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Summary

Multiple correlated traits are often collected in genetic studies. The joint analysis of multiple traits
could have increased power by aggregating multiple weak effects and offer additional insights into
the etiology of complex human diseases by revealing pleiotropic variants. We propose to study
multivariate test statistics to detect SNP association with multiple correlated traits. Most existing
methods have been based on the GEE approach without explicitly modeling the trait correlations.
In this article, we explore an alternative likelihood based framework to test the multiple trait
associations. It is based on the familiar multinomial logistic regression modeling of genotypes, can
be readily implemented using widely available software, and offers very competitive performance.
We demonstrate through extensive numerical studies that the proposed method has competitive
performance. Its usefulness is further illustrated with application to association analysis of
diabetes-related traits in the Atherosclerosis Risk in Communities (ARIC) Study.
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Introduction

Multiple correlated traits are often collected in genetic studies. The joint analysis of multiple
traits could have increased power by aggregating multiple weak effects and offer additional
insights into the etiology of complex human diseases by revealing pleiotropic variants. We
propose to study multivariate test statistics to detect SNP association with multiple
correlated traits.

There are several existing methods for multiple traits association analysis. For example, the
canonical correlation analysis proposed by Ferreira and Purcell (2009) is computationally
fast but does not accommodate covariates. Liu et al. (2009) proposed GEE model (Liang
and Zeger, 1986) for combined analysis of one continuous and one binary trait. Yang et al.
(2010) proposed adaptively weighting the univariate test statistics and assessed the P-values
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via computationally intensive permutations. Rasmussen-Torvik et al. (2010) explored
averaging multiple related traits to gain more accuracy and detection power. O’Reilly et al.
(2012) proposed a proportional odds regression modeling of genotypes to study multiple
traits. van der Sluis et al. (2013) proposed a trait-based association test using an extended
Simes procedure (TATES) that combined the univariate trait p-values while correcting for
the correlations among the multivariate traits. He et al. (2013) modeled the marginal
distributions of multivariate traits with generalized linear models, and empirically accounted
for the dependence via the GEE sandwich variance. A closely related and similar approach
is the GEE based scaled marginal association test of Schifano et al. (2013), which also
works for multiple secondary continuous traits analyses via inverse probability weighting.
Dimension reduction methods have also been proposed to linearly combine the multi-traits
into a summary score, which is then subject to the traditional likelihood based association
testing methods. For example, we can use the first principal component of the responses,
which maximizes the trait combination variation. Klei et al. (2008) proposed linearly
combining responses based on maximizing the heritability. While the canonical correlation
analysis (Ferreira and Purcell, 2009) tried to maximize the correlation of trait combinations
with the SNP. Existing GEE based methods typically explicitly avoided modeling the trait
correlations. The dimension reduction methods typically incorporated the trait dependence
to construct the summary scores, which however were not guaranteed to maximize the
multi-trait SNP associations.

In this article, we explore an alternative likelihood based framework to test the multiple trait
associations. It is based on the familiar multinomial logistic regression modeling of
genotypes, can be readily implemented using widely available software, and offers very
competitive performance. We demonstrate through extensive numerical studies that the
proposed method has competitive performance. We further illustrate the usefulness of the
proposed method through an application to genome-wide association study (GWAS) of
diabetes-related traits.

Materials and Methods

We first present the likelihood based framework for association tests with multivariate traits,
and derive the genotype based multinomial logistic regression model.

