Skip to main content
. Author manuscript; available in PMC: 2016 Jul 1.
Published in final edited form as: Ann Hum Genet. 2015 May 11;79(4):294–309. doi: 10.1111/ahg.12117

Table 2.

The mean of θ^, mean of estimated standard error of θ^, and standard deviation of θ^ across simulation repetitions for the set-valued (SV) and logistic regression (LG and oLG) methods based on 1000 simulations*.

LG oLG SV

θ SM DM θ^¯ se^(θ^)¯ sd(θ^)
θ^¯se^(θ^)¯¯
θ^¯sd(θ^) θ^¯ se^(θ^)¯ sd(θ^)
θ^¯se^(θ^)¯¯
θ^¯sd(θ^) θ^¯ se^(θ^)¯ sd(θ^)
θ^¯se^(θ^)¯¯
θ^¯sd(θ^)
Rand, pA=0.0075
0 LGsimu H0 0.02 0.391 0.409 0.051 0.049 0.005 0.367 0.387 0.013 0.012 0.0017 0.219 0.231 0.008 0.007
0.5 LGsimu ADD 0.535 0.398 0.402 1.344 1.329 0.514 0.353 0.354 1.456 1.452 0.3039 0.212 0.213 1.43 1.426
2 LGsimu ADD 2.229 2.711 1.336 0.822 1.669 2.009 0.366 0.374 5.49 5.374 1.1942 0.218 0.222 5.478 5.373
0 SVsimu H0 −0.02 0.409 0.408 −0.05 −0.05 −0.026 0.372 0.386 −0.07 −0.07 −0.016 0.221 0.229 −0.073 −0.071
0.5 SVsimu ADD 0.84 0.44 0.47 1.91 1.789 0.807 0.361 0.377 2.236 2.139 0.4834 0.217 0.226 2.231 2.139
2 SVsimu ADD 6.953 83.61 5.785 0.083 1.202 3.442 0.711 0.648 4.841 5.31 2.0333 0.284 0.303 7.15 6.709
Rand, pA=0.2
0 LGsimu H0 −0.003 0.082 0.082 −0.04 −0.04 −0.004 0.078 0.078 −0.06 −0.06 −0.003 0.047 0.047 −0.064 −0.064
0.5 LGsimu ADD 0.502 0.085 0.087 5.941 5.798 0.5 0.076 0.077 6.566 6.477 0.2976 0.045 0.046 6.555 6.475
2 LGsimu ADD 2.003 0.124 0.128 16.2 15.66 1.995 0.093 0.093 21.43 21.35 1.179 0.051 0.053 23.3 22.13
0 SVsimu H0 1E-03 0.086 0.086 0.011 0.011 1E-06 0.079 0.078 1E-4 1E-4 −2E-4 0.047 0.046 −0.004 −0.004
0.5 SVsimu ADD 0.833 0.095 0.095 8.781 8.779 0.837 0.079 0.08 10.57 10.52 0.5012 0.047 0.047 10.76 10.57
2 SVsimu ADD 3.581 0.221 0.214 16.19 16.73 3.418 0.132 0.129 25.84 26.59 2.0031 0.068 0.072 29.58 27.97
Same, pA=0.0075
0 LGsimu H0 0.05 0.42 0.433 0.12 0.116 0.017 0.348 0.355 0.05 0.049 0.0103 0.211 0.216 0.049 0.048
0.5 LGsimu ADD 0.632 0.717 0.631 0.882 1.002 0.506 0.329 0.332 1.538 1.523 0.3091 0.2 0.202 1.543 1.532
2 LGsimu ADD 3.042 17.62 3.062 0.173 0.993 1.939 0.338 0.333 5.74 5.816 1.174 0.195 0.193 6.035 6.091
0 SVsimu H0 0.004 0.442 0.46 0.009 0.008 −0.002 0.362 0.369 −5E-3 −4E-3 −8E-4 0.217 0.221 −0.004 −0.004
0.5 SVsimu ADD 0.946 1.116 0.806 0.848 1.174 0.819 0.345 0.353 2.371 2.317 0.4936 0.206 0.21 2.392 2.348
2 SVsimu ADD 8.881 140.8 6.375 0.063 1.393 3.368 0.493 0.86 6.836 3.917 1.9605 0.263 0.29 7.454 6.759
Same, pA=0.2
0 LGsimu H0 −0.003 0.087 0.089 −0.04 −0.04 −0.005 0.074 0.074 −0.07 −0.07 −0.003 0.045 0.045 −0.071 −0.071
0.5 LGsimu ADD 0.548 0.091 0.089 6.011 6.169 0.5 0.073 0.072 6.853 6.92 0.3035 0.044 0.044 6.895 6.963
2 LGsimu ADD 2.042 0.131 0.128 15.65 15.93 1.979 0.092 0.092 21.46 21.56 1.1699 0.05 0.052 23.37 22.39
0 SVsimu H0 −0.002 0.092 0.093 −0.03 −0.03 −1E-03 0.076 0.077 −0.01 −0.01 −6E-04 0.046 0.046 −0.014 −0.014
0.5 SVsimu ADD 0.871 0.101 0.098 8.615 8.866 0.833 0.078 0.075 10.68 11.04 0.4999 0.046 0.045 10.91 11.2
2 SVsimu ADD 3.337 0.22 0.205 15.14 16.31 3.273 0.127 0.119 25.73 27.4 1.9147 0.064 0.066 29.7 28.93
*

n=2000 and 1998 for Rand and Same sampling schema.

θ^¯: The mean of θ^¯ for 1000 replicates; se^(θ^)¯: The mean of estimated standard error of θ^ for 1000 replicates; sdθ^): The empirical standard deviation of θ^ for 1000 replicates; pA is minor allele frequency of SNP; θ is the association coefficient of SNP with outcome; SM is simulation model; DM is disease model representing the underlying genetic disease model. LG stands for logistic regression model on the regrouped binary outcome (recoding as 0 or greater than 0); SV stands for the set-valued method; oLG stands for ordered logistic regression method; oPRB is the usual probit model with IRWLS estimation algorithm.