

HHS Public Access

Author manuscript

Insect Biochem Mol Biol. Author manuscript; available in PMC 2016 July 01.

Published in final edited form as: Insect Biochem Mol Biol. 2015 July ; 62: 51–63. doi:10.1016/j.ibmb.2014.10.006.

Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in *Manduca sexta*

Xiaolong Cao^{a,‡}, Yan He^a, Yingxia Hu^a, Xiufeng Zhang^a, Yang Wang^a, Zhen Zou^b, Yunru Chen^c, Gary W. Blissard^c, Michael R. Kanost^d, and Haobo Jiang^{a,†,‡}

^aDepartment of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA

^bThe State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China

^cBoyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA

^dDepartment of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA

Abstract

Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., 2015), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sushi, Wonton, TSP, CUB, Frizzle, and SR domains. There are nineteen groups of genes evolved from relatively recent gene duplication and sequence divergence. Thirtyfive SPs and seven SPHs contain 1, 2 or 5 clip domains. Multiple sequence alignment and molecular modeling of the 54 clip domains have revealed structural diversity of these regulatory modules. Sequence comparison with their homologs in Drosophila melanogaster, Anopheles gambiae and Tribolium castaneum allows us to classify them into five subfamilies: A are SPHs with 1 or 5 group-3 clip domains, B are SPs with 1 or 2 group-2 clip domains, C, D1 and D2 are SPs with a single clip domain in group-1a, 1b and 1c, respectively. We have classified into six categories the 125 expression profiles of SP-related proteins in fat body, brain, midgut, Malpighian tubule, testis, and ovary at different stages, suggesting that they participate in various physiological processes. Through RNA-Seq-based gene annotation and expression profiling, as

^{© 2014} Elsevier Ltd. All rights reserved.

[†]Corresponding author: Haobo Jiang, 127 Noble Research Center, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, Tel: (405)-744-9400, Fax: (405)-744-6039, haobo.jiang@okstate.edu. [‡]These authors have made equal contribution to this study.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

well as intragenomic sequence comparisons, we have established a framework of information for future biochemical research of nondigestive SPs and SPHs in this model species.

Keywords

phylogenetic analysis; insect immunity; hemolymph protein; clip domain; RNA-Seq

1. Introduction

S1A serine proteases (SPs) are a large family of hydrolytic enzymes that cleave peptide bonds at different levels of specificity (Rawlings and Barrett, 1993). For instance, chymotrypsin cuts efficiently next to any accessible aromatic residues in dietary proteins; thrombin hydrolyzes a few protein substrates next to certain Arg residues at a lower rate (k_{cat}) ; elastase cleaves after small nonpolar residues (e.g. Ala). According to Schechter and Berger (1967), the S1 pocket in a protease, which directly interacts with the P1 side chain in a substrate, determines the enzyme's primary specificity. Protein interactions via regulatory domains in many nondigestive SPs localize transient responses that are regulated by activation, inactivation, or inhibition (O'Brien and McVey, 1993; Krem and Di Cera, 2002; Jiang and Kanost, 2000). The active site of S1A SPs consists of His, Asp and Ser residues, responsible for the acyl transfer mechanism of catalysis. Substrate binding clefts near the active site largely determine enzyme specificity. Led by a secretion signal peptide, SPs are transported to extracellular, vesicular, or granular locations to execute functions. They are commonly synthesized as inactive zymogens and activated by proteolytic cleavage at a particular peptide bond. Through specific molecular recognition, several SP zymogens can form a cascade pathway in which one SP activates the zymogen of another in each step and, thus, amplify the initial signal in a short period of time. The human blood coagulation is a classic example of such SP cascade systems. In addition to SPs, many serine protease homolog (SPHs) genes have been identified in animal genome projects. These proteins, lacking one or more of the catalytic residues, are not active as enzymes but involved in regulating specific SPs (Park et al., 2010; Jiang et al., 2010). However, molecular mechanism of the SPH regulation remains unclear.