Genotype based multinomial logit model

Consider multivariate traits Y € R™ a covariate vector X of length p (which could contain
both non-ancestry covariates, e.g., age and gender, and ancestry covariates, e.g., ancestry
indicator or principal components), and a genotype score G coding the number of minor
alleles. Assume the multivariate normal trait model, (Y]G, X) ~ N(yg + yxX + vG, %), where
vo is a vector of length m, yx is a m x p matrix, vy is of length m, and X is a m x m covariance
matrix. Multivariate trait association amounts to testing Hg : = 0. When assuming the
conditional Hardy-Weinberg equilibrium (HWE) and X consists of ancestry covariates (e.g.,
population indicator or ancestry principal components), we model the genotype with a
conditional binomial distribution, (G|X) ~ Binom(2, fy), where fy = 1/(1 + exp(-ag — XTay)),
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and a4 is a vector of length p. To model potential deviation from the HWE, we adopt the
following multinomial logistic model (see Appendix for details)

Pr(G=1|X)

o Pr(G=2|X)
S Pr(G=0/X)

= XTay.
& Pr(G=0X) apt2XT a1 ()

agl—l—XTOq, lo

In the simple case of no ancestry covariates, the model is equivalent to fitting the genotype
with a three-category multinomial distribution.

Denote the conditional genotype distribution probability ng = Pr(G|X, Y) for G=0, 1, 2. We
can derive an adjacent-category logit (ACL) model (Agresti, 2013) (see Appendix for
technical details)

™ _
1og7r—i:ﬂ0G +GXT B +GYTB,8=2""y,G=1,2. (

The multivariate trait association amounts to testing Hq : B = 0, where f is a vector
parameter of length m.

A closely related approach is the MultiPhen method (O’Reilly et al., 2012), which assumed
the proportional odds model (POM) for analyzing the three genotypes. In general the POM
can provide a good approximation to the ACL model for common variants with small
effects, while the two models could show large differences for less frequent variants (see
Appendix for details). In our numerical studies, the proposed ACL model performs
consistently better than the MultiPhen, which has reduced performance and slightly inflated
type | errors for less frequent variants.

Conducting multivariate association tests

Consider a study with a total of n unrelated individuals. Denote the maximum likelihood
estimator of B under model (2) as B%nd its associated asymptotic covariance matrix as V. To
test the null hypothesis that § = 0, we can use the Wald statistic Bf\Flﬁf which
asymptotically follows a mdegrees of freedom (DF) chi-square distribution. The Wald test
is known to have aberrant testing behavior for logistic model (Hauck and Donner, 1977).
We propose to use the likelihood ratio test (LRT) for the multivariate trait association based
on the proposed model (2).

When genetic effects are similar across traits, we can further improve the multivariate
association test power using a test statistic with one degree of freedom following the lines of
O’Brien (1984) and He et al. (2013), which performed a Wald test of linear combinations of
f. In the appendix we presented similar Wald tests under the proposed models. In the
following we derive the corresponding LRT.

When the genotype effects are the same in the multivariate trait model, we can denote y =
nl, where 1= (1, ---, 1)T. The ACL model simplifies to

log(m,, /70)=0,.+GXT 3, +Gn(YT=11). (3
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When the scaled genotype effects are the same in the multivariate trait model, we can denote
v=nS where S=(sq, ---, Sy) T with sp=/Zgp K=1, -+, m. The ACL model simplifies to

log (7, /m0)=Bo +GX T By +Gn(YTST'S). (@)

Under both models, the multivariate trait association reduces to testing Hg : 1 = 0 and can be
tested using the 1-DF LRT. In practice we use X = Cov(Y), where Yare the residuals of
regressing Y on X.

When the multivariate traits have a compound covariance matrix X = 62[(1 - p)I +pJ], p €
[0, 1), where | is an identity matrix and J = 11T a matrix with all elements equal to 1, we can

pY, where Yis
the average of Y. Therefore when it is reasonable to assume a common effect with
compound covariance matrix, the best approach is testing the average of the multivariate
traits either by the proposed ACL or the equivalent linear regression model. In the next
section, we will discuss one such example of application to a GWAS of diabetes-related
traits.

heck that & 1=0 21 e YT =g
check tha 14(m — 1)p » and hence 1+ (m—1)

Simulation studies

We consider three forms of LRT: Qg is the omnibus LRT testing = 0 under model (2), Tgq

is the LRT testing 1 = 0 under model (3), and T; is the LRT testing n = 0 under model (4).
He et al. (2013) conducted extensive numerical studies and has shown that their proposed
GEE based approach appropriately controls the type I errors and has the overall best
detection power compared to the TATES of van der Sluis et al. (2013), MANOVA and
univariate test based methods. Here we compared the proposed methods to their GEE score
tests, denoted as (Q, T, T’), which are the m-DF omnibus test and 1-DF tests assuming a
common effect or common scaled effect. In addition we also include the closely related
MultiPhen approach (O’Reilly et al., 2012), which assumed a proportional odds model for
the genotype distribution.

