diagnostic methods have been devel-
oped that can detect leptospiral DNA [8, 39-50], overall sensitivity of these assays is poor, and
in general is less than 60% [8], although in some cases, higher sensitivities are reported [44,
45]. Unlike DNA targets, which usually exist as a single copy per cell, each bacterium contains
hundreds to thousands of specific RNA molecules. We therefore hypothesized that an assay
based on the PCR amplification of cDNA molecules representing highly and consistently tran-
scribed Leptospira genes like16S rRNA [6, 51], which are also mostly conserved in pathogenic
Leptospira [6, 52], could improve the sensitivity of Leptospira detection. In addition, detection
of Leptospira transcripts in the blood would facilitate prompt and appropriate antibiotic treat-
ment. In the current study, we report a rapid, sensitive, and specific RNA-based PCR
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diagnostic test for early human leptospirosis. These results could serve as a paradigm for devel-
opment of novel RNA-based diagnostics of additional bacterial infections in humans, such as
Lyme disease, where early diagnostics remains challenging.

Material and Methods
Ethics statement

Written informed consent was obtained from all participants prior to blood collection. The
study protocol was approved prior to study initiation by the Yale Institutional Review Board
(HIC#1006006956), the Ethics Committees at the Oswaldo Cruz Foundation (505.490; 16/
2013) and Hospital Couto Maia (175), and the Brazilian Ministry of Health National Ethics
Committee in Research (15925). Animals were treated in compliance with the Guide for the
Care and Use of Laboratory Animals. All experiments involving human blood, infectious
agents, and animals were performed according to the guidelines of the Institutional Biosafety
Committee of the University of Maryland, and the Institutional Animal Care and Use Commit-
tee of the University of Maryland under the protocol number R-13-71.

Bacterial strains

Leptospira strains and serovars used in the study are indicated in S1 Table. Unless stated other-
wise, Leptospira interrogans Fiocruz L1-130, a clinical isolate, [53] was used in most parts of
the study. In some experiments, additional Leptospira serovars were also used, including iso-
lates from 17 pathogenic and five non-pathogenic strains [54]. Spirochetes were grown in lig-
uid Elinghausen-McCullough-Johnson-Harris (EMJH) medium [55, 56] at 29°C on a rotating
platform at 100 rpm. Additional bacterial strains, such as an Escherichia coli K-12 derivative,
Group A Streptococcus D471 cells [57], and Borrelia burgdorferi clone B31-A3 [58], were also
used in certain experiments and grown by using the standard media and protocols.

Samples

Blood samples from uninfected Golden Syrian Hamsters (4-6 weeks old, purchased from
Charles River Laboratories), a species commonly used as an animal model of Leptospirosis
[29], were collected into BD Vacutainer whole blood collection tubes containing EDTA (BD
Diagnostics). For human samples, twenty five patients were enrolled during active surveillance
for leptospirosis at a state-run hospital, Hospital Couto Maia, in Salvador, Brazil, from June
2013 to September 2013, and blood samples were collected during early hospitalization [2]. All
patients were examined for leptospirosis using previously described methods (hemoculture
and MAT) [30] as well as DNA qPCR. Confirmed patients were positive for at least one of the
above three tests. We determined that 22 out of 25 subjects had laboratory-confirmed leptospi-
rosis as defined by: 1) four-fold increase in MAT titer or seroconversion (0 to >1:200) between
paired sera [59], 2) reciprocal MAT titer of greater than 1:800 in one or more samples [59], 3)
positive hemoculture, or 4) positive blood DNA PCR results. Three patients had probable lep-
tospirosis based on the presence of a single MAT titer value of 1:100-1:400.

For samples used in the current study, about 1-2 mL of venous blood was collected directly
into BD whole blood EDTA tubes. Within 5 hours of collection, 250 uL of patient blood was
aliquoted from the EDTA tubes into 750 pL of TRIzol LS, thoroughly homogenized, and imme-
diately frozen at -70°C. All patient samples were bar-coded, monitored during transport for
temperature, and all cold chain data including sample receipt, processing time, and freezing
time were recorded. Whole blood from 24 healthy individuals residing in non-endemic regions

PLOS ONE | DOI:10.1371/journal.pone.0128913 June 19,2015 3/18



@’PLOS ‘ ONE

RNA-Based Detection of Pathogenic Leptospires

in the U.S. and Brazil were also collected or purchased (SeraCare Life Sciences) and processed
equivalently to patient samples.

Extraction of nucleic acids and cDNA synthesis

Total RNA samples were extracted from samples stored in TRIzol (for bacterial pellets har-
vested from cultures grown at mid to late log phases), or TRIzol-LS (for blood samples) accord-
ing to manufacturer’s (Life Technologies) instructions [60, 61]. After phase separation, RNA
samples were either precipitated with isopropanol, dissolved in 20uL of RNase-free water and
subjected to optional DNasel treatment (NEB laboratories), or further purified using an
RNeasy mini kit (Qiagen). For cDNA synthesis, 0.5 g of RNA samples was reversed tran-
scribed using VILO superscript master mix using random primers (Life technologies) accord-
ing to manufacturer’s protocols. For extraction of DNA, spiked blood samples were processed
using DNeasy mini kit (Qiagen) according to manufacturer’s instructions and eluted into

100 uL nuclease-free sterile water.

Primer design

The primers used for qPCR reaction were designed using NCBI Primer-BLAST primer design
program based on the available L. interrogans genomic sequences. To identify primers of great-
est sensitivity and specificity, we aligned the 16S sequences of 37 Leptospira serovars, including
all 20 known pathogenic or non-pathogenic leptospiral species, and several other non-target
bacterial species using MegAlign program (DNASTAR) (S1 Fig). We have designed specific
sets of 16S forward and reverse primers expected to amplify a specific region of 16S gene that
retains 1) absolute homology between all known highly pathogenic Leptospira species and sero-
vars, 2) few base pair mismatches for intermediate pathogenic leptospires and 3) greater num-
ber of mismatches to non-pathogenic Leptospira species. The specificity of each newly
designed primer was initially searched against all reference mRNA sequences using NCBI
BLASTn as well as Primer-BLAST programs to rule out possible cross-reactivity with other
bacteria species as well as non-targeted species including human, mice, rats, and hamsters.
These primer sequences display 25% or more divergence from corresponding human or rodent
genes, including at least 4-5 base pair mismatches predominantly towards the 3’ ends of the
primer sequence inhibiting primer annealing to unintended targets. Similarly, primers against
additional gene targets, FlaB, LipL31, LipL32, and LipL41 were also designed. All PCR primer
pairs had a similar annealing temperature (60°C) and spanned nearly 200 base pairs of each of
the target genes. Prior to their use in RNA measurement assays, each primer pair was tested for
efficiency and non-specific amplification by melt-curve analysis using L. interrogans genomic
DNA as a template.

Polymerase chain reaction

The oligonucleotide sequences for each of the primers used in specific PCR reactions are indi-
cated in S2 Table. The relative levels of cDNA templates in each sample were assessed by quan-
titative PCR (qPCR) as detailed [60, 61], and whenever necessary, DNA contamination in each
sample was measured using an equal volume of purified RNA as a template. All gPCR reactions
were performed using the CFX96 real time PCR detection system (Bio-Rad) with the following
thermal cycle conditions: 95°C for 10 min, 45 cycles of [95°C for 15 s, 60°C for 60 s], followed
by a melt curve from 65°C to 95°C performed at an increment of 0.5°C per cycle. All gPCR
plates included no template control wells to test for non-specific amplification or reagent con-
tamination, and results were further tested for specificity by melt curve analysis. Detection of
human or hamster S-actin or GAPDH transcripts by qPCR confirmed the integrity of cDNA
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samples. For detection of leptospirosis in humans, an optimized DNA qPCR analysis was also
performed using nuclease (TagMan) assay and primers that amplified a sequence of lipL32, a
pathogenic Leptospira-specific gene, as detailed earlier [62, 63].

Validation of primers

L. interrogans culture was harvested at 2.9x10° leptospires per ml by centrifugation at 5000 g
at room temperature (~2.9x10° total cells) and subjected to RNA isolation as detailed above.
For relative assessment of each primer set, 2.5 pug RNA samples were reverse transcribed into
cDNA, serially diluted to tenfold, which were used in the qPCR reactions. Standard curves and
amplification efficiency of the reactions were calculated by the CFX96 instrument software,

as instructed by the manufacturer. cDNA samples were also isolated from a number of patho-
genic, intermediate pathogenic or non-pathogenic species and serovars. For spiking experi-
ments, 250 pL of untreated whole human blood samples were spiked in triplicate with L.
interrogans derived from at least three independent cultures at various concentrations ranging
from 10°-10° cells/mL. Samples were used for DNA or RNA extraction using DNeasy mini kit
or TRIzol extraction procedure, followed by cleanup using RNeasy mini kit, respectively, and
the RNA samples were further processed for cDNA synthesis. As controls for assessment of
specificity, cDNA samples were also isolated from additional bacterial culture grown at late log
phases including B. burgdorferi, E. coli, and Group A Streptococcus strains as well as from
human blood and hamster liver.