We have been studying SP-related proteins from arthropods, because they mediate defense responses such as hemolymph clotting, melanotic encapsulation, antimicrobial peptide induction, and cytokine activation (Jiang et al., 2010). Analogous to some human clotting and complement factors, insect SPs also constitute complex enzyme networks to prevent bleeding and infection. In each insect species with a known genome, SPs and SPHs constitute a large protein family with 50 to 300 members (Christophides et al., 2002; Ross et al., 2003; Zou et al., 2006 and 2007; Waterhouse et al., 2007; Zhao et al., 2010). The corresponding genes are annotated to different accuracies depending on the quality of genome sequences and coverage of expressed sequence tags. Their roles in food digestion, embryo development, and immune responses have been tested in *Drosophila melanogaster*, *Anopheles gambiae, Aedes aegypti, Manduca sexta, Tenebrio molitor*, and other insects (Jang et al., 2008; Barillas-Mury, 2007; Zou et al., 2010; Jiang et al., 2010; Park et al., 2010). SP pathways and their regulators (*e.g.* SPHs, SP inhibitors) are being revealed by

genetic and biochemical analyses. Some of the SPs and SPHs contain one or more disulfidebridged structures named clip domains (Jiang and Kanost, 2000). These proteins were designated CLIPs (Christophides et al., 2002), even though clip-domain SPHs do not clip peptide bond. Constituting the largest group of regulatory domains in the insect SP-related proteins, clip domains in the SPs were classified into group-1a, 1b, and 2 (Ross et al., 2003), which associate with CLIP subfamilies C, D, and B (Waterhouse et al., 2007), respectively. Clip domains in the SPHs (CLIP subfamily A) belong to group-3. While 3D-structures of three clip domains were available (Piao et al., 2005; Huang et al., 2007), little is known about their functions in relation to the structures.

We have investigated an SP-SPH network for proteolytic activation of phenoloxidase (PO), spätzle, and plasmatocyte spreading peptide (PSP) precursors in *M. sexta*. To date, we have not yet elucidated the entire system and would like to annotate all SP and SPH genes in the genome as a step toward achieving that goal. We also hope, through phylogenetic analysis, to establish a platform for comparing SP/SPH sequences from important insect species, combined with functional data from genetic and biochemical analyses. Furthermore, we want to explore the expression patterns of these genes and provide pertinent guidance for future biochemical studies in *M. sexta*.

2. Materials and methods

2.1. Identification of M. sexta SPs and SPHs

Hemolymph (serine) proteases (HPs) 1 through 4 were isolated from 5th instar larval hemocyte cDNA library (Jiang et al., 1999). HP5 through HP23 cDNAs were cloned from 5th instar larval fat body and hemocyte libraries (Jiang et al., 2005). Prophenoloxidase activating proteases (PAPs) 1, 2 and 3 were cloned based on amino acid sequences of the purified enzymes (Jiang et al., 1998, 2003a, and 2003b). HP23 and HP24 genomic clones were isolated during the PAP2 gene analysis (Wang et al., 2006). HP25 through HP29 cDNA fragments were identified in the RNA-Seq data of *M. sexta* hemocytes, fat body, and other tissues (Zou et al., 2008; Zhang et al., 2011; Gunaratna and Jiang, 2013). Gut (serine) proteases (GPs) and their homologs (GPHs) 1 through 70 were uncovered by BLAST search of M. sexta larval midgut EST database (Pauchet et al., 2010) using the PAP1 catalytic domain sequence as a query. The EST pairs (GP8-GP20, GP11-GP65, GP12-GP14, GP18-GP19, GP22–GP49, and GP26–GP48) were encoded by GP8, GP11, GP12, GP18, GP22, and GP26 genes, respectively. Probably due to different locations on cDNAs or sequence variations, the six EST pairs were not assembled into single contigs. The GP62 EST contig was a hybrid of GP61 and GP63 genes. Scolexins A and B were cloned from larval epidermis (Finnerty et al., 1999). SPH1 and SPH2, which form a high M_r cofactor of the PAPs, were cloned from larval fat body cDNA library (Yu et al., 2003). These published protein sequences were used as queries to search Manduca Cufflinks Assembly 1.0 (http:// agripestbase.org/manduca/) using the TBLASTN algorithm with default settings. Hits with aligned regions longer than 30 residues and identity over 40% were retained for retrieving corresponding cDNA sequences. Correct open reading frames (ORFs) in the retrieved sequences were identified based on their lengths and domains structure predicted using ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and SMART (http://smart.emblheidelberg.de/smart/set mode.cgi). Errors resulting from misassembled regions in the Manduca Genome Assembly 1.0 (http://agripestbase.org/manduca/) were fixed by BLASTN search of Manduca Oases and Trinity Assemblies 3.0 of RNA-Seq data (http:// darwin.biochem.okstate.edu/blast/blast_links.html). These two genome-independent assemblies (Cao and Jiang, 2015) were developed to cross gaps among genome scaffolds or contigs, to detect errors in the genome assembly and gene models, and to profile expression of genes bearing the imperfections. The improved sequences were in many cases verified with Manduca Official Gene Set (OGS2.0, http://agripestbase.org/manduca/) and Manduca Cufflinks Assembly 1.0b (http://darwin.biochem.okstate.edu/blast/blast links.html) based on all 52 cDNA libraries sequenced by Illumina technology (Cufflinks 1.0 was based on only 33 of the libraries). To uncover all members of SP/SPH gene clusters, which are too similar to distinguish by Cufflinks 1.0/1.0b, the relevant genome contigs were manually examined to identify exons based on the GT-AG rule and sequence alignment, as the exonintron junctions are absolutely conserved among these clustered genes. One of the sequence pairs (e.g. GP11-GP65) or triplets (e.g. GP8-GP20-SP133) encoded by the same gene was kept, whereas the incomplete genes were excluded from the final gene list.