We simulate a standard normal covariate X1, a binary ancestry indicator X, with Pr(X, = 1)
= 0.5, and a SNP G with minor allele frequency (MAF) pg + p1Xp. We will consider testing
m= 2, 4, 8 related traits respectively.

For two continuous traits, we simulated 1,000 individuals based on the bivariate normal
distribution: Y; =1+ 0.5X; + 0.5Xy + y1G + g1 and Yo = 1 + X1 + X5 + v2G + €, where (g1,

ep) are zero-mean normal with variances (07=2, o5=1) and correlation p.

For four continuous traits, we simulated 1,000 individuals with a compound-symmetry
correlation matrix: Y; =1+ 0.5X; + 05X, + y1G+eq, Yo =1+ X1+ Xo +voG + ey, Yz3=1+
0.5X1 +0.5Xy + y3G + &3, and Yg = 1 + Xq + Xy + v4G + g4, Where (g1, €2, €3, €4) are zero-

mean normal with variances (¢¥=2, 03=1,05=1, o3=1) and correlation p.
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For eight continuous traits, we simulated 1,000 individuals with a compound-symmetry
correlation matrix: Y; =1+ 0.5X; + 05X, +viG+¢ifori=1,3,5,7, Y =1+ Xy + Xo + G
+gfork=2, 4,6, 8, where (g1, -, £g) are zero-mean normal with variances ¢?=2, 0?=1, i
=2, ---, 8, and correlation p.

We used 10 million experiments under the null to evaluate the type I error, and 10,000
experiments under various combinations of v; to evaluate the power. We conducted
simulations for pg = (0.1, 0.3), p1 = 0.1, and p = (0.2, 0.5, 0.8). Here we report the results for
p = 0.5. The conclusions remain the same for p = 0.2, 0.8 (data not shown).

For two continuous traits, Table 1 summarizes the estimated type I errors, Table 2 and 3
summarize the power for pp = 0.1 and pg = 0.3 respectively. The MultiPhen has slightly
inflated type I errors for less common variant (MAF=0.1). All the other tests appropriately
control the type | errors. Overall the GEE score tests are the most conservative. The
MultiPhen, Qg and Q are omnibus tests with reasonable power under all alternatives. Not

surprisingly T; is more powerful than the other tests when v is close to y,, and Ty is the
most powerful when y1/01 and y,/o, are close to each other. The proposed Qg performs
better than MultiPhen especially for less common variant (MAF=0.1). In general the
proposed likelihood based tests are better than the corresponding GEE based score tests, and
their differences become more pronounced as the MAF decreases. This agrees with the
general principle that the likelihood based test is typically more powerful than the GEE
based test, and the LRT has better power than the score test especially for relatively large
effect sizes.

For four continuous traits, Table 4 summarizes the estimated type I errors, Table 5 and 6
summarize the power for pg = 0.1 and pg = 0.3 respectively. The MultiPhen has slightly
inflated type | errors for less common variant (MAF=0.1). For all the other tests, the
empirical sizes are close to the nominal significance level. Overall the proposed LRT tests
are more powerful than the GEE score tests especially for less common variant (pg = 0.1)
and relatively large effect sizes. When all v; are close to each other, the 1-DF tests could
have improved power.