RNA stability studies

Triplicate samples of 250 pl whole human blood were spiked with viable L. interrogans

(100 cells/ml) derived from at least three independent cultures. Aliquots were homogenized
with 750 puLTRIzol LS and stored at room temperature for 0, 4, 8, 24, 72, or 120 h before freez-
ing at -80°C until analysis. In parallel experiments, triplicate aliquots of 250 pL human blood
containing 100 leptospires per ml were stored at room temperature, 4°C, -20°C, or -80°C in the
absence of any stabilization reagent, and processed together with other conditions. Samples
were collected directly into 750 puL TRIzol LS after incubating at the aforementioned tempera-
tures for 0 h, 8 h, 24 h, 7 d, and 14 d, and stored at -80°C until completion of all timepoints.
RNA was extracted using the TRIzol procedure, further treated with DNase I, and finally
reverse transcribed to cDNA and analyzed by qPCR using Leptospira-specific 16S primers.

Statistical analysis

Results are expressed as the mean + standard error of the mean (SEM). The significance of the
difference between the mean values of the groups was evaluated by unpaired Student ¢ test and
ANOVA.

Results

Development of an RNA-based quantitative PCR assay for detection of
pathogenic leptospires

Development of a rapid and sensitive diagnostics for human leptospirosis, especially for detec-
tion of early active infection, is highly warranted. Since pathogenic leptospires are known to
disseminate via blood where they are detectable for several days after infection [8], and since
each bacterium may contain hundreds of copies of certain abundant transcripts, we sought to
explore whether an RNA-based PCR assay would allow sensitive and specific detection of lep-
tospires in human blood. We adopted a SYBR Green-based qRT-PCR assay, which is a highly
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efficient and widely used platform amongst available real-time PCR technologies [64], yet rela-
tively simple and cost-effective. For identification of an RNA target that yields most efficient
detection, we initially examined a set of characterized, abundant rRNA and mRNA gene tar-
gets: 16S rRNA, FlaB, LipL31, LipL32, and LipL41. We selected these genes not only due to
their constitutive and abundant expression but also for their sequence conservation in patho-
genic and intermediately pathogenic Leptospira spp, and sequence divergence or absence in
non-target species. Although the above-mentioned mRNA genes are unique to pathogenic
Leptospira species [6, 52], specific regions of their rRNA genes display appreciable species-spe-
cific conservation [65]. We therefore used NCBI Primer-Blast software to identify unique
regions in 16S gene and created forward and reverse primers 100% identical to pathogenic L.
interrogans sequences but containing several nucleotide mismatches to non-target bacterial
species including non-pathogenic Leptospira (S1 Fig). These primers also lack significant simi-
larity to mammalian species. All gene-specific primers had a similar annealing temperature
and comparable amplicon sizes. The RNA samples from a highly pathogenic species, L. interro-
gans serovar Copenhageni strain Fiocruz L1-130 were converted into cDNA and used in a
SYBR Green-based qPCR assay in the absence or presence of 10-fold excess of a control host
(hamster) cDNA. While sensitivity of the assay (or the relative abundance of the transcripts)
was calculated using the 2**“T method [66], specificity of the target gene amplification was
assessed using melt-curve analysis. We found that the 16S rRNA primers offered the most effi-
cient analytical sensitivity, as evidenced by the lowest Ct values, and were nearly 1000-fold
more abundant than the next efficient mRNA target, LipL32 (Fig 1A). The 16S-1 primers

(Fig 1B), or other tested primers, showed PCR efficiencies between 91-99% and without
detectable cross-reactivity with spiked control rodent cDNAs. As the 16S rRNA primers
offered the highest sensitivity in our assay, we only used these primers in subsequent experi-
ments (16S-1, Fig 1).

Analytical sensitivities of 16S RNA-based qPCR assays are superior to
corresponding DNA-based assay in Leptospira-spiked human samples

We next assessed whether sensitivity of our 16S RNA-based assay is superior to corresponding
DNA-based ones and also tested its specificity with experimentally spiked human blood sam-
ples. To accomplish this, we spiked serially diluted L. interrogans cells into 250 ul aliquots of
human blood and the RNA and DNA samples were isolated using the commercial kits as
detailed in the Materials and Methods. We then performed subsequent qRT-PCR and gPCR
assays using corresponding templates and the same 16S primer set. Using this methodology,
we found that RNA-based assays were at least 100-fold more sensitive than a DNA-based
approach (Fig 2), suggesting that the difference in assay performance is not due to the target
sequence rather than differences between RNA and DNA detection.

Differential detection of multiple Leptospira and non-target bacterial
species

We next determined the sensitivity of our 16S qRT-PCR assay in the detection of multiple
pathogenic leptospiral serovars, and the specificity of the assay using non-pathogenic lepto-
spiral species and non-target bacterial species. For this purpose, we prepared RNA samples
from 17 highly or intermediately pathogenic leptospiral species and serovars as well as from
five non-pathogenic species, B. burgdorferi, group A Streptococcus, E. coli or hamster and
human tissues. We found that while the assay was able to detect all pathogenic species with
highest sensitivity, detection of non-pathogenic leptospiral species was at least 15 Ct value (or
10,000 fold) higher (Fig 3). These results indicate a difference of several thousand folds in the
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Fig 1. L. interrogans 16S rRNA primers offered highest analytical sensitivity. A) Total RNA samples isolated from cultured spirochetes were converted
into cDNA and amplification cycles (cycle threshold or Ct value) of various L. interrogans target genes are assessed in qRT-PCR assays in the presence
(gray bars) or absence (black bars) of hamster cDNA. Data represent results from three independent experiments. B) 16S rRNA primers display a high PCR
efficiency. L. interrogans cDNA in RNase-free water (320 ng/uL) was serially diluted to tenfold (10~ to 10~°) and subjected to qRT-PCR assays using 16S-1
primers. Amplification cycles (left panel) were used to calculate standard curve (middle panel), which indicated detection to 10~° dilutions with an
amplification efficiency of 91.2%. A melt curve analysis (right panel) showed a melting temperature of 82°C without any non-specific amplification.

doi:10.1371/journal.pone.0128913.g001

concentration of target templates. In addition, weak signals at higher Ct values (39-40) were
recorded for Streptococcus and Borrelia, however, this amplification was non-specific, as con-
firmed by the melt curve analysis. Thus, overall, we detected none of the non-target species
suggesting 100% specificity of the assay (Fig 3).

L. interrogans 16S transcripts are remarkably stable in human blood

An ideal RNA-based diagnostic test for leptospirosis would detect stable targets, allowing for
varied blood storage times and temperatures, and not require the use of toxic RNA stabilizing
reagents such as TRIzol. Therefore, we compared the limit of detection of 16S transcripts in
spiked human blood samples stored at room temperature in TRIzol to that of untreated spiked
blood samples. We also tested how storage temperature of blood samples influenced the
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diluted from 10° to 1 bacterium per milliliter of human blood and used for either RNA-based gRT-PCR (upper
panel) or DNA-based qPCR (lower panel). Data represent results from three independent experiments.

doi:10.1371/journal.pone.0128913.g002

window of 16S detection by our assay. To accomplish our objectives, we spiked human blood
with L. interrogans cells at 100 bacteria per milliliter of blood and stored aliquots at room
temperature, 4°C, -20°C, or -80°C) for 1, 7 and 14 days either with or without the addition of
TRIzol. A sample immediately stored in TRIzol and frozen served as the “0 hour” or baseline
control for 16S RNA stability experiments. We measured the transcript levels by qRT-PCR
analyses, and observed no appreciable RNA degradation in the samples stored in TRIzol at
room temperature (Fig 4A) or at colder temperatures. Of note, while we recorded a significant
loss of 16S RNA in samples stored at room temperature within a day, ~ 5% of the transcripts
remained detectable until 7 days (Fig 4B). In contrast, we were able to detect >20% of 16S
RNA transcripts from samples stored at 4°C, and >50% at -20°C and -80°C even after 14 days
(Fig 4B).

