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Summary

Multiple correlated traits are often collected in genetic studies. The joint analysis of multiple traits 

could have increased power by aggregating multiple weak effects and offer additional insights into 

the etiology of complex human diseases by revealing pleiotropic variants. We propose to study 

multivariate test statistics to detect SNP association with multiple correlated traits. Most existing 

methods have been based on the GEE approach without explicitly modeling the trait correlations. 

In this article, we explore an alternative likelihood based framework to test the multiple trait 

associations. It is based on the familiar multinomial logistic regression modeling of genotypes, can 

be readily implemented using widely available software, and offers very competitive performance. 

We demonstrate through extensive numerical studies that the proposed method has competitive 

performance. Its usefulness is further illustrated with application to association analysis of 

diabetes-related traits in the Atherosclerosis Risk in Communities (ARIC) Study.
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Introduction

Multiple correlated traits are often collected in genetic studies. The joint analysis of multiple 

traits could have increased power by aggregating multiple weak effects and offer additional 

insights into the etiology of complex human diseases by revealing pleiotropic variants. We 

propose to study multivariate test statistics to detect SNP association with multiple 

correlated traits.

There are several existing methods for multiple traits association analysis. For example, the 

canonical correlation analysis proposed by Ferreira and Purcell (2009) is computationally 

fast but does not accommodate covariates. Liu et al. (2009) proposed GEE model (Liang 

and Zeger, 1986) for combined analysis of one continuous and one binary trait. Yang et al. 

(2010) proposed adaptively weighting the univariate test statistics and assessed the P-values 
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via computationally intensive permutations. Rasmussen-Torvik et al. (2010) explored 

averaging multiple related traits to gain more accuracy and detection power. O’Reilly et al. 

(2012) proposed a proportional odds regression modeling of genotypes to study multiple 

traits. van der Sluis et al. (2013) proposed a trait-based association test using an extended 

Simes procedure (TATES) that combined the univariate trait p-values while correcting for 

the correlations among the multivariate traits. He et al. (2013) modeled the marginal 

distributions of multivariate traits with generalized linear models, and empirically accounted 

for the dependence via the GEE sandwich variance. A closely related and similar approach 

is the GEE based scaled marginal association test of Schifano et al. (2013), which also 

works for multiple secondary continuous traits analyses via inverse probability weighting. 

Dimension reduction methods have also been proposed to linearly combine the multi-traits 

into a summary score, which is then subject to the traditional likelihood based association 

testing methods. For example, we can use the first principal component of the responses, 

which maximizes the trait combination variation. Klei et al. (2008) proposed linearly 

combining responses based on maximizing the heritability. While the canonical correlation 

analysis (Ferreira and Purcell, 2009) tried to maximize the correlation of trait combinations 

with the SNP. Existing GEE based methods typically explicitly avoided modeling the trait 

correlations. The dimension reduction methods typically incorporated the trait dependence 

to construct the summary scores, which however were not guaranteed to maximize the 

multi-trait SNP associations.

In this article, we explore an alternative likelihood based framework to test the multiple trait 

associations. It is based on the familiar multinomial logistic regression modeling of 

genotypes, can be readily implemented using widely available software, and offers very 

competitive performance. We demonstrate through extensive numerical studies that the 

proposed method has competitive performance. We further illustrate the usefulness of the 

proposed method through an application to genome-wide association study (GWAS) of 

diabetes-related traits.

Materials and Methods

We first present the likelihood based framework for association tests with multivariate traits, 

and derive the genotype based multinomial logistic regression model.