For eight continuous traits, Table 7 summarizes the estimated type | errors. For all the tests,
the empirical sizes are close to the nominal significance level. Table 8 and 9 summarize the
power for pg = 0.1 and pg = 0.3 respectively. The proposed LRT tests are more powerful
than the GEE score tests especially for less common variant (pg = 0.1) and relatively large
effect sizes. When all v are close to each other, the 1-DF tests could have much improved
power. The proposed Qq performs better than MultiPhen especially for less common variant
(MAF=0.1).

Overall we can see that the proposed LRT is an attractive approach with good power across
a wide range of alternatives. It performs better than the GEE score test especially with a
large number of related traits and relatively large effect sizes. The GEE score test in general
is the most conservative and requires a relatively large sample size especially for testing a
large number of traits in order to obtain stable GEE sandwich covariance estimator.
Increasing the sample size will result in more accurate size estimates. When prior
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knowledge about the specific mechanistic hypotheses regarding the underlying architecture
of the multivariate traits holds, the 1-DF GEE score test and the proposed 1-DF LRT are
more powerful especially for a large number of correlated traits. The MultiPhen approach
has reasonable detection power under all alternatives, often performs better than the
omnibus GEE score test and only slightly worse than the omnibus LRT test. However, it did
not incorporate prior knowledge about the underlying architecture of the multivariate traits.

An interesting scenario is one in which only the first trait Yy is marginally associated with
the SNP (y1 = 0.3) and all the other traits are not related to the SNP (yj>1 = 0). Stephens
(2013) has reported that joint testing by incorporating correlated null trait could improve the
detection power. Table 10 compared the univariate association test of Yy versus the joint
testing under previous simulation settings. We can see that jointly testing highly correlated
traits could have greater power over testing Y; alone, which is consistent with the findings of
Stephens (2013). In general the larger the trait correlation, the more detection power we
have.

In addition we also performed simulation studies under smaller sample size and for non-
normally distributed traits. The conclusions remain the same (please see supplementary
material for complete results).

ARIC GWAS

The Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators, 1989) is a
population-based, multi-center prospective investigation of cardiovascular disease. Men and
women aged 45-64 years at baseline were recruited from four U.S. communities: Forsyth
County, North Carolina; Jackson, Mississippi; suburban areas of Minneapolis, Minnesota;
and Washington County, Maryland. A total of 15,792 individuals participated in the baseline
examination in 1987-1989. The vast majority of ARIC participants are of European (73%)
or African ancestry (26%). We conducted two association analyses of diabetes-related traits
in ARIC.

First we analyzed repeated measures of one phenotype (fasting glucose levels) in 5947 non-
diabetic ARIC white participants measured at four visits approximately three years apart.
The design of the ARIC Study, methods for genotyping, measurement of plasma glucose
and other covariates have been described previously (Rasmussen-Torvik et al., 2010). Mean
glucose levels were similar across the four visits and the covariance matrix was close to
compound symmetry with correlations around 0.55. Therefore we expect that the proposed

statistics Tg and T; will have greater detection power. In addition we applied the averaging
approach of Rasmussen-Torvik et al. (2010), which is expected to have improved detection
power compared to analysis of a single phenotype. We applied an additive genetic model
and adjusted for age, gender and study center (population indicators). When applied to the
four fasting glucose measurements, the averaging approach identified 101 significant SNPs,

Ty identified 102, T; identified 101, T and T’ identified 101 each, Qg identified 96,
MultiPhen identified 92, and Q identified 92, at the genome-wide significance level 5 x
1078. Analyzing glucose at each glucose measure separately identified 34, 84, 37, 64
genome-wide significant SNPs at visits 1, 2, 3, and 4, respectively. The identified SNPs by
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all methods are genome-wide significant in a meta-analyses of fasting glucose GWAS
conducted by the MAGIC Consortium (Dupuis et al., 2010).

The additional SNP identified as genome-wide significant by T; butnot T, T/, or Ty,

rs1260326, had a p-value of 4.3 x 1078 using Tg’, and the individual p-values for separate
analyses of glucose at visits 1, 2, 3, and 4 were 1.1 x 1076, 2.7 x 1075, 3.1 x 1075,9.3 x 107
respectively. The MAGIC meta-analysis reported a p-value of 4.3 x 10713 for rs1260326.