Assessment of clinical cases of human leptospirosis

Finally, we tested the sensitivity and specificity of our assay for the detection of Leptospira in
blood samples obtained from patients, with suspected leptospirosis, as detailed in the Material
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Fig 3. High sensitivity and specificity of 16S rRNA qPCR assay for pathogenic and nonpathogenic leptospiral species and serovars. Total RNA was
extracted from 17 high or intermediate pathogenic, and five non-pathogenic leptospiral species, Borrelia burgdorferi, group A Streptococcus, and
Escherichia coli, as well as from uninfected human blood or hamster liver, as described in the materials and methods and converted into cDNA. Equal
amount (10 ng) of cDNA templates from each bacterial species were subjected to qRT-PCR assays using 16S-1 primers and amplification cycles (Ct values)
were measured. Note that the sensitivity of detection is the best for all tested highly pathogenic species or serovars followed by intermediate species while
non-pathogenic strains display the lowest sensitivity (an average of 15 Ct values or 10,000 fold less detectability). All tested non-target bacterial species or
mammalian samples remained undetectable. Data represent results from three independent experiments.

doi:10.1371/journal.pone.0128913.9003

and Methods section. We also compared the efficacy of our RNA assay using an established
DNA-based qPCR assay. Total RNA and DNA samples were isolated from these human sam-
ples, and detection of Leptospira was examined by real-time PCR analyses, as detailed in the
Materials and Methods section. Results indicated that, for 22 confirmed leptospirosis cases,
Leptospira RNA was detected in 14 samples, yielding a sensitivity of 64% (Table 1). In parallel,
an established qPCR assay for detection of leptospiral DNA form the corresponding human
samples, as described in the Materials and Methods, identified 7 positives, thereby reflecting a
significantly lower sensitivity (32%, p = 0.035) for the DNA detection assay compared to the
RNA detection assay. Of note, 2 of the 3 probable clinically suspected cases were found to have
detectable leptospiral RNA, whereas none of the probable cases had detectable DNA. As
expected, all blood samples obtained from the 24 control individuals failed to yield a positive
signal, suggesting a 100% specificity of our RNA-based assay.
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for various times (0—120 hours). Following storage, levels of 16S rRNA transcripts were measured using gRT-PCR assays. Data represent results from three
independent experiments. B) Transcript stability in the blood stored at various temperatures in the absence of any RNA stabilization agent. Spiked samples
were prepared as described above and stored either at room temperature or at various cold temperatures (4°C, -20°C, and -80°C) up to 14 days, and
transcript levels were monitored by gRT-PCR analyses. Transcript levels of “0 hour” were considered as 100%, which served as baseline controls, which
displayed significant differences in transcript levels in groups marked by an asterisk (ANOVA, p<0.05). Data represent results from three independent
experiments.

doi:10.1371/journal.pone.0128913.g004
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Table 1. Detection of leptospiral RNA by quantitative PCR in blood samples collected from humans with suspected leptospirosis.

Assay results

RNA and DNA PCR+
RNA PCR+ alone
DNA PCR+ alone
Total RNA PCR+
Total DNA PCR+

doi:10.1371/journal.pone.0128913.t001

Confirmed leptospirosis (N = 22) Probable leptospirosis (N = 3) Healthy Subjects (N = 24)
Number (%)

5 (23) 0 (0) 0 (0)

9 (41) 2 (67) 0 (0)

29 0 (0) 0 (0)

14 (64) 2 (67) 0 (0)

7 (32) 0 (0) 0 (0)

Discussion

As leptospirosis affects nearly a million people annually [8] and an efficient human vaccine is
unavailable, development of a better diagnosis test is critical for effectively treating patients
with leptospirosis. However, efficient detection of the infection is difficult to accomplish, pri-
marily due to the fact that pathogenic leptospires not only share features of both gram-positive
and gram-negative bacteria including other related spirochetes, clinical manifestation of the
infection also share features of many prevalent undifferentiated febrile illnesses, such as influ-
enza, dengue and malaria [37, 67-69]. Here, we report a use of leptospiral RNA as a diagnostic
target for development of a rapid, sensitive and specific quantitative PCR assay for detection of
human leptospirosis. While RNA-based diagnostic methods for detection of bacterial patho-
gens are uncommon, except for a few commercially-available assays for detection of certain
sexually transmitted bacterial infections [70-72], to the best of our knowledge, this is the first
example of an RNA-based diagnosis of human leptospirosis. Our discovery of the relative sta-
bility of 16S transcripts in untreated stored human blood samples indicate that the RNA-based
assay could be widely applied for the diagnosis of leptospirosis. Additionally, our results sug-
gest similar approaches can be employed to develop novel diagnostic tests for other bacterial
diseases.

Several serological immunoassays are available to date for detection of leptospirosis [8, 37],
however, diagnosis of human or animal infection is still inadequate, which is based on classical
microbiological methods. The gold standard method for such diagnosis is culture or micro-
scopic agglutination test (MAT), which are extremely slow procedures that also suffer from
sensitivity, especially for diagnosis of early infection. Newer diagnostic methods that allow
diagnosis of early infection at a relatively fast pace and facilitate initiation of prompt antibiotic
treatment could alleviate more severe complications of disseminated infection. As spirochete-
mia is likely to be associated with early infection, which occurs for at least two weeks following
initial infection, we hypothesized that the detection of nucleic acids with sequence specificity to
pathogenic Leptospira could surrogate an active infection. Such detection in turn would yield
high diagnostic efficiency if the transcripts or corresponding RNA fragments are abundant,
and remain stable, in stored blood. Unlike conventional genomic DNA molecules that mostly
represent a single copy per bacterial cell, or mRNA molecules, which constitute the minor pop-
ulation of total cellular RNA, ribosomal RNA molecules are likely to be abundant and thus
offer more promising diagnostic target. In particular 16S rRNA, due to its high expression, and
maintenance of species-specific sequences [65], has been widely used for taxonomic studies or
as a diagnostic target to identify a particular bacterial species. Interestingly, unlike other major
pathogenic spirochetes like Borrelia burgdorferi [73], L. interrogans genome houses at least two
copies of 16S rRNA genes also conserved in sequenced genomes of pathogenic leptospires [6,
52]. Thus, it is perhaps not surprising that compared to even abundantly and consistently-
expressed mRNA gene targets like lipL32 or flaB [51], our assay targeting 16S rRNA achieves
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better sensitivity that allow detection of low numbers of L. interrogans cell per milliliter of
spiked human blood. This is also a notable improvement in sensitivity, compared to existing
DNA-based PCRs where the limit of detection ranges from 10°~10° bacteria per milliliter of
blood or urine [8, 40-42]. Leptospiral 16S RNA molecules remain appreciably stable in the
blood, further highlighting their potential use in the diagnosis of early infection. We do not
know how 16S RNA molecules maintain notable stability in blood, however, this could be con-
tributed by the remarkable spirochete ability to remain viable in certain aqueous environment
ex vivo. In addition, existence of intact or fragmented 16S transcripts in the blood, or within
phagocytic cells that enable their detection, also remains as interesting possibilities.

Although diagnosis of microbial infection based on the detection of a target RNA molecule
offers multiple advantages, such as higher sensitivity and specificity, or potential indicator of
early and active infection, there are inherent limitations that influence successful development
of RNA PCR-based diagnostics. RNA molecules are generally less stable than other biomarkers
and their cellular abundance (and thus detection) are likely to be variable, which could also be
influenced by a number of additional factors. For example, efficiency of RNA detection
depends on successful reverse transcription or absence of intrinsic blood factors that inhibit
reverse transcription or subsequent PCR. In addition, transcript abundance may vary from
bacterial cell to population levels, growth stages, or environment. Thus, absolute quantitation
of microbial cells based on enumeration of RNA molecules might not be possible. Despite
these challenges, due to their outstanding abundance and specificity, as also highlighted in our
study, RNA targets are used in the diagnosis of a number of human infections, primarily the
ones caused by viruses [74-77] and in a limited number of cases, for detection of bacterial
infections, such as Mycobacteria species [78, 79], or Chlamydia trachomatis and Neisseria
gonorrhoeae [70-72]. To the best of our knowledge, the current study represents the first
attempt to use RNA detection to develop an improved diagnostic test for leptospirosis. Nota-
bly, 16S gene sequences were recently targeted for development of a DNA based real-time PCR
assay, denoted as rt-PCR [50], which used additional primers tagged with reporter dye and
quencher molecules called TagMan probes to enhance analytical specificity, however the assay
achieved overall clinical sensitivity of 34%. While our RNA assay yielded relatively superior
sensitivity, we also show that use of a simpler in-house platform like SYBR Green-based qPCR
assay could retain comparable specificities of TagMan-probe based PCR. Nevertheless, we rec-
ognize that our results need to be further validated for true sensitivity and specificity values
using additional studies involving larger numbers of patients, including ones from diverse epi-
demiological settings beyond hospitalized patients from Salvador, Brazil involved in the cur-
rent study.