2.2. Sequence properties of M. sexta SPs and SPHs

Sequences were categorized as SPs or SPHs by examining the presence of a His-Asp-Ser catalytic triad. If all three residues were found in the conserved TAAHC, DIAL, and GDSGGP regions, the proteins were considered to be SPs. Sequences lacking one or more of the key residues were designated SPHs. The signal peptide was predicted by SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/) (Petersen et al., 2011) and Signal-3L (http:// www.csbio.sjtu.edu.cn/bioinf/Signal-3L/) (Shen and Chou, 2007). Domain structure of each protein was predicted using InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan/). While some clip domains were found by prediction, others were discovered by manual inspection of the sequences for a cysteine doublet in the region amino-terminal to the protease or protease-like domain (PD or PLD). SPs and SPHs containing four additional cysteine residues upstream of the doublet were designated cSPs and cSPHs, respectively, to indicate the presence of a clip domain (Jiang and Kanost, 2000). For predicting the substrate specificities of SPs, residues 190, 216 and 226 (chymotrypsin numbering) (Perona and Craik, 1995), which determine the primary substrate-binding pocket, were identified from the aligned PD/PLD sequences. SPs containing Asp190, Gly216, and Gly/Ala/Ser226 are predicted to have trypsin-like specificity; SPs with Ser/Thr190, Gly216, and Gly/Ala/Ser226 are classified as chymotrypsin-like. When position 216 or 226 is occupied by a larger, usually nonpolar residue, these SPs are presumably elastase-like.

2.3. Multiple sequence alignment and phylogenetic analysis

Multiple sequence alignments of SP catalytic domains and SPH protease-like domains were performed using MUSCLE, one module of MEGA 6.0 (http://www.megasoftware.net). The following parameters were used: refining alignment, gap opening penalty = -2.9, gap extension penalty = 0, hydrophobicity multiplier = 1.2, maximum iterations = 100, clustering method (for iterations 1 and 2) = UPGMB, and maximum diagonal length = 24. In order to compare equivalent regions in all these sequences, the PD and PLD domain sequences with four extra residues preceding them were aligned. The aligned sequences

were used to construct neighbour-joining phylogenetic trees using MEGA 6.0 with bootstrap method for the phylogeny test (1000 replications, Poisson model, uniform rates, and complete deletion of gaps or missing data). For multiple sequence alignment of the clip domains, the sequences from one residue before Cys-1 to one after Cys-6 were analyzed.