Comparing Qg to MultiPhen, the four additional SNPs identified by Qg, rs7951037,
rs11558471, rs3802177, and rs13266634, had p-values of 4.6 x 1078,3.3 x 1078, 2.9 x 1078,
and 2.3 x 1078 using Qg- Their respective p-values reported by the MAGIC meta-analysis
were 7.3 x 10732, 2,6 x 10711, 2,0 x 10710, 5,5 x 10710,

Second, we simultaneously analyzed three distinct diabetes-related phenotypes in 5068 non-
diabetic white participants measured at visit 4 in ARIC: fasting glucose, fasting insulin and
glucose levels 2 hours after an oral glucose challenge. We applied an additive genetic model
and adjusted for age, gender and study center (population indicators). To account for the
skewed distribution of fasting insulin, we adopted the Box-Cox transformation with an
estimated power of 0.35 (Box and Cox, 1964). The three diabetes-related traits had an
average pairwise correlation of 0.31. When analyzing fasting insulin and 2 hour glucose
levels individually, we did not identify any significant SNPs at a genome-wide significance

level (5 x 1078). For joint testing of all three phenotypes, Ty TE;, T, T identified none,
MultiPhen identified 95, Q 96, and Qg identified 98 genome-wide significant SNPs, among
which, 58, 59 and 61 SNPs were reported as genome-wide significant in the MAGIC GWAS
meta-analyses of fasting glucose, fasting insulin, and 2 hour glucose levels (Dupuis et al.,
2010; Saxena et al., 2010).

Compared to MultiPhen, Qg identified three additional genome-wide significant SNPs,
rs1402837, rs1101533 and rs853780, with p-values of 2.1 x 1078, 4.6 x 1078, and 4.6 x 1078
respectively. Their respective p-values reported by the MAGIC meta-analysis of fasting
glucose were 7.4 x 10740, 1.0 x 10738, and 2.1 x 10738,

Discussion

In summary, we recommend the proposed likelihood based test or the MultiPhen of O’Reilly
et al. (2012) as a complementary approach to enhancing the power of analyzing multiple
continuous traits in unrelated individuals, in spite of their increased computational demand
relative to the score test. The novel GEE score test approach of He et al. (2013) can be
broadly applied to mix of continuous and discrete traits for related or unrelated individuals.
We think the likelihood based joint analysis of continuous and discrete traits (e.g., mixed
effects modeling approach) is an important direction for further research.

We have implemented the proposed methods in R programs posted at http://
www.biostat.umn.edu/~baolin/research/mta_Rcode.html.
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APPENDIX

Genotype based multinomial logistic regression model

Consider multivariate traits Y € R™, a covariate vector X of length p, and a genotype score
G. Assume the multivariate normal trait model

(Y|G, X)~N (yo+7x X+17G, 2),

where vyq is a vector of length m, yyx is a m x p matrix, vy is of length m, and X isamx m
covariance matrix. We can check that

Pr(Y|G, X)

— ) _GATETHY — g — . X — G /2]

When the SNP follows the HWE, the genotype score G can be modeled with a binomial
distribution, Binom(2,fy), where fq is the MAF. Therefore we have log[Pr(G = 0)/ Pr(G = 1)]
=log[(1 - fg)/fp] — 109(2), and log[Pr(G = 1)/ Pr(G = 2)] = log[(1 - fp)/fo] + log(2). This is
essentially an adjacent category logit (ACL) model when treating log[(1 - fg)/fp] as a
parameter. We can equivalently write this ACL model as

fo
1—fo

Pr(G
logL =log(2)I(G=1)+Glog

G=1,2.
Pr(G=0)