Although currently overall sensitivity of our RNA assay is twice as high as parallel TagMan
probe-based DNA assays and yielded statistically significant differences, it detected leptospiral
RNA in 64% of the laboratory-confirmed cases. The exact reasons why our assay failed to yield
positivity in a subset of laboratory-confirmed samples, including two patients where DNA
assays are also positive, remained puzzling, however, could be linked to the effectiveness of
antimicrobial therapy influencing spirochetemia at the time of individual sample collection, or
unintended degradation of 16S RNA during less careful handling and storage conditions,
amongst other unknown possibilities. On the other hand, notably, our RNA assay detected
positivity in two human samples where routine laboratory diagnosis remained unconfirmed.
While this could be interpreted as potential loss of specificity, it also suggests enhanced sensi-
tivity of the RNA assay, especially in cases where pathogens are rapidly cleared before develop-
ment of detectable humoral immune responses. The latter speculation of greater sensitivity of
our assay is supported by its high (100%) specificity, where samples from normal humans
failed to yield positivity. Notably, an earlier study also reported positivity in clinical diagnosis
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of Leptospira by PCR and sequencing methods in a subset of clinical samples that are serologi-
cally negative using a standard MAT panel [39]. Nevertheless, while implementation of addi-
tional care towards sample collection and storage would further enhance sensitivity of our
RNA assay, use of a real-time PCR platform already has advantage over current serology-based
assays in terms of rapidity, allowing quicker diagnosis of early infection and prompt antimicro-
bial treatment, which could prevent more severe and life-threatening complication of dissemi-
nated infection. In addition to currently-adopted SYBR Green-based qPCR assay, our RNA
detection strategy is amenable to additional cheaper nucleic acid amplification methods, such
as Loop Mediated Isothermal Amplification (LAMP) reaction for detection of a variety of
human pathogens [80-87], including leptospirosis [88]. We also envision that future develop-
ment of more efficient 16S primers or PCR platforms as well as combinatorial use of multiple
gene targets could further improve the sensitivity and specificity of our assay. Therefore, our
study could have far-reaching implications for development of simple, cost-effective, and

rapid RNA-based PCR assays for detection of human leptospirosis as well as other bacteremic
human pathogens where efficient diagnosis of early or active infection is warranted yet remains
as an unmet need.

Supporting Information

S1 Fig. Alignment of 16S rRNA gene sequences from known leptospiral species and sero-
vars and other non-target bacterial species targeted by the primers. Nucleotide sequences
within the primer sequences of 16S rRNA genes from 37 Leptospira serovars, including all

20 known species, as well as non-target bacteria including other major pathogenic spirochetes,
were derived from NCBI nucleotide sequence databases and aligned using MegAlign (DNAS-
TAR software). Base pair mismatches between L. interrogans Fiocruz L1-130 and other species
are indicated by boxes.

(PDF)

S1 Table. Leptospira species and serovars used in the study.
(PDF)

$2 Table. Oligonucleotide primers used in the study.
(PDF)

Acknowledgments

This work was supported by funding from the National Institute of Allergy and Infectious Dis-
eases (Award Number AI114064-01 to AK, ML, and UP as well as A1052473, TW009504, and
AT088752 to AK, and 1R43AI114064-01 to L2 Diagnostics (AK, ML, UP co-PIs). JL is sup-
ported by 2014 ASTMH Gorgas Memorial Institute Research Award, 2014 Global Health
Equity Scholars Fellowship and Fiocruz-CNPq Ciencias Sem Fronteiras. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript. We sincerely thank Jin-hong Qin for her assistance with this study.

Author Contributions

Conceived and designed the experiments: AK ML UP. Performed the experiments: BB OB JL
EW SB MR. Analyzed the data: BB OB JL EW SB MR AK ML UP. Contributed reagents/mate-
rials/analysis tools: BB OB JL EW SB MR AK ML UP. Wrote the paper: BB OB JL EW SB MR
AK ML UP.

PLOS ONE | DOI:10.1371/journal.pone.0128913 June 19,2015 13/18


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0128913.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0128913.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0128913.s003

@’PLOS ‘ ONE

RNA-Based Detection of Pathogenic Leptospires

References

1.

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, Lovett MA, et al. Leptospirosis: a zoonotic dis-
ease of global importance. Lancet Infect Dis. 2003; 3(12):757—71. PMID: 14652202.

Ko Al, Galvao Reis M, Ribeiro Dourado CM, Johnson WD Jr, Riley LW. Urban epidemic of severe lepto-
spirosis in Brazil. Salvador Leptospirosis Study Group. Lancet. 1999; 354(9181):820-5. PMID:
10485724.

Ko Al, Goarant C, Picardeau M. Leptospira: the dawn of the molecular genetics era for an emerging
zoonotic pathogen. Nat Rev Microbiol. 2009; 7(10):736—47. doi: nrmicro2208 [piildoi: 10.1038/
nrmicro2208 PMID: 19756012.

Levett PN. Leptospirosis. Clin Microbiol Rev. 2001; 14(2):296—326. doi: 10.1128/CMR.14.2.296-326.
2001 PMID: 11292640.

McBride AJ, Athanazio DA, Reis MG, Ko Al. Leptospirosis. Curr Opin Infect Dis. 2005; 18(5):376—86.
PMID: 16148523.

Ren SX, Fu G, Jiang XG, Zeng R, Miao YG, Xu H, et al. Unique physiological and pathogenic features
of Leptospira interrogans revealed by whole-genome sequencing. Nature. 2003; 422(6934):888-93.
doi: 10.1038/nature01597 nature01597 [pii]. PMID: 12712204.

Vinetz JM, Glass GE, Flexner CE, Mueller P, Kaslow DC. Sporadic urban leptospirosis. Ann Intern
Med. 1996; 125(10):794-8. PMID: 8928985.

Picardeau M, Bertherat E, Jancloes M, Skouloudis AN, Durski K, Hartskeerl RA. Rapid tests for diagno-
sis of leptospirosis: current tools and emerging technologies. Diagn Microbiol Infect Dis. 2014; 78(1):1—
8. doi: 10.1016/j.diagmicrobio.2013.09.012 PMID: 24207075.

Lacerda HG, Monteiro GR, Oliveira CC, Suassuna FB, Queiroz JW, Barbosa JD, et al. Leptospirosis in
a subsistence farming community in Brazil. Trans R Soc Trop Med Hyg. 2008; 102(12):1233-8. doi: 10.
1016/j.trstmh.2008.05.010 PMID: 18599101.

Sethi S, Sharma N, Kakkar N, Taneja J, Chatterjee SS, Banga SS, et al. Increasing trends of leptospiro-
sis in northern India: a clinico-epidemiological study. PLoS Negl Trop Dis. 2010; 4(1):e579. doi: 10.
1371/journal.pntd.0000579 PMID: 20084097.

Johnson MA, Smith H, Joeph P, Gilman RH, Bautista CT, Campos KJ, et al. Environmental exposure
and leptospirosis, Peru. Emerg Infect Dis. 2004; 10(6):1016—22. doi: 10.3201/eid1006.030660 PMID:
15207052.

Karande S, Gandhi D, Kulkarni M, Bharadwaj R, Pol S, Thakare J, et al. Concurrent outbreak of lepto-
spirosis and dengue in Mumbai, India, 2002. J Trop Pediatr. 2005; 51(3):174-81. doi: 10.1093/tropej/
fmh100 PMID: 15831670.

Reis RB, Ribeiro GS, Felzemburgh RD, Santana FS, Mohr S, Melendez AX, et al. Impact of environ-
ment and social gradient on Leptospira infection in urban slums. PLoS Negl Trop Dis s. 2008; 2(4):
€228. doi: 10.1371/journal.pntd.0000228 PMID: 18431445.

Stern EJ, Galloway R, Shadomy SV, Wannemuehler K, Atrubin D, Blackmore C, et al. Outbreak of lep-
tospirosis among Adventure Race participants in Florida, 2005. Clin Infect Dis. 2010; 50(6):843-9. doi:
10.1086/650578 PMID: 20146629.

Morgan J, Bornstein SL, Karpati AM, Bruce M, Bolin CA, Austin CC, et al. Outbreak of leptospirosis
among triathlon participants and community residents in Springfield, lllinois, 1998. Clin Infect Dis. 2002;
34(12):1593-9. doi: 10.1086/340615 PMID: 12032894,

Jackson LA, Kaufmann AF, Adams WG, Phelps MB, Andreasen C, Langkop CW, et al. Outbreak of lep-
tospirosis associated with swimming. Pediatr Infect Dis J. 1993; 12(1):48-54. PMID: 8417426.