2.4. Protein structure modeling

Amino acid sequences of the 54 clip domains were submitted to the I-TASSER server (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) for 3D-structure prediction (Zhang, 2008). Models were built based on multiple-threading alignments by LOMETS and iterative TASSER simulations (Roy et al., 2010). The best model was automatically selected for the production of molecular graphics using PyMol (DeLano Scientific, Palo Alto, CA). Based on the phylogenetic tree of PD/PLD domains, groups or subgroups of the models were separately aligned and displayed in groups. For pairs with high sequence identity, the "align" command of Pymol was used to perform sequence and then structural alignment. For pairs with low sequence identity, the "cealign" command of Pymol, which performs a structure-based alignment was used. In each (sub)group, root-mean-square deviations (RMSDs) from the pairwise model comparisons were examined to identify the model with the lowest average RMSD for display. SPH42, whose model differed significantly from other group A:3 members (see below for the naming of clip domains), was moved to group B:2 (1st clip domain) to generate the lowest average RMSD.

2.5. Expression profiling

Manduca Cufflinks Assembly 1.0b (http://darwin.biochem.okstate.edu/blast/ blast_links.html) was constructed based on *Manduca* Genome Assembly 1.0 (http:// agripestbase.org/manduca/) and 52 cDNA libraries sequenced by Illumina technology (Cao and Jiang, 2015). These libraries represent mRNA samples isolated from whole larvae, organs, or tissues at various developmental stages. The number of reads mapped onto each transcript in the list of 107 SPs and 18 SPHs using RSEM (Li and Dewey, 2011) was used to calculate FPKM (fragments per kilobase of exon per million fragments mapped) in these libraries. Hierarchical clustering of the log₂(FPKM+1) values was performed using MultiExperiment Viewer (v4.9) (http://www.tm4. org/mev.html) with the Pearson correlation-based metric and average linkage clustering method. K-means clustering was performed with Pearson correlation metric and 50 iterations to properly categorize the SP/ SPHs based on their expression patterns. Based on the figure of merit (FOM), k was set to six for the final analysis. In each of these six groups, Tukey's honestly significant difference (HSD) test was applied to further classify the log₂(FPKM+1) values with *p* <0.05.

3. Results and discussion

3.1. Identification of highly reliable M. sexta SP and SPH sequences by a combined approach

The *Manduca* genome assembly consists of 20,891 scaffolds with N_{50} at 664 kb (X et al., 2015). Half of the scaffolds are shorter than 1 kb, accounting for 1.70% of the 419 Mb assembly. Some of the 17,000 NNN regions (4.71% of the assembly) contain gene elements.

Repetitive elements and other highly similar sequences cause assembling errors. These imperfections pose challenges for quality gene annotation of large gene families, especially.

A TBLASTN search of *Manduca* Cufflinks Assembly 1.0 using the known *M. sexta* SP and SPH sequences as queries resulted in a long list of 563 homologs. After removal of the redundant hits and genes whose aligned regions are lower than 40% identical or shorter than 30 residues, 417 candidate transcripts were retrieved for ORF identification and domain prediction. During confirmation of the published SP and SPH sequences, we found in several cases parts of a single cloned cDNA located on different scaffolds. For instance, exons 1 through 5 and exons 7 through 10 of the HP2 gene are present on one scaffold and the region between exons 5 and 7 does not contain any unknown sequence, but exon 6 is found on another scaffold. This indicates that some regions of the genome were incorrectly assembled, perhaps due to repetitive sequences or high sequence similarity among certain family members. The Cufflinks sequences, assembled based on the genome sequence, cannot reveal such genes whose exons are not all on the same scaffold. Assuming similar defects exist in other scaffolds/contigs, we decided to use Oases and Trinity to assemble de novo all RNA-Seq data from the 52 cDNA libraries (Cao and Jiang, 2015). The genomeindependent assemblies proved to be valuable tools for revealing genome assembly problems and, more commonly, extending Cufflinks sequences that are often disrupted by gaps between genomic fragments. During sequence crosschecks, we found about half of the SP/SPH hits in Manduca Official Gene Set 1.0 need minor-to-major improvements and, by combining the *de novo* assemblies with highly reliable genome contigs, the accuracy of predicted gene models was improved to 95% or higher. Furthermore, we examined the contigs containing multiple SP/SPH genes in a cluster and uncovered them one by one based on their conserved exon-intron borders. Within a large gene cluster, corresponding exons with high sequence similarity led to numerous "splicing isoforms" in Cufflinks 1.0 and 1.0b assemblies by merging some exons from one gene with other exons in nearby gene(s). Cufflinks 1.0b was constructed based on all the RNA-Seq data, including reads from the 19 cDNA libraries that had not been assembled into Cufflinks 1.0 (Cao and Jiang, 2015). Extensive search of all these sequence databases and painstaking cross-examination yielded a complete collection of SP-related coding sequences whose quality was further improved by removing redundant and fragmented ones. The final list included 193 SPs and SPHs. Based on preliminary analysis of their expression patterns, 68 are classified as gut (serine) proteases (GPs) and their close homologs (GPHs), which are reported in a companion paper (Kuwar et al., 2015). The other 125 SP-related proteins, including hemolymph (serine) proteases (HPs) and hemolymph SPHs, are reported in Table 1. In the rest of this paper, we use "SPs" or "SPHs" to refer to these 125 proteins presumably not involved in food digestion.