Genotype based multinomial logit model

Consider multivariate traits Y ∈ Rm, a covariate vector X of length p (which could contain 

both non-ancestry covariates, e.g., age and gender, and ancestry covariates, e.g., ancestry 

indicator or principal components), and a genotype score G coding the number of minor 

alleles. Assume the multivariate normal trait model, (Y|G, X) ~ N(γ0 + γXX + γG, Σ), where 

γ0 is a vector of length m, γX is a m × p matrix, γ is of length m, and Σ is a m × m covariance 

matrix. Multivariate trait association amounts to testing H0 : = 0. When assuming the 

conditional Hardy-Weinberg equilibrium (HWE) and X consists of ancestry covariates (e.g., 

population indicator or ancestry principal components), we model the genotype with a 

conditional binomial distribution, (G|X) ~ Binom(2, f0), where f0 = 1/(1 + exp(−α0 − XTα1)), 
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and α1 is a vector of length p. To model potential deviation from the HWE, we adopt the 

following multinomial logistic model (see Appendix for details)

(1)

In the simple case of no ancestry covariates, the model is equivalent to fitting the genotype 

with a three-category multinomial distribution.

Denote the conditional genotype distribution probability πG = Pr(G|X, Y) for G = 0, 1, 2. We 

can derive an adjacent-category logit (ACL) model (Agresti, 2013) (see Appendix for 

technical details)

(2)

The multivariate trait association amounts to testing H0 : β = 0, where β is a vector 

parameter of length m.

A closely related approach is the MultiPhen method (O’Reilly et al., 2012), which assumed 

the proportional odds model (POM) for analyzing the three genotypes. In general the POM 

can provide a good approximation to the ACL model for common variants with small 

effects, while the two models could show large differences for less frequent variants (see 

Appendix for details). In our numerical studies, the proposed ACL model performs 

consistently better than the MultiPhen, which has reduced performance and slightly inflated 

type I errors for less frequent variants.

Conducting multivariate association tests

Consider a study with a total of n unrelated individuals. Denote the maximum likelihood 

estimator of β under model (2) as β̂ and its associated asymptotic covariance matrix as V. To 

test the null hypothesis that β = 0, we can use the Wald statistic β̂TV−1β̂, which 

asymptotically follows a m degrees of freedom (DF) chi-square distribution. The Wald test 

is known to have aberrant testing behavior for logistic model (Hauck and Donner, 1977). 

We propose to use the likelihood ratio test (LRT) for the multivariate trait association based 

on the proposed model (2).

When genetic effects are similar across traits, we can further improve the multivariate 

association test power using a test statistic with one degree of freedom following the lines of 

O’Brien (1984) and He et al. (2013), which performed a Wald test of linear combinations of 

β. In the appendix we presented similar Wald tests under the proposed models. In the 

following we derive the corresponding LRT.

When the genotype effects are the same in the multivariate trait model, we can denote γ = 

η1, where 1 = (1, ⋯, 1)T. The ACL model simplifies to

(3)
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When the scaled genotype effects are the same in the multivariate trait model, we can denote 

γ = ηS, where S = (s1, ⋯, sm)T with , k = 1, ⋯, m. The ACL model simplifies to

(4)

Under both models, the multivariate trait association reduces to testing H0 : η = 0 and can be 

tested using the 1-DF LRT. In practice we use Σ̂ = Cov(Ỹ), where Ỹ are the residuals of 

regressing Y on X.

When the multivariate traits have a compound covariance matrix Σ = σ2[(1 − ρ)I + ρJ], ρ ∈ 

[0, 1), where I is an identity matrix and J = 11T a matrix with all elements equal to 1, we can 

check that , and hence , where Ȳ is 

the average of Y. Therefore when it is reasonable to assume a common effect with 

compound covariance matrix, the best approach is testing the average of the multivariate 

traits either by the proposed ACL or the equivalent linear regression model. In the next 

section, we will discuss one such example of application to a GWAS of diabetes-related 

traits.

RESULTS

Simulation studies

We consider three forms of LRT: Qg is the omnibus LRT testing β = 0 under model (2), Tg 

is the LRT testing η = 0 under model (3), and  is the LRT testing η = 0 under model (4). 