Gale NB, Alexander AD, Evans LB, Yager RH, Matheney RG. An outbreak of leptospirosis among U. S.
army troops in the Canal Zone. Am J Trop Med Hyg. 1966; 15(1):64—70. PMID: 5902111.

Lettieri C, Moon J, Hickey P, Gray M, Berg B, Hospenthal D. Prevalence of leptospira antibodies in U.S.
Army blood bank donors in Hawaii. Mil Med. 2004; 169(9):687-90. PMID: 15495719.

Corwin A, Ryan A, Bloys W, Thomas R, Deniega B, Watts D. A waterborne outbreak of leptospirosis
among United States military personnel in Okinawa, Japan. Int J Epidemiol. 1990; 19(3):743-8. PMID:
2262273.

Leshem E, Segal G, Barnea A, Yitzhaki S, Ostfeld I, Pitlik S, et al. Travel-related leptospirosis in Israel:
a nationwide study. Am J Trop Med Hyg. 2010; 82(3):459-63. doi: 10.4269/ajtmh.2010.09-0239 PMID:
20207873.

van Crevel R, Speelman P, Gravekamp C, Terpstra WJ. Leptospirosis in travelers. Clin Infect Dis.
1994; 19(1):132—4. Epub 1994/07/01. PMID: 7948513.

Thiermann AB, Frank RR. Human leptospirosis in Detroit and the role of rats as chronic carriers. Int J
Zoonoses. 1980; 7(1):62—72. PMID: 7461920.

PLOS ONE | DOI:10.1371/journal.pone.0128913 June 19,2015 14/18


http://www.ncbi.nlm.nih.gov/pubmed/14652202
http://www.ncbi.nlm.nih.gov/pubmed/10485724
http://dx.doi.org/10.1038/nrmicro2208
http://dx.doi.org/10.1038/nrmicro2208
http://www.ncbi.nlm.nih.gov/pubmed/19756012
http://dx.doi.org/10.1128/CMR.14.2.296&ndash;326.2001
http://dx.doi.org/10.1128/CMR.14.2.296&ndash;326.2001
http://www.ncbi.nlm.nih.gov/pubmed/11292640
http://www.ncbi.nlm.nih.gov/pubmed/16148523
http://dx.doi.org/10.1038/nature01597
http://www.ncbi.nlm.nih.gov/pubmed/12712204
http://www.ncbi.nlm.nih.gov/pubmed/8928985
http://dx.doi.org/10.1016/j.diagmicrobio.2013.09.012
http://www.ncbi.nlm.nih.gov/pubmed/24207075
http://dx.doi.org/10.1016/j.trstmh.2008.05.010
http://dx.doi.org/10.1016/j.trstmh.2008.05.010
http://www.ncbi.nlm.nih.gov/pubmed/18599101
http://dx.doi.org/10.1371/journal.pntd.0000579
http://dx.doi.org/10.1371/journal.pntd.0000579
http://www.ncbi.nlm.nih.gov/pubmed/20084097
http://dx.doi.org/10.3201/eid1006.030660
http://www.ncbi.nlm.nih.gov/pubmed/15207052
http://dx.doi.org/10.1093/tropej/fmh100
http://dx.doi.org/10.1093/tropej/fmh100
http://www.ncbi.nlm.nih.gov/pubmed/15831670
http://dx.doi.org/10.1371/journal.pntd.0000228
http://www.ncbi.nlm.nih.gov/pubmed/18431445
http://dx.doi.org/10.1086/650578
http://www.ncbi.nlm.nih.gov/pubmed/20146629
http://dx.doi.org/10.1086/340615
http://www.ncbi.nlm.nih.gov/pubmed/12032894
http://www.ncbi.nlm.nih.gov/pubmed/8417426
http://www.ncbi.nlm.nih.gov/pubmed/5902111
http://www.ncbi.nlm.nih.gov/pubmed/15495719
http://www.ncbi.nlm.nih.gov/pubmed/2262273
http://dx.doi.org/10.4269/ajtmh.2010.09&ndash;0239
http://www.ncbi.nlm.nih.gov/pubmed/20207873
http://www.ncbi.nlm.nih.gov/pubmed/7948513
http://www.ncbi.nlm.nih.gov/pubmed/7461920

@’PLOS ‘ ONE

RNA-Based Detection of Pathogenic Leptospires

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

Dufour B, Moutou F, Hattenberger AM, Rodhain F. Global change: impact, management, risk approach
and health measures—the case of Europe. Rev Sci Tech. 2008; 27(2):529-50. PMID: 18819676.

Storck CH, Postic D, Lamaury |, Perez JM. Changes in epidemiology of leptospirosis in 2003—2004, a
two EI Nino Southern Oscillation period, Guadeloupe archipelago, French West Indies. Epidemiol
Infect. 2008; 136(10):1407-15. doi: 10.1017/S0950268807000052 PMID: 18096102.

Lau CL, Smythe LD, Craig SB, Weinstein P. Climate change, flooding, urbanisation and leptospirosis:
fuelling the fire? Trans R Soc Trop Med Hyg. 2010; 104(10):631-8. doi: 10.1016/j.trstmh.2010.07.002
PMID: 20813388.

Hellstrom JS, Marshall RB. Survival of Leptospira interrogans serovar pomona in an acidic soil under
simulated New Zealand field conditions. Res Vet Sci. 1978; 25(1):29-33. Epub 1978/07/01. PMID:
30123.

Trueba G, Zapata S, Madrid K, Cullen P, Haake D. Cell aggregation: a mechanism of pathogenic Lep-
tospira to survive in fresh water. Int Microbiol. 2004; 7(1):35—-40. PMID: 15179605.

Adler B, de la Pena Moctezuma A. Leptospira and leptospirosis. Vet Microbiol. 2010; 140(3—4):287-96.
doi: S0378-1135(09)00116-3 [pii]doi: 10.1016/j.vetmic.2009.03.012 PMID: 19345023.

Coutinho ML, Matsunaga J, Wang LC, de la Pena Moctezuma A, Lewis MS, Babbitt JT, et al. Kinetics
of Leptospira interrogans Infection in Hamsters after Intradermal and Subcutaneous Challenge. PLoS
Negl Trop Dis. 2014; 8(11):e3307. doi: 10.1371/journal.pntd.0003307 PMID: 25411782,

Gouveia EL, Metcalfe J, de Carvalho AL, Aires TS, Villasboas-Bisneto JC, Queirroz A, et al. Leptospiro-
sis-associated severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis. 2008; 14
(3):505-8. doi: 10.3201/eid1403.071064 PMID: 18325275.

Lourdault K, Wang LC, Vieira A, Matsunaga J, Melo R, Lewis MS, et al. Oral immunization with Escheri-
chia coli expressing a lipidated form of LigA protects hamsters against challenge with Leptospira inter-
rogans serovar Copenhageni. Infect Immun. 2014; 82(2):893-902. doi: 10.1128/IA1.01533-13 PMID:
24478102.

Zuerner RL, Alt DP, Palmer MV, Thacker TC, Olsen SC. A Leptospira borgpetersenii serovar Hardjo
vaccine induces a Th1 response, activates NK cells, and reduces renal colonization. Clin Vaccine
Immunol. 2011; 18(4):684—91. doi: 10.1128/CVI1.00288-10 PMID: 21288995.

Cao Y, Faisal SM, Yan W, Chang YC, McDonough SP, Zhang N, et al. Evaluation of novel fusion pro-
teins derived from extracellular matrix binding domains of LigB as vaccine candidates against leptospi-
rosis in a hamster model. Vaccine. 2011; 29(43):7379-86. doi: 10.1016/j.vaccine.2011.07.070 PMID:
21803087.

Bolin CA, Cassells JA, Zuerner RL, Trueba G. Effect of vaccination with a monovalent Leptospira inter-
rogans serovar hardjo type hardjo-bovis vaccine on type hardjo-bovis infection of cattle. Am J Vet Res.
1991; 52(10):1639-43. PMID: 1767985.

Koizumi N, Watanabe H. Leptospirosis vaccines: past, present, and future. J Postgrad Med. 2005; 51
(3):210—4. PMID: 16333195.

Flannery B, Costa D, Carvalho FP, Guerreiro H, Matsunaga J, Da Silva ED, et al. Evaluation of recom-
binant Leptospira antigen-based enzyme-linked immunosorbent assays for the serodiagnosis of lepto-
spirosis. J Clin Microbiol. 2001; 39(9):3303—-10. PMID: 11526167.

Musso D, La Scola B. Laboratory diagnosis of leptospirosis: a challenge. J Microbiol Immunol Infect.
2013; 46(4):245-52. doi: 10.1016/j.jmii.2013.03.001 PMID: 23639380.