3.2. General structural features of the nondigestive SPs and SPHs

Consistent with their expected extracellular functions, all the sequences (except for SP56) are predicted to have a secretion signal peptide (Table 1). In the S1A family of SPs, the catalytic residues (His, Asp, Ser) are often embedded in conserved motifs of TAAHC, DIAL and GDSGGP, respectively. We identified these motifs in the 107 SP sequences, which are most likely catalytically functional proteases. In contrast, none of the 18 SPHs is anticipated

to be catalytically active, because at least one of the catalytic triad is substituted. The overall foldings of the PDs (serine protease domains) and PLDs (SPH protease-like domains) are expected to be conserved, due to their similar primary structures. A typical S1A PD is 235~250 residues long, but these SPs and SPHs range from 255 to 1990 residues, with an average size of 413, indicating that many of them contain domains or other structural additions, which may have regulatory functions. Hence, we examined and identified in 52 of the 125 sequences ten domain types, namely clip (54), LDLa (low-density lipoprotein receptor class A repeat, 22), Sushi (8), Wonton (1), SR (scavenger receptor, 3), TSP (thrombospondin, 2), CUB (C1r/C1s, Uegf, Bmp1, 1), Frizzle (1) and SEA (sperm protein, enterokinase, agrin, 1) (Fig. 1), with the domain numbers indicated in parentheses. These structural modules probably allow their PDs or PLDs to interact with each other and form SP pathways to mediate complex physiological processes, such as embryonic development and immunity. Unlike digestion of dietary proteins, proper domain interactions are necessary in these cases to control the catalytic activities or to localize proteolytic reactions. This notion is supported by the conserved domain organization of certain SPs (e.g. HP14/HP14b/ MSP, SP50/Nudel) and SPHs (e.g. SPH53/Masquerade) in a phylogenetically wide range of holometabolous insects including beetles, moths, butterflies, bees, wasps, ants, mosquitos, and flies (Christophides et al., 2002; Ross et al., 2003; Jiang et al., 2010; Park et al., 2010; Waterhouse et al., 2007; Zhao et al., 2010; Zou et al., 2006 and 2007).

Clip domains constitute the largest group of regulatory domains in the SP-related proteins of *M. sexta*. These disulfide-bridged structures exist in many arthropod SPs and SPHs involved in defense responses and embryonic development (Jiang and Kanost, 2000). In total, 54 clip domains are present in 35 SPs and 7 SPHs of *M. sexta* (Figs. 1 and 2), accounting for 34% of the nondigestive SPs/SPHs. Most (33) of them contain a single amino-terminal clip domain (27 SPs and 6 SPHs); 8 SPs have two clip domains; SPH53 has five clip domains. SPH53 is orthologous to Masquerade, a *Drosophila* SPH that affects axonal guidance and taste behavior (Murugasu-Oei et al., 1996). Penta-clip-domain SPHs are identified in all the holometabolous insects with known genome sequences (data not shown). The tandem clip domains may allow the attached SP or SPH domain to interact with multiple partners.