When individuals are coming from potentially several ancestry populations, we can assume
conditional HWE: within each ancestry population we model the SNP with a binomial
distribution, Binom(2,fy), where the MAF fy now depends on the population ancestry. In the
case of unknown ancestry but with ancestry covariate included (e.g., computed ancestry
principal components), we model fp using a logistic regression model, log[fp/(1 — fg)] = ag +
XTa1, which also holds for the case of known ancestry populations, where we just include
the population indicators in the covariate X. Therefore when assuming HWE (conditional on
X), we have

Pr(G|X)

1 P
B Pr(G=0]X)

aOG+GXTa1,
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where agg = 109(2)I(G = 1) + Gag, G = 1, 2, which can be further relaxed to two separate
parameters to allow potential deviation from the HWE. In principle, we just need to include
those ancestry informative covariates in the previous model. Some additional environmental
variables (e.g., age) can be assumed to be independent of genotype and excluded from the
previous model. But as we will show in the following, this does not affect our derived model
for Pr(G|X, Y).

Define the conditional genotype distribution probability g = Pr(G|X, Y), G=0, 1, 2. We
have

_ _PrGX)Pr(Y|G,.X) Pr(G|X)Pr(Y|G, X)
¢ Pr(Y|X) Y2 Pr(G=g|X)Pr(Y|G=g,X)

Note that

Pr(G|X)Pr(Y|G, X) 19
Pr(G=0|X)Pr(Y|G=0,X)" 7

10g7r—G =log
o

Therefore we have

Y[ —
1Ogﬂ_::aoc+GXTal+G7Tz 1[Y =% — X —7G/2].

Define

_ 1 _ _ _
Bra=0os = G 710 — 5GP BTy, By=ar = 1 BTy, B=0"y.

We have
™
logW—G:ﬁOG—i—GXT,BX +GYT3,G=1,2,
0

which can be equivalently written as an adjacent-category logit (ACL) model (Agresti,
2013)

Tg

log——-=(fhy — Bog+1) - xTp, —YTp,9=0,1,

7Tg+
where oo = 0. The multi-trait genotype association Hg : p = 0 can be tested using a m-DF
chi-square test.

Here we are testing Pr(G|X, Y) = Pr(G|X) (i.e., Ho : p = 0) for the multi-trait genotype
association. While in the multivariate normal trait model, we are testing Pr(Y|X, G) = Pr(Y|X)
(i.e., Hg : v = 0) for the multi-trait genotype association. In the previous derivation, we have
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shown that v and p have one-to-one correspondence, f = =~1y. Therefore these two tests are
equivalent. Here the multi-trait genotype association is essentially testing the independence
of Y and G conditional on X. Note that the conditional independence has the symmetry
property, Pr(G|X, Y) = Pr(G|X) is equivalent to Pr(Y|X, G) = Pr(Y|X), therefore both tests can
be used to test the multi-trait genotype association.

Multivariate trait association detection using 1-DF Wald test

We consider the linear combination U = a' B,Awhich follows an asymptotic normal
distribution, U ~ N(a"x~1y, aTVa). With a common genotype effect across the multivariate
traits, we have y = 1, where 1 = (1, ---, 1)T. The non-centrality parameter of U is then
proportional to

LTz_llszV*l/?z*ll b= V1/2a )
vVaTVa " VdTVa

Note that bTb = 1 and hence taking b oc V25711 will maximize the non-centrality
parameter. Therefore the test statistic

szfl‘/flﬂA
(1Tg-1y-1x-11)%/2

J —

/o=

is asymptotically normal with unit variance and maximizes the non-centrality parameter
among all linear combinations of B.Alf we have a common scaled genotype effect across the
multivariate traits, y = nS where S= (s, ---, Sy) " with sp= /S K=1, -+, m, similarly we
can show that the test statistic

o STV
9T gy 11 -1y-16)1/2
(STS-1V-1x-15)

is asymptotically normal with unit varlance and maX|m|zes the non-centrality parameter
among all linear combinations ofB In practice we set n= Cov(Y) where Y are the residuals
of regressing Y on X. Alternatively we can also construct the 1-DF Wald statistics based on
the proposed model (3) and (4). In our numerical studies the LRT performed consistently
better than the Wald test (data not shown).