Boonsilp S, Thaipadungpanit J, Amornchai P, Wuthiekanun V, Chierakul W, Limmathurotsakul D, et al.
Molecular detection and speciation of pathogenic Leptospira spp. in blood from patients with culture-
negative leptospirosis. BMC Infect Dis. 2011; 11:338. doi: 10.1186/1471-2334-11-338 PMID:
22151687.

Agampodi SB, Matthias MA, Moreno AC, Vinetz JM. Utility of quantitative polymerase chain reaction in
leptospirosis diagnosis: association of level of leptospiremia and clinical manifestations in Sri Lanka.
Clin Infect Dis. 2012; 54(9):1249-55. doi: 10.1093/cid/cis035 PMID: 22354922.

Bourhy P, Bremont S, Zinini F, Giry C, Picardeau M. Comparison of real-time PCR assays for detection
of pathogenic Leptospira spp. in blood and identification of variations in target sequences. J Clin Micro-
biol. 2011; 49(6):2154—60. doi: 10.1128/JCM.02452-10 PMID: 21471336.

Slack AT, Symonds ML, Dohnt MF, Smythe LD. Identification of pathogenic Leptospira species by con-
ventional or real-time PCR and sequencing of the DNA gyrase subunit B encoding gene. BMC Micro-
biol. 2006; 6:95. doi: 10.1186/1471-2180-6-95 PMID: 17067399.

Smythe LD, Smith IL, Smith GA, Dohnt MF, Symonds ML, Barnett LJ, et al. A quantitative PCR (Tag-
Man) assay for pathogenic Leptospira spp. BMC Infect Dis. 2002; 2:13. PMID: 12100734.

PLOS ONE | DOI:10.1371/journal.pone.0128913 June 19,2015 15/18


http://www.ncbi.nlm.nih.gov/pubmed/18819676
http://dx.doi.org/10.1017/S0950268807000052
http://www.ncbi.nlm.nih.gov/pubmed/18096102
http://dx.doi.org/10.1016/j.trstmh.2010.07.002
http://www.ncbi.nlm.nih.gov/pubmed/20813388
http://www.ncbi.nlm.nih.gov/pubmed/30123
http://www.ncbi.nlm.nih.gov/pubmed/15179605
http://dx.doi.org/10.1016/j.vetmic.2009.03.012
http://www.ncbi.nlm.nih.gov/pubmed/19345023
http://dx.doi.org/10.1371/journal.pntd.0003307
http://www.ncbi.nlm.nih.gov/pubmed/25411782
http://dx.doi.org/10.3201/eid1403.071064
http://www.ncbi.nlm.nih.gov/pubmed/18325275
http://dx.doi.org/10.1128/IAI.01533-13
http://www.ncbi.nlm.nih.gov/pubmed/24478102
http://dx.doi.org/10.1128/CVI.00288-10
http://www.ncbi.nlm.nih.gov/pubmed/21288995
http://dx.doi.org/10.1016/j.vaccine.2011.07.070
http://www.ncbi.nlm.nih.gov/pubmed/21803087
http://www.ncbi.nlm.nih.gov/pubmed/1767985
http://www.ncbi.nlm.nih.gov/pubmed/16333195
http://www.ncbi.nlm.nih.gov/pubmed/11526167
http://dx.doi.org/10.1016/j.jmii.2013.03.001
http://www.ncbi.nlm.nih.gov/pubmed/23639380
http://dx.doi.org/10.1186/1471-2334-11-338
http://www.ncbi.nlm.nih.gov/pubmed/22151687
http://dx.doi.org/10.1093/cid/cis035
http://www.ncbi.nlm.nih.gov/pubmed/22354922
http://dx.doi.org/10.1128/JCM.02452-10
http://www.ncbi.nlm.nih.gov/pubmed/21471336
http://dx.doi.org/10.1186/1471-2180-6-95
http://www.ncbi.nlm.nih.gov/pubmed/17067399
http://www.ncbi.nlm.nih.gov/pubmed/12100734

@’PLOS ‘ ONE

RNA-Based Detection of Pathogenic Leptospires

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Natarajaseenivasan K, Raja V, Narayanan R. Rapid diagnosis of leptospirosis in patients with different
clinical manifestations by 16S rRNA gene based nested PCR. Saudi J Biol Sci. 2012; 19(2):151-5. doi:
10.1016/j.sjbs.2011.11.005 PMID: 23961174.

Ahmed A, Engelberts MF, Boer KR, Ahmed N, Hartskeerl RA. Development and validation of a real-
time PCR for detectOon of pathogenic Leptospira species in clinical materials. PloS One. 2009; 4(9):
€7093. doi: 10.1371/journal.pone.0007093 PMID: 19763264.

Ahmed A, van der Linden H, Hartskeerl RA. Development of a recombinase polymerase amplification
assay for the detection of pathogenic Leptospira. Int J Environ Res Public Health. 2014; 11(5):4953—
64. doi: 10.3390/ijerph110504953 PMID: 24814943.

Ferreira AS, Costa P, Rocha T, Amaro A, Vieira ML, Ahmed A, et al. Direct detection and differentiation
of pathogenic Leptospira species using a multi-gene targeted real time PCR approach. PloS One.
2014;9(11):e112312. Epub 2014/11/15. doi: 10.1371/journal.pone.0112312 PMID: 25398140.

Goarant C, Bourhy P, D'Ortenzio E, Dartevelle S, Mauron C, Soupe-Gilbert ME, et al. Sensitivity and
Specificity of a New Vertical Flow Rapid Diagnostic Test for the Serodiagnosis of Human Leptospirosis.
PLoS Negl Trop Dis. 2013; 7(6):€2289. doi: 10.1371/journal.pntd.0002289 PMID: 23826401

Goarant C, Laumond-Barny S, Perez J, Vernel-Pauillac F, Chanteau S, Guigon A. Outbreak of leptospi-
rosis in New Caledonia: diagnosis issues and burden of disease. Trop Med Int Health. 2009; 14
(8):926—9. doi: 10.1111/1.1365-3156.2009.02310.x PMID: 19552660.

Perez J, Goarant C. Rapid Leptospira identification by direct sequencing of the diagnostic PCR prod-
ucts in New Caledonia. BMC Microbiol. 2010; 10:325. doi: 10.1186/1471-2180-10-325 PMID:
21176235.

Waggoner JJ, Balassiano |, Abeynayake J, Sahoo MK, Mohamed-Hadley A, Liu Y, et al. Sensitive
Real-Time PCR Detection of Pathogenic Leptospira spp. and a Comparison of Nucleic Acid Amplifica-
tion Methods for the Diagnosis of Leptospirosis. PloS One. 2014; 9(11):e112356. doi: 10.1371/journal.
pone.0112356 PMID: 25379890.

Matsui M, Soupe ME, Becam J, Goarant C. Differential in vivo gene expression of major Leptospira pro-
teins in resistant or susceptible animal models. Appl Environ Microbiol. 2012; 78(17):6372—6. doi: 10.
1128/AEM.00911-12 PMID: 22729538.

Nascimento AL, Ko Al, Martins EA, Monteiro-Vitorello CB, Ho PL, Haake DA, et al. Comparative geno-
mics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J
Bacteriol. 2004; 186(7):2164—72. PMID: 15028702.

Tucunduva de Faria M, Athanazio DA, Goncalves Ramos EA, Silva EF, Reis MG, Ko Al. Morphological
alterations in the kidney of rats with natural and experimental Leptospira infection. J Comp Pathol.
2007; 137(4):231-8. doi: 10.1016/j.jcpa.2007.08.001 PMID: 17996544.

Ricaldi JN, Fouts DE, Selengut JD, Harkins DM, Patra KP, Moreno A, et al. Whole genome analysis of
Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity. PLoS Negl Trop Dis.
2012; 6(10):e1853. doi: 10.1371/journal.pntd.0001853 PMID: 23145189.

Ellinghausen HC Jr., McCullough WG. Nutrition of Leptospira Pomona and Growth of 13 Other Sero-
types: Fractionation of Oleic Albumin Complex and a Medium of Bovine Albumin and Polysorbate 80.
Am J Vet Res. 1965; 26:45-51. PMID: 14266934.

Noubade R, Krishnamurthy GV, Murag S, Venkatesha MD, Krishnappa G. Differentiation of pathogenic
and saprophytic leptospires by polymerase chain reaction. Indian J Med Microbiol. 2002; 20(1):33-6.
PMID: 17657021.