He et al. (2013) conducted extensive numerical studies and has shown that their proposed 

GEE based approach appropriately controls the type I errors and has the overall best 

detection power compared to the TATES of van der Sluis et al. (2013), MANOVA and 

univariate test based methods. Here we compared the proposed methods to their GEE score 

tests, denoted as (Q, T, T′), which are the m-DF omnibus test and 1-DF tests assuming a 

common effect or common scaled effect. In addition we also include the closely related 

MultiPhen approach (O’Reilly et al., 2012), which assumed a proportional odds model for 

the genotype distribution.

We simulate a standard normal covariate X1, a binary ancestry indicator X2 with Pr(X2 = 1) 

= 0.5, and a SNP G with minor allele frequency (MAF) p0 + p1X2. We will consider testing 

m = 2, 4, 8 related traits respectively.

For two continuous traits, we simulated 1,000 individuals based on the bivariate normal 

distribution: Y1 = 1 + 0.5X1 + 0.5X2 + γ1G + ε1 and Y2 = 1 + X1 + X2 + γ2G + ε2, where (ε1, 

ε2) are zero-mean normal with variances  and correlation ρ.

For four continuous traits, we simulated 1,000 individuals with a compound-symmetry 

correlation matrix: Y1 = 1 + 0.5X1 + 0.5X2 + γ1G + ε1, Y2 = 1 + X1 + X2 + γ2G + ε2, Y3 = 1 + 

0.5X1 + 0.5X2 + γ3G + ε3, and Y4 = 1 + X1 + X2 + γ4G + ε4, where (ε1, ε2, ε3, ε4) are zero-

mean normal with variances  and correlation ρ.
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For eight continuous traits, we simulated 1,000 individuals with a compound-symmetry 

correlation matrix: Yi = 1 + 0.5X1 + 0.5X2 + γiG + εi for i = 1, 3, 5, 7, Yk = 1 + X1 + X2 + γkG 

+ εk for k = 2, 4, 6, 8, where (ε1, ⋯, ε8) are zero-mean normal with variances , i 

= 2, ⋯, 8, and correlation ρ.

We used 10 million experiments under the null to evaluate the type I error, and 10,000 

experiments under various combinations of γj to evaluate the power. We conducted 

simulations for p0 = (0.1, 0.3), p1 = 0.1, and ρ = (0.2, 0.5, 0.8). Here we report the results for 

ρ = 0.5. The conclusions remain the same for ρ = 0.2, 0.8 (data not shown).

For two continuous traits, Table 1 summarizes the estimated type I errors, Table 2 and 3 

summarize the power for p0 = 0.1 and p0 = 0.3 respectively. The MultiPhen has slightly 

inflated type I errors for less common variant (MAF=0.1). All the other tests appropriately 

control the type I errors. Overall the GEE score tests are the most conservative. The 

MultiPhen, Qg and Q are omnibus tests with reasonable power under all alternatives. Not 

surprisingly  is more powerful than the other tests when γ1 is close to γ2, and Tg is the 

most powerful when γ1/σ1 and γ2/σ2 are close to each other. The proposed Qg performs 

better than MultiPhen especially for less common variant (MAF=0.1). In general the 

proposed likelihood based tests are better than the corresponding GEE based score tests, and 

their differences become more pronounced as the MAF decreases. This agrees with the 

general principle that the likelihood based test is typically more powerful than the GEE 

based test, and the LRT has better power than the score test especially for relatively large 

effect sizes.

For four continuous traits, Table 4 summarizes the estimated type I errors, Table 5 and 6 

summarize the power for p0 = 0.1 and p0 = 0.3 respectively. The MultiPhen has slightly 

inflated type I errors for less common variant (MAF=0.1). For all the other tests, the 

empirical sizes are close to the nominal significance level. Overall the proposed LRT tests 

are more powerful than the GEE score tests especially for less common variant (p0 = 0.1) 

and relatively large effect sizes. When all γj are close to each other, the 1-DF tests could 

have improved power.