Comparison of POM and ACL model

When assuming the trait is normally distributed with an additive genetic effect, we have
shown that the conditional genotype distribution can be modeled with an ACL model. Here
we explore how well the POM can approximate the ACL model. For simplicity, consider a
single trait Y ~ N(BG, 1), where the genotype G has a MAF of a and is assumed to follow
the HWE. We can derive the ACL model, log[Pr(G|Y)/ Pr(G = 0]Y)] « GY B. While the POM
assumes that P(Y) = log[Pr(G = 1|Y)/ Pr(G = 0|Y)] — log[Pr(G = 2|Y)/ Pr(G < 1|Y)] is a
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constant independent of Y. Figure 1 plots the function P(Y) under different combinations of
genotype effect p and MAF a. The combinations of 3 and a in the first row have around
50% detection power for POM with 1000 samples under 5 x 1078 significance level, and the
second row corresponds to around 15% detection power for POM. In general we can see that
the P(Y) is nearly constant for large MAF (a = 0.4) and shows increased ranges for reduced
MAF and increased genetic effects. Table 11 compares their detection power. The ACL
model consistently performs better than the POM/MultiPhen. For MAF of a = 0.4, the POM
approximates the ACL model well and they have very similar power. Overall smaller MAF
and larger genetic effect lead to more power differences as the POM approximation to the
ACL model becomes poor.

If the trait Y and some covariate X are both related to the genotype G, e.g., X is ancestry
covariate, and we have varying trait means and genotype frequencies under different X, the
true null model Pr(G|X, Y) = Pr(G|X) is an ACL model. When using the POM model to
approximate the null ACL model Pr(G|X), the POM model could potentially include both X
and Y due to their dependence, and lead to inflated type | errors.
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Figure 1.
POM approximation to ACL: P(y) as a function of y. The combinations of 5 and a in the

first row have around 50% detection power for POM with 1000 samples under 5 x 1078
significance level, and the second row corresponds to around 15% detection power for
POM.
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Detection power incorporating correlated multivariate traits (y; = 0.3, yj>1 = 0)

a=10 p,=03,p=02

m  Uni(Y;) MultiPhen Qq Q

2 0.2640 0.2759  0.2398

4 0.3354 0.1981 0.2035 0.1640

8 0.1271 0.1337  0.0942
a=10"py=03,p=05

m  Uni(Yy) MultiPhen Qg Q

2 0.4834 0.4971 0.4495

4 0.3354 0.5374 0.5522  0.4916

8 0.4808 0.4965  0.4045
a=107%p=03,p=08

m  Uni(Y;) MultiPhen Qq Q

2 0.9852 0.9866 0.9813

4 03354 0.9985 0.9988 0.9979

8 0.9990 0.9991 0.9979
a=10"%p=01,p=02

m  Uni(Yy) MultiPhen Qg Q

2 0.0388 0.0440 0.0277

4 0.0592 0.0234 0.0263 0.0134

8 0.0117 0.0130  0.0052
a=10"%p=01,p=05

m  Uni(Y;)) MultiPhen Qg Q

2 0.0903 0.0994 0.0671

4 0.0592 0.0978 0.1091  0.0659

8 0.0678 0.0756  0.0379
a=10"%p=01p=08

m  Uni(Y;) MultiPhen Qq Q

2 0.6070 0.6367 0.5414

4 0.0592 0.8021 0.8284 0.7217

8 0.7977 0.8199 0.6741
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Table 11

Detection power of POM/MultiPhen versus ACL under 5 x 1078 significance level with 1000 samples: power
estimated with 10* experiments. a is the MAF, and f is the SNP effect.

a 0.4 0.3 0.2 0.4 0.3 0.2
B 0.251 0271 0.312 0204 0.220 0.253

POM/MultiPhen  0.494 0.500 0.498 0.152 0.151 0.151
ACL 0.504 0530 0.538 0.155 0.164 0.173
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