Raz A, Talay SR, Fischetti VA. Cellular aspects of the distinct M protein and Sfbl anchoring pathways in
Streptococcus pyogenes. Mol Microbiol. 2012; 84(4):631-47. doi: 10.1111/j.1365-2958.2012.08047 .x
PMID: 22512736;.

Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K, et al. Clonal polymorphism of Borrelia
burgdorteri strain B31 MI: implications for mutagenesis in an infectious strain background. Infect
Immun. 2002; 70(4):2139-50. PMID: 11895980.

Lessa-Aquino C, Borges Rodrigues C, Pablo J, Sasaki R, Jasinskas A, Liang L, et al. Identification of
seroreactive proteins of Leptospira interrogans serovar copenhageni using a high-density protein
microarray approach. PLoS Negl Trop Dis. 2013; 7(10):e2499. doi: 10.1371/journal.pntd.0002499
PMID: 24147173.

Promnares K, Kumar M, Shroder DY, Zhang X, Anderson JF, Pal U. Borrelia burgdorferi small lipopro-
tein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen
transmission from ticks to mice. Mol Microbiol. 2009; 74(1):112-25. doi: 10.1111/}.1365-2958.2009.
06853.x PMID: 197031009.

Yang X, Coleman AS, Anguita J, Pal U. A chromosomally encoded virulence factor protects the Lyme
disease pathogen against host-adaptive immunity. PLoS Pathogens. 2009; 5(3):e1000326. Epub

PLOS ONE | DOI:10.1371/journal.pone.0128913 June 19,2015 16/18


http://dx.doi.org/10.1016/j.sjbs.2011.11.005
http://www.ncbi.nlm.nih.gov/pubmed/23961174
http://dx.doi.org/10.1371/journal.pone.0007093
http://www.ncbi.nlm.nih.gov/pubmed/19763264
http://dx.doi.org/10.3390/ijerph110504953
http://www.ncbi.nlm.nih.gov/pubmed/24814943
http://dx.doi.org/10.1371/journal.pone.0112312
http://www.ncbi.nlm.nih.gov/pubmed/25398140
http://dx.doi.org/10.1371/journal.pntd.0002289
http://www.ncbi.nlm.nih.gov/pubmed/23826401
http://dx.doi.org/10.1111/j.1365-3156.2009.02310.x
http://www.ncbi.nlm.nih.gov/pubmed/19552660
http://dx.doi.org/10.1186/1471-2180-10-325
http://www.ncbi.nlm.nih.gov/pubmed/21176235
http://dx.doi.org/10.1371/journal.pone.0112356
http://dx.doi.org/10.1371/journal.pone.0112356
http://www.ncbi.nlm.nih.gov/pubmed/25379890
http://dx.doi.org/10.1128/AEM.00911-12
http://dx.doi.org/10.1128/AEM.00911-12
http://www.ncbi.nlm.nih.gov/pubmed/22729538
http://www.ncbi.nlm.nih.gov/pubmed/15028702
http://dx.doi.org/10.1016/j.jcpa.2007.08.001
http://www.ncbi.nlm.nih.gov/pubmed/17996544
http://dx.doi.org/10.1371/journal.pntd.0001853
http://www.ncbi.nlm.nih.gov/pubmed/23145189
http://www.ncbi.nlm.nih.gov/pubmed/14266934
http://www.ncbi.nlm.nih.gov/pubmed/17657021
http://dx.doi.org/10.1111/j.1365-2958.2012.08047.x
http://www.ncbi.nlm.nih.gov/pubmed/22512736
http://www.ncbi.nlm.nih.gov/pubmed/11895980
http://dx.doi.org/10.1371/journal.pntd.0002499
http://www.ncbi.nlm.nih.gov/pubmed/24147173
http://dx.doi.org/10.1111/j.1365-2958.2009.06853.x
http://dx.doi.org/10.1111/j.1365-2958.2009.06853.x
http://www.ncbi.nlm.nih.gov/pubmed/19703109

@’PLOS ‘ ONE

RNA-Based Detection of Pathogenic Leptospires

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

2009/03/07. doi: 10.1371/journal.ppat.1000326 PMID: 19266024; PubMed Central PMCID:
PMC2644780.

Reller ME, Wunder EA Jr., Miles JJ, Flom JE, Mayorga O, Woods CW, et al. Unsuspected leptospirosis
is a cause of acute febrile iliness in Nicaragua. PLoS Negl Trop Dis. 2014; 8(7):€2941. doi: 10.1371/
journal.pntd.0002941 PMID: 25058149.

Stoddard RA, Gee JE, Wilkins PP, McCaustland K, Hoffmaster AR. Detection of pathogenic Leptospira
spp. through TagMan polymerase chain reaction targeting the LipL32 gene. Diagn Microbiol Infect Dis.
2009; 64(3):247-55. doi: 10.1016/j.diagmicrobio.2009.03.014 PMID: 19395218.

Arikawa E, Sun 'Y, Wang J, Zhou Q, Ning B, Dial SL, et al. Cross-platform comparison of SYBR Green
real-time PCR with TagMan PCR, microarrays and other gene expression measurement technologies
evaluated in the MicroArray Quality Control (MAQC) study. BMC Genomics. 2008; 9:328. doi: 10.1186/
1471-2164-9-328 PMID: 18620571.

Clarridge JE 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical
microbiology and infectious diseases. Clin Microbiol Rev. 2004; 17(4):840-62, table of contents. doi:
10.1128/CMR.17.4.840-862.2004 PMID: 15489351.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR
and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402—8. PMID: 11846609.

Bruce MG, Sanders EJ, Leake JA, Zaidel O, Bragg SL, Aye T, et al. Leptospirosis among patients pre-
senting with dengue-like iliness in Puerto Rico. Acta Trop. 2005; 96(1):36—46. Epub 2005/08/09. doi:
10.1016/j.actatropica.2005.07.001 PMID: 16083836.

Biggs HM, Galloway RL, Bui DM, Morrissey AB, Maro VP, Crump JA. Leptospirosis and human immu-
nodeficiency virus co-infection among febrile inpatients in northern Tanzania. Vector Borne Zoonotic
Dis. 2013; 13(8):572—80. doi: 10.1089/vbz.2012.1205 PMID: 23663165.

Biggs HM, Bui DM, Galloway RL, Stoddard RA, Shadomy SV, Morrissey AB, et al. Leptospirosis
among hospitalized febrile patients in northern Tanzania. Am J Trop Med Hyg. 2011; 85(2):275-81.
doi: 10.4269/ajtmh.2011.11-0176 PMID: 21813847.

Chong S, Jang D, Song X, Mahony J, Petrich A, Barriga P, et al. Specimen processing and concentra-
tion of Chlamydia trachomatis added can influence false-negative rates in the LCx assay but not in the
APTIMA Combo 2 assay when testing for inhibitors. J Clin Microbiol. 2003; 41(2):778-82. Epub 2003/
02/08. PMID: 12574282; PubMed Central PMCID: PMC149658.

Lowe P, O'Loughlin P, Evans K, White M, Bartley PB, Vohra R. Comparison of the Gen-Probe APTIMA
Combo 2 assay to the AMPLICOR CT/NG assay for detection of Chlamydia trachomatis and Neisseria
gonorrhoeae in urine samples from Australian men and women. J Clin Microbiol. 2006; 44(7):2619-21.
doi: 10.1128/JCM.00476-06 PMID: 16825397.

Cheng A, Kirby JE. Evaluation of the Hologic gen-probe PANTHER, APTIMA Combo 2 assay in a ter-
tiary care teaching hospital. Am J Clin Pathol. 2014; 141(3):397-403. doi: 10.1309/
AJCPFQ25SQVZAWHZ PMID: 24515768.

Bugrysheva JV, Godfrey HP, Schwartz |, Cabello FC. Patterns and regulation of ribosomal RNA tran-
scription in Borrelia burgdorferi. BMC Microbiol. 2011; 11:17. doi: 10.1186/1471-2180-11-17 PMID:
21251259.

Zhu Z,FanH, Qi X, Qi Y, Shi Z, Wang H, et al. Development and evaluation of a SYBR green-based
real time RT-PCR assay for detection of the emerging avian influenza A (H7N9) virus. PloS One. 2013;
8(11):e80028. doi: 10.1371/journal.pone.0080028 PMID: 24278234.

Paulino LC, de Mello MP, Ottoboni LM. Differential gene expression in response to copper in Acidithio-
bacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction. Electrophoresis.
2002; 23(4):520-7. doi: 10.1002/1522-2683(200202)23:4<520::AlD-ELPS520>3.0.CO;2-R PMID:
11870759.

Jiang W, Yu HT, Zhao K, Zhang Y, Du H, Wang PZ, et al. Quantification of Hantaan virus with a SYBR
green |-based one-step qRT-PCR assay. PloS One. 2013; 8(11):e81525. doi: 10.1371/journal.pone.
0081525 PMID: 24278449.