Some SPs contain other types of modules with conserved architecture. SP50 and *Drosophila* Nudel have the same domain structure of 3LDLa-PD-2LDLa-SR-PLD-3LDLa-SR (Fig. 1), suggesting that a partial fusion of two to three protease genes gave rise to an ancestral gene before it radiated to various insect groups to exert an essential function. *Drosophila* Nudel is an initiator of the SP cascade that determines the dorsal-ventral polarity of embryos. Interestingly, SP50 is also specifically produced by adult ovary in *M. sexta* (see below) and, like Nudel, may be deposited in eggs as a maternal factor. Other LDLa-domain SPs/SPHs include SP56, SPH145, HP14, and HP14b. *M. sexta* HP14, *T. molitor* and *D. melanogaster* modular serine proteases (MSPs) act as the first enzyme to trigger the prophenoloxidase (proPO) activation system and pro-Spätzle processing (Wang and Jiang, 2006; Kim et al., 2008; Buchon et al., 2009). In addition to the five LDLa repeats and PD domain, HP14, MSP and their homologs in other insects contain a Sushi domain and its variant, Wonton domain. *M. sexta* HP14b, containing four LDLa, two Sushi and one PD, is substantially

expressed only in 0–3 h embryos (see below). Its physiological function in embryonic development is worth exploring in the future.

Sushi-domain SPs play key roles in the human complement system (Whaley and Lemercier, 1993). *M. sexta* SP112, HP25, and SPH33 contain one or three Sushi domains (Fig. 1). Other disulfide-stabilized domains include SR in SP50 and SP56, TSP in SP55, CUB in HP27, and Frizzle in SPH145. Except for SP56, all these SPs/SPHs contain no transmembrane region, and that does not exclude the possibility some of them associate with cell membrane via other mechanisms.

3.3. Sequence alignment and evolution of the nondigestive SPs and SPHs

Alignment of the 125 complete SP/SPH sequences and construction of the phylogenetic tree (Fig. 2) revealed 19 branches, clades or hypothetical taxonomic units (HTUs), whose root node bootstrap values were greater than 350 in 1000 trials. The low threshold was chosen to reveal significant phylogenetic relationships and preserve deeper thus less reliable ones at the same time (Ross et al., 2003). While HP27, SPH42, SPH53, SPH145, SP60, SP129, SP90, SP48, SP56, SP130, SP143, SP131, SP132, SP40, SP44, SP91, SP43, SP50, SP142 and SP82 are less similar to the other 105 SPs or SPHs, evolutionary relationships of the latter are revealed in these branches. Currently, we do not know the chromosomal locations of these genes. However, based on their positions on scaffolds or contigs (Table S1), we know that some of the 105 genes are in close proximity and probably arose from somewhat recent gene duplication and sequence divergence. These include: HP1a-HP1b (branch 4), SP86-SP87 (branch 5), SP88-SP89 (branch 6), SP35-SP36-SP37-SP38 (branch 10), SP47-SP62-SP63-SP66 and GPH35–GPH46 (branch 16), SPH79–SPH96 (branch 17), HP19-SP138, SP31-SP32-SP97 and HP14b-HP20-HP25-SPH3-SPH33-SP34-SP74-SP75-SP76-SP77 (branch 18), and scolexinA-scolexinB (branch 19). Each gene pair/cluster is located in the same scaffold.

Similar gene duplication events also gave rise to clip-domain SPs and SPHs (*i.e.* CLIPs) (Fig. 3). HP24, HP26, HP12, PAP2, and PAP3 genes are next to each other on adjacent contigs (Table S1). Whether their close homologs GP33, HP15 and HP23 are nearby on the same chromosome is not yet known. Genes in the following clusters (HP5-HP8-GP6 in branch 1, SPH1a-SPH1b-SPH4-SPH101 in branch 3, HP2-HP13-HP18a-HP18b-HP21-HP22-SP33 in branch 12) all encode a single clip domain and reside in the same or nearby contigs. An analysis of the 125 PDs/PLDs yielded many similar results (data not shown), indicating that gene duplications were responsible for the gene family expansion.