For eight continuous traits, Table 7 summarizes the estimated type I errors. For all the tests, 

the empirical sizes are close to the nominal significance level. Table 8 and 9 summarize the 

power for p0 = 0.1 and p0 = 0.3 respectively. The proposed LRT tests are more powerful 

than the GEE score tests especially for less common variant (p0 = 0.1) and relatively large 

effect sizes. When all γj are close to each other, the 1-DF tests could have much improved 

power. The proposed Qg performs better than MultiPhen especially for less common variant 

(MAF=0.1).

Overall we can see that the proposed LRT is an attractive approach with good power across 

a wide range of alternatives. It performs better than the GEE score test especially with a 

large number of related traits and relatively large effect sizes. The GEE score test in general 

is the most conservative and requires a relatively large sample size especially for testing a 

large number of traits in order to obtain stable GEE sandwich covariance estimator. 

Increasing the sample size will result in more accurate size estimates. When prior 
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knowledge about the specific mechanistic hypotheses regarding the underlying architecture 

of the multivariate traits holds, the 1-DF GEE score test and the proposed 1-DF LRT are 

more powerful especially for a large number of correlated traits. The MultiPhen approach 

has reasonable detection power under all alternatives, often performs better than the 

omnibus GEE score test and only slightly worse than the omnibus LRT test. However, it did 

not incorporate prior knowledge about the underlying architecture of the multivariate traits.

An interesting scenario is one in which only the first trait Y1 is marginally associated with 

the SNP (γ1 = 0.3) and all the other traits are not related to the SNP (γi>1 = 0). Stephens 

(2013) has reported that joint testing by incorporating correlated null trait could improve the 

detection power. Table 10 compared the univariate association test of Y1 versus the joint 

testing under previous simulation settings. We can see that jointly testing highly correlated 

traits could have greater power over testing Y1 alone, which is consistent with the findings of 

Stephens (2013). In general the larger the trait correlation, the more detection power we 

have.

In addition we also performed simulation studies under smaller sample size and for non-

normally distributed traits. The conclusions remain the same (please see supplementary 

material for complete results).

ARIC GWAS

The Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators, 1989) is a 

population-based, multi-center prospective investigation of cardiovascular disease. Men and 

women aged 45–64 years at baseline were recruited from four U.S. communities: Forsyth 

County, North Carolina; Jackson, Mississippi; suburban areas of Minneapolis, Minnesota; 

and Washington County, Maryland. A total of 15,792 individuals participated in the baseline 

examination in 1987–1989. The vast majority of ARIC participants are of European (73%) 

or African ancestry (26%). We conducted two association analyses of diabetes-related traits 

in ARIC.

First we analyzed repeated measures of one phenotype (fasting glucose levels) in 5947 non-

diabetic ARIC white participants measured at four visits approximately three years apart. 

The design of the ARIC Study, methods for genotyping, measurement of plasma glucose 

and other covariates have been described previously (Rasmussen-Torvik et al., 2010). Mean 

glucose levels were similar across the four visits and the covariance matrix was close to 

compound symmetry with correlations around 0.55. Therefore we expect that the proposed 

statistics Tg and  will have greater detection power. In addition we applied the averaging 

approach of Rasmussen-Torvik et al. (2010), which is expected to have improved detection 

power compared to analysis of a single phenotype. We applied an additive genetic model 

and adjusted for age, gender and study center (population indicators). When applied to the 

four fasting glucose measurements, the averaging approach identified 101 significant SNPs, 

Tg identified 102,  identified 101, T and T′ identified 101 each, Qg identified 96, 

MultiPhen identified 92, and Q identified 92, at the genome-wide significance level 5 × 

10−8. Analyzing glucose at each glucose measure separately identified 34, 84, 37, 64 

genome-wide significant SNPs at visits 1, 2, 3, and 4, respectively. The identified SNPs by 
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all methods are genome-wide significant in a meta-analyses of fasting glucose GWAS 

conducted by the MAGIC Consortium (Dupuis et al., 2010).