Maquart M, Temmam S, Heraud JM, Leparc-Goffart |, Cetre-Sossah C, Dellagi K, et al. Development of
real-time RT-PCR for the detection of low concentrations of Rift Valley fever virus. J Virol Methods.
2014; 195:92-9. doi: 10.1016/j.jviromet.2013.10.001 PMID: 24120571.

Beissner M, Symank D, Phillips RO, Amoako YA, Awua-Boateng NY, Sarfo FS, et al. Detection of via-
ble Mycobacterium ulcerans in clinical samples by a novel combined 16S rRNA reverse transcriptase/
I1S2404 real-time qPCR assay. PLoS Negl Trop Dis. 2012; 6(8):e1756. doi: 10.1371/journal.pntd.
0001756 PMID: 22953006.

Jiang LJ, Wu WJ, Wu H, Ryang SS, Zhou J, Wu W, et al. Rapid detection and monitoring therapeutic
efficacy of Mycobacterium tuberculosis complex using a novel real-time assay. J Microbiol Biotechnol.
2012;22(9):1301-6. PMID: 22814507.

PLOS ONE | DOI:10.1371/journal.pone.0128913 June 19,2015 17/18


http://dx.doi.org/10.1371/journal.ppat.1000326
http://www.ncbi.nlm.nih.gov/pubmed/19266024
http://dx.doi.org/10.1371/journal.pntd.0002941
http://dx.doi.org/10.1371/journal.pntd.0002941
http://www.ncbi.nlm.nih.gov/pubmed/25058149
http://dx.doi.org/10.1016/j.diagmicrobio.2009.03.014
http://www.ncbi.nlm.nih.gov/pubmed/19395218
http://dx.doi.org/10.1186/1471-2164-9-328
http://dx.doi.org/10.1186/1471-2164-9-328
http://www.ncbi.nlm.nih.gov/pubmed/18620571
http://dx.doi.org/10.1128/CMR.17.4.840&ndash;862.2004
http://www.ncbi.nlm.nih.gov/pubmed/15489351
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://dx.doi.org/10.1016/j.actatropica.2005.07.001
http://www.ncbi.nlm.nih.gov/pubmed/16083836
http://dx.doi.org/10.1089/vbz.2012.1205
http://www.ncbi.nlm.nih.gov/pubmed/23663165
http://dx.doi.org/10.4269/ajtmh.2011.11&ndash;0176
http://www.ncbi.nlm.nih.gov/pubmed/21813847
http://www.ncbi.nlm.nih.gov/pubmed/12574282
http://dx.doi.org/10.1128/JCM.00476-06
http://www.ncbi.nlm.nih.gov/pubmed/16825397
http://dx.doi.org/10.1309/AJCPFQ25SQVZAWHZ
http://dx.doi.org/10.1309/AJCPFQ25SQVZAWHZ
http://www.ncbi.nlm.nih.gov/pubmed/24515768
http://dx.doi.org/10.1186/1471-2180-11-17
http://www.ncbi.nlm.nih.gov/pubmed/21251259
http://dx.doi.org/10.1371/journal.pone.0080028
http://www.ncbi.nlm.nih.gov/pubmed/24278234
http://dx.doi.org/10.1002/1522-2683(200202)23:4&lt;520::AID-ELPS520&gt;3.0.CO;2-R
http://www.ncbi.nlm.nih.gov/pubmed/11870759
http://dx.doi.org/10.1371/journal.pone.0081525
http://dx.doi.org/10.1371/journal.pone.0081525
http://www.ncbi.nlm.nih.gov/pubmed/24278449
http://dx.doi.org/10.1016/j.jviromet.2013.10.001
http://www.ncbi.nlm.nih.gov/pubmed/24120571
http://dx.doi.org/10.1371/journal.pntd.0001756
http://dx.doi.org/10.1371/journal.pntd.0001756
http://www.ncbi.nlm.nih.gov/pubmed/22953006
http://www.ncbi.nlm.nih.gov/pubmed/22814507

@’PLOS ‘ ONE

RNA-Based Detection of Pathogenic Leptospires

80.

81.

82.

83.

84.

85.

86.

87.

88.

Imai M, Ninomiya A, Minekawa H, Notomi T, Ishizaki T, Van Tu P, et al. Rapid diagnosis of H5N1 avian
influenza virus infection by newly developed influenza H5 hemagglutinin gene-specific loop-mediated
isothermal amplification method. J Virol Methods. 2007; 141(2):173-80. doi: 10.1016/j.jviromet.2006.
12.004 PMID: 17218021.

Jayawardena S, Cheung CY, Barr I, Chan KH, Chen H, Guan Y, et al. Loop-mediated isothermal ampli-
fication for influenza A (H5N1) virus. Emerg Infect Dis. 2007; 13(6):899-901. doi: 10.3201/eid1306.
061572 PMID: 17553231.

PanL, ZhangL, Wang G, LiuQ, YuY, Wang S, et al. Rapid, simple, and sensitive detection of Ana-
plasma phagocytophilum by loop-mediated isothermal amplification of the msp2 gene. J Clin Microbiol.
2011; 49(12):4117-20. doi: 10.1128/JCM.01085-11 PMID: 21976758.

Curtis KA, Niedzwiedz PL, Youngpairoj AS, Rudolph DL, Owen SM. Real-Time Detection of HIV-2 by
Reverse Transcription-Loop-Mediated Isothermal Amplification. J Clin Microbiol. 2014; 52(7):2674—6.
doi: 10.1128/JCM.00935-14 PMID: 24789187.

Zhang G, Brown EW, Gonzalez-Escalona N. Comparison of real-time PCR, reverse transcriptase real-
time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method
for the detection of Salmonella spp. in produce. Appl Environ Microbiol. 2011; 77(18):6495-501. Epub
2011/08/02. doi: 10.1128/AEM.00520-11 PMID: 21803916.

Parida M, Posadas G, Inoue S, Hasebe F, Morita K. Real-time reverse transcription loop-mediated iso-
thermal amplification for rapid detection of West Nile virus. J Clin Microbiol. 2004; 42(1):257-63. PMID:
14715762.

Patel JC, Lucchi NW, Srivastava P, Lin JT, Sug-Aram R, Aruncharus S, et al. Field evaluation of a real-
time fluorescence loop-mediated isothermal amplification assay, RealAmp, for the diagnosis of malaria
in Thailand and India. J Infect Dis. 2014; 210(8):1180-7. doi: 10.1093/infdis/jiu252 PMID: 24795480.

Lucchi NW, Demas A, Narayanan J, Sumari D, Kabanywanyi A, Kachur SP, et al. Real-time fluores-
cence loop mediated isothermal amplification for the diagnosis of malaria. PloS One. 2010; 5(10):
e€13733. doi: 10.1371/journal.pone.0013733 PMID: 21060829.

Sonthayanon P, Chierakul W, Wuthiekanun V, Thaipadungpanit J, Kalambaheti T, Boonsilp S, et al.
Accuracy of loop-mediated isothermal amplification for diagnosis of human leptospirosis in Thailand.
Am J Trop Med Hyg. 2011; 84(4):614—20. doi: 10.4269/ajtmh.2011.10-0473 PMID: 21460019.

PLOS ONE | DOI:10.1371/journal.pone.0128913 June 19,2015 18/18


http://dx.doi.org/10.1016/j.jviromet.2006.12.004
http://dx.doi.org/10.1016/j.jviromet.2006.12.004
http://www.ncbi.nlm.nih.gov/pubmed/17218021
http://dx.doi.org/10.3201/eid1306.061572
http://dx.doi.org/10.3201/eid1306.061572
http://www.ncbi.nlm.nih.gov/pubmed/17553231
http://dx.doi.org/10.1128/JCM.01085-11
http://www.ncbi.nlm.nih.gov/pubmed/21976758
http://dx.doi.org/10.1128/JCM.00935-14
http://www.ncbi.nlm.nih.gov/pubmed/24789187
http://dx.doi.org/10.1128/AEM.00520-11
http://www.ncbi.nlm.nih.gov/pubmed/21803916
http://www.ncbi.nlm.nih.gov/pubmed/14715762
http://dx.doi.org/10.1093/infdis/jiu252
http://www.ncbi.nlm.nih.gov/pubmed/24795480
http://dx.doi.org/10.1371/journal.pone.0013733
http://www.ncbi.nlm.nih.gov/pubmed/21060829
http://dx.doi.org/10.4269/ajtmh.2011.10&ndash;0473
http://www.ncbi.nlm.nih.gov/pubmed/21460019