3.4. Phylogenetic relationships of the clip-domain SPs and SPHs

Intrigued by their functional importance, we further studied the sequences of the 42 CLIPs. A phylogenetic tree based on their PD and PLD sequences (Fig. 3A) indicates that the proteins fall into five clades, which also have interesting similarities in their domain architecture. Clade A consists of six single clip SPHs and one quintuple clip SPH53; clade B includes eight dual clip SPs (HP15, HP23, HP24, HP26, HP12, PAP2, PAP3, GP33) and four single clip SPs (HP5, HP8, GP6, PAP1); clade C has eleven single clip SPs (HP2, HP6, HP13, HP18a, HP18b, HP21, HP22, HP28, SP30, SP33, and SP144); clade D is composed

of twelve single clip SPs that form two subgroups D1 (HP1a, HP1b, HP17a, HP17b, SP52 and SP60) and D2 (SP131, SP132, SP140, SP141, SP142 and SP143). These clade names are designated based on their alignment with homologs from *D. melanogaster, A. gambiae*, and *T. castaneum* (data not shown). As such, clades A through D correspond to *A. gambiae* CLIPAs through CLIPDs, respectively. These results suggest that the major groups of CLIP genes were in existence before the radiation of holometabolous insects. *M. sexta* CLIPA genes are a lot fewer than those in the fly, beetle, and mosquitoes, whereas *A. aegypti* CLIPB genes are considerably more than the other insects (Table 2).

Alignment of the 54 clip domains generally supports the phylogenetic relationships derived from those of the complete and PD/PLD sequences, but the aligned sequences and tree topology reveal remarkable diversity of the regulatory domains (Table 3; Fig. 3B). Nine of the eleven group-3 clip domains in CLIPAs form two clades with root node bootstrap values lower than 20. SPH1a, SPH1b, SPH101, and SPH4 clip domains form a tight subtree with topology similar to that of the PLD sequences to which they are linked (Fig. 3A). Clip domains of SPH53-3-SP141 (D2:1c) and SPH42-HP8 (B:2) form two pairs. Five group-1c clip domains in CLIPD2s form a clade similar in topology to that of the associating PDs. In contrast, sequence hypervariability of the six group-1b clip domains in CLIPD1s greatly affects the reliability of branching orders, when compared with those based on alignments of the corresponding PDs. Seven of the eleven group-1a clip domains in CLIPCs form a close group (Fig. 3B), and so do most of the group-2 clip domains in CLIPBs. The branch orders of the 2nd clip domains in HP12-HP15-HP23-HP24-HP26-PAP2-PAP3-GP33 (Fig. 3B) closely resemble those in Fig. 3A. In summary, despite variability in clip domain sequences, their evolution seems to have followed similar paths as their associated PDs/PLDs. CLIPBs are closer to CLIPCs and CLIPDs than to CLIPAs.

Except for GP33, all the 35 clip-domain SPs are predicted to have trypsin-like specificity by cleaving next to a positively charged residue (Arg, Lys or His), since their primary substrate binding pockets are composed of Asp-Gly-Ala in HP24, HP26 and HP28 or Asp-Gly-Gly in the others (Table 1) (Perona and Craik, 1995). With Ser-Gly-Thr located in the equivalent positions, GP33 may be an elastase-like protease, cleaving after small residues (e.g. Ala). Although the same trypsin-like specificity cannot be correlated with the different CLIP groups, their proteolytic activation sites exhibit interesting patterns: all the six CLIPD2s are probably activated by cleavage between Arg and Ile; the six CLIPD1s are cut between Arg and Val/Ile. In contrast, seven of the eleven CLIPCs are predicted to be cleaved between Leu and Ile; SP33, HP18a and HP18b after Ala; HP6 after His (Table 1). All four single (GP6, PAP1, HP5 and HP8) and one dual clip (HP24) CLIPBs are activated by cutting between Arg and Ile, and the other seven (dual clip) CLIPBs between Lys and Ile/Leu. These findings are consistent with the general notion that initiator SPs (e.g. HP14/MSP) with chymotrypsin-like specificity cuts CLIPCs next to Leu and the active CLIPCs then activates CLIPBs by cleavage next to Lys/Arg (Jiang and Kanost, 2000; An et al., 2009; Kellenberger et al., 2011).