The additional SNP identified as genome-wide significant by  but not T, T′, or Tg, 

rs1260326, had a p-value of 4.3 × 10−8 using , and the individual p-values for separate 

analyses of glucose at visits 1, 2, 3, and 4 were 1.1 × 10−6, 2.7 × 10−5, 3.1 × 10−5, 9.3 × 10−5 

respectively. The MAGIC meta-analysis reported a p-value of 4.3 × 10−13 for rs1260326.

Comparing Qg to MultiPhen, the four additional SNPs identified by Qg, rs7951037, 

rs11558471, rs3802177, and rs13266634, had p-values of 4.6 × 10−8, 3.3 × 10−8, 2.9 × 10−8, 

and 2.3 × 10−8 using Qg. Their respective p-values reported by the MAGIC meta-analysis 

were 7.3 × 10−32, 2.6 × 10−11, 2.0 × 10−10, 5.5 × 10−10.

Second, we simultaneously analyzed three distinct diabetes-related phenotypes in 5068 non-

diabetic white participants measured at visit 4 in ARIC: fasting glucose, fasting insulin and 

glucose levels 2 hours after an oral glucose challenge. We applied an additive genetic model 

and adjusted for age, gender and study center (population indicators). To account for the 

skewed distribution of fasting insulin, we adopted the Box-Cox transformation with an 

estimated power of 0.35 (Box and Cox, 1964). The three diabetes-related traits had an 

average pairwise correlation of 0.31. When analyzing fasting insulin and 2 hour glucose 

levels individually, we did not identify any significant SNPs at a genome-wide significance 

level (5 × 10−8). For joint testing of all three phenotypes, Tg, , T, T′ identified none, 

MultiPhen identified 95, Q 96, and Qg identified 98 genome-wide significant SNPs, among 

which, 58, 59 and 61 SNPs were reported as genome-wide significant in the MAGIC GWAS 

meta-analyses of fasting glucose, fasting insulin, and 2 hour glucose levels (Dupuis et al., 

2010; Saxena et al., 2010).

Compared to MultiPhen, Qg identified three additional genome-wide significant SNPs, 

rs1402837, rs1101533 and rs853780, with p-values of 2.1 × 10−8, 4.6 × 10−8, and 4.6 × 10−8 

respectively. Their respective p-values reported by the MAGIC meta-analysis of fasting 

glucose were 7.4 × 10−40, 1.0 × 10−38, and 2.1 × 10−38.

Discussion

In summary, we recommend the proposed likelihood based test or the MultiPhen of O’Reilly 

et al. (2012) as a complementary approach to enhancing the power of analyzing multiple 

continuous traits in unrelated individuals, in spite of their increased computational demand 

relative to the score test. The novel GEE score test approach of He et al. (2013) can be 

broadly applied to mix of continuous and discrete traits for related or unrelated individuals. 

We think the likelihood based joint analysis of continuous and discrete traits (e.g., mixed 

effects modeling approach) is an important direction for further research.

We have implemented the proposed methods in R programs posted at http://

www.biostat.umn.edu/~baolin/research/mta_Rcode.html.
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Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Genotype based multinomial logistic regression model

Consider multivariate traits Y ∈ Rm, a covariate vector X of length p, and a genotype score 

G. Assume the multivariate normal trait model

where γ0 is a vector of length m, γX is a m × p matrix, γ is of length m, and Σ is a m × m 

covariance matrix. We can check that

When the SNP follows the HWE, the genotype score G can be modeled with a binomial 

distribution, Binom(2,f0), where f0 is the MAF. Therefore we have log[Pr(G = 0)/ Pr(G = 1)] 

= log[(1 − f0)/f0] − log(2), and log[Pr(G = 1)/ Pr(G = 2)] = log[(1 − f0)/f0] + log(2). This is 

essentially an adjacent category logit (ACL) model when treating log[(1 − f0)/f0] as a 

parameter. We can equivalently write this ACL model as

When individuals are coming from potentially several ancestry populations, we can assume 

conditional HWE: within each ancestry population we model the SNP with a binomial 

distribution, Binom(2,f0), where the MAF f0 now depends on the population ancestry. In the 

case of unknown ancestry but with ancestry covariate included (e.g., computed ancestry 

principal components), we model f0 using a logistic regression model, log[f0/(1 − f0)] = α0 + 

XTα1, which also holds for the case of known ancestry populations, where we just include 

the population indicators in the covariate X. Therefore when assuming HWE (conditional on 

X), we have
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where α0G = log(2)I(G = 1) + Gα0, G = 1, 2, which can be further relaxed to two separate 

parameters to allow potential deviation from the HWE. In principle, we just need to include 

those ancestry informative covariates in the previous model. Some additional environmental 

variables (e.g., age) can be assumed to be independent of genotype and excluded from the 

previous model. But as we will show in the following, this does not affect our derived model 

for Pr(G|X, Y).

Define the conditional genotype distribution probability πG = Pr(G|X, Y), G = 0, 1, 2. We 

have

Note that

Therefore we have

Define

We have

which can be equivalently written as an adjacent-category logit (ACL) model (Agresti, 

2013)

where β00 = 0. The multi-trait genotype association H0 : β = 0 can be tested using a m-DF 

chi-square test.

Here we are testing Pr(G|X, Y) = Pr(G|X) (i.e., H0 : β = 0) for the multi-trait genotype 

association. While in the multivariate normal trait model, we are testing Pr(Y|X, G) = Pr(Y|X) 

(i.e., H0 : γ = 0) for the multi-trait genotype association. In the previous derivation, we have 
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shown that γ and β have one-to-one correspondence, β = Σ−1γ. Therefore these two tests are 

equivalent. Here the multi-trait genotype association is essentially testing the independence 

of Y and G conditional on X. Note that the conditional independence has the symmetry 

property, Pr(G|X, Y) = Pr(G|X) is equivalent to Pr(Y|X, G) = Pr(Y|X), therefore both tests can 

be used to test the multi-trait genotype association.

Multivariate trait association detection using 1-DF Wald test

We consider the linear combination U = aT β̂, which follows an asymptotic normal 

distribution, U ~ N(aTΣ−1γ, aTVa). With a common genotype effect across the multivariate 

traits, we have γ = η1, where 1 = (1, ⋯, 1)T. The non-centrality parameter of U is then 

proportional to

Note that bTb = 1 and hence taking b ∝ V−1/2Σ−11 will maximize the non-centrality 

parameter. Therefore the test statistic

is asymptotically normal with unit variance and maximizes the non-centrality parameter 

among all linear combinations of β̂. If we have a common scaled genotype effect across the 

multivariate traits, γ = ηS, where S = (s1, ⋯, sm)T with , k = 1, ⋯, m, similarly we 

can show that the test statistic

is asymptotically normal with unit variance and maximizes the non-centrality parameter 

among all linear combinations of β̂. In practice we set Σ̂ = Cov(Ỹ) where Ỹ are the residuals 

of regressing Y on X. Alternatively we can also construct the 1-DF Wald statistics based on 

the proposed model (3) and (4). In our numerical studies the LRT performed consistently 

better than the Wald test (data not shown).

Comparison of POM and ACL model

When assuming the trait is normally distributed with an additive genetic effect, we have 

shown that the conditional genotype distribution can be modeled with an ACL model. Here 

we explore how well the POM can approximate the ACL model. For simplicity, consider a 

single trait Y ~ N(βG, 1), where the genotype G has a MAF of α and is assumed to follow 

the HWE. We can derive the ACL model, log[Pr(G|Y)/ Pr(G = 0|Y)] ∝ GY β. While the POM 

assumes that P(Y) = log[Pr(G ≥ 1|Y)/ Pr(G = 0|Y)] − log[Pr(G = 2|Y)/ Pr(G ≤ 1|Y)] is a 
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constant independent of Y. Figure 1 plots the function P(Y) under different combinations of 

genotype effect β and MAF α. The combinations of β and α in the first row have around 

50% detection power for POM with 1000 samples under 5 × 10−8 significance level, and the 

second row corresponds to around 15% detection power for POM. In general we can see that 

the P(Y) is nearly constant for large MAF (α = 0.4) and shows increased ranges for reduced 

MAF and increased genetic effects. Table 11 compares their detection power. The ACL 

model consistently performs better than the POM/MultiPhen. For MAF of α = 0.4, the POM 

approximates the ACL model well and they have very similar power. Overall smaller MAF 

and larger genetic effect lead to more power differences as the POM approximation to the 

ACL model becomes poor.

If the trait Y and some covariate X are both related to the genotype G, e.g., X is ancestry 

covariate, and we have varying trait means and genotype frequencies under different X, the 

true null model Pr(G|X, Y) = Pr(G|X) is an ACL model. When using the POM model to 

approximate the null ACL model Pr(G|X), the POM model could potentially include both X 

and Y due to their dependence, and lead to inflated type I errors.
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Figure 1. 
POM approximation to ACL: P(y) as a function of y. The combinations of β and α in the 

first row have around 50% detection power for POM with 1000 samples under 5 × 10−8 

significance level, and the second row corresponds to around 15% detection power for 

POM.
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Table 10

Detection power incorporating correlated multivariate traits (γ1 = 0.3, γi>1 = 0)

α = 10−6, p0 = 0.3, ρ = 0.2

m Uni(Y1) MultiPhen Qg Q

2 0.2640 0.2759 0.2398

4 0.3354 0.1981 0.2035 0.1640

8 0.1271 0.1337 0.0942

α = 10−6, p0 = 0.3, ρ = 0.5

m Uni(Y1) MultiPhen Qg Q

2 0.4834 0.4971 0.4495

4 0.3354 0.5374 0.5522 0.4916

8 0.4808 0.4965 0.4045

α = 10−6, p0 = 0.3, ρ = 0.8

m Uni(Y1) MultiPhen Qg Q

2 0.9852 0.9866 0.9813

4 0.3354 0.9985 0.9988 0.9979

8 0.9990 0.9991 0.9979

α = 10−6, p0 = 0.1, ρ = 0.2

m Uni(Y1) MultiPhen Qg Q

2 0.0388 0.0440 0.0277

4 0.0592 0.0234 0.0263 0.0134

8 0.0117 0.0130 0.0052

α = 10−6, p0 = 0.1, ρ = 0.5

m Uni(Y1) MultiPhen Qg Q

2 0.0903 0.0994 0.0671

4 0.0592 0.0978 0.1091 0.0659

8 0.0678 0.0756 0.0379

α = 10−6, p0 = 0.1, ρ = 0.8

m Uni(Y1) MultiPhen Qg Q

2 0.6070 0.6367 0.5414

4 0.0592 0.8021 0.8284 0.7217

8 0.7977 0.8199 0.6741
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Table 11

Detection power of POM/MultiPhen versus ACL under 5 × 10−8 significance level with 1000 samples: power 

estimated with 104 experiments. α is the MAF, and β is the SNP effect.

α 0.4 0.3 0.2 0.4 0.3 0.2

β 0.251 0.271 0.312 0.204 0.220 0.253

POM/MultiPhen 0.494 0.500 0.498 0.152 0.151 0.151

ACL 0.504 0.530 0.538 0.155 0.164 0.173
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