3.5. Structural features of the clip-domains deduced from molecular modelling

We proposed that clip domain may interact with a regulatory protein or anchor the enzyme to the surface of an invading organism (Jiang and Kanost, 2000). While 3D-structures of three clip domains have been solved (Piao et al., 2005; Huang et al., 2007), little is known about their functions in relation to the structures. With all the clip domains identified from the genome project, we attempted to predict their tertiary structures for use as a basis to understand their functions and evolution. Using I-TASSER server, we built models of the 54 clip domain structures based on multiple-threading alignments and iterative template assembly simulations (Roy et al., 2010). Results of the phylogenetic analysis (Fig. 3) allowed us to align and compare the predicted structures in the eight groups, despite of the limitations of molecular modeling.

The first clip domains in the dual clip SPs (Fig. 4A) are remarkably similar to each other. HP24-1 (Fig. 4I) best represents this group, since the average root-mean-square deviations (RMSD) for the other eight models compared with HP24-1 is the lowest (0.68 Å) (Table 3). The average RMSDs against the other models range from 0.68 to 1.44 Å with a group average at 0.79 Å. The RMSD between PAP2-1 model and actual structure (Huang et al., 2007) is 0.64 Å. Likewise, the second clip domains in the same proteins are highly similar to each other, which are best represented by HP24-2 (Fig. 4, B and J). The lowest, range, and average RMSDs for this group are 0.59, 0.59 to 0.89, and 0.66 Å, respectively. The RMSD between PAP2-2 model and actual structure is 0.64 Å. Since the PAP2-1 and PAP2-2 models are constructed not based on their known structures, the structural resemblances (0.64 and 0.64 Å) being so close to the group RMSDs (0.79 and 0.66 Å) strongly suggest that all these models are reliable. So are those for the clip domains in the four single clip SPs (Fig. 4, C and K). PAP1 best represents this group and the lowest, range and average RMSDs are 0.67, 0.67 to 0.83, and 0.75 Å (Table 3), respectively. These group-2 clips in CLIPBs may adopt the same structures: a three-stranded antiparallel β -sheet flanked by two α-helices. Interestingly, the clip domain in SPH42 is predicted to have a structure similar to the group-2 clips, especially the clip domain-1s (Fig. 4A and Table 3). This is consistent with the clip domain tree where the "group-3" clip is together with the group-2 clips of HP8, GP6 and HP5 (Fig. 3C).

The group-1a clip domains in CLIPCs seem to be conserved in the three-stranded β -sheet and one α -helix (Fig. 4, D and L). The C-terminal α -helix either is missing or has only one turn, which may be caused by shorter sequences (15 to 17 residues) between Cys-3 and Cys-4 than those (23 to 26 residues) in group-2 clip domains (Table 3). HP13 best represents this group. The lowest, range and average RMSDs are 1.26, 1.26 to 3.04, and 1.67 Å, respectively. Similarly, the group-1b clip domains in CLIPD1s may also contain a small, antiparallel β -sheet flanked by two short α -helices (Fig. 4, E and M). The regions between Cys-3 and Cys-4 are intermediate: 14 to 24 residues long. HP17a, the best representative of this group, has an average RMSD of 1.37 Å when compared with the other five models (Table 3). The range and average RMSDs are 1.37 to 2.15 and 1.68 Å. The clip domains in CLIPBs, CLIPCs and CLIPD1s appear to be similar in 3D-structure to the PAP2-1 and PAP2-2. In contrast, those in CLIPD2s and CLIPAs somewhat resemble mouse β -defensin-8 and PPAFII, respectively (Fig. 4, F to H, N to P). Their high group RMSD values (4.39 and

2.74 Å) and ranges (3.89 to 4.55 Å and 2.21 to 3.85 Å) suggest major structural divergences. An extreme example is the five clip domains in SPH53, which either have no resemblance to any known protein or have low similarity to structures with different disulfide linkage patterns (Table 3). These structural modeling results are mostly consistent with the evolutionary relationships based on the sequence comparison (Fig. 3).

3.6. Expression profiling

As a step toward understanding roles of the 125 nondigestive SPs and SPHs, we examined their mRNA levels in the 52 tissue samples from *M. sexta* at various developmental stages. Cluster analysis of the expression profiles resulted in six groups (Fig. S1). Group A included 15 CLIPs and 13 other SPs/SPHs, whose average log₂(FPKM+1) value (3.1) of the 28 genes in the 52 libraries was higher than those of the other groups (B: 1.6, C: 1.5, D: 0.7, E: 0.4, and F: 0.8). The mRNA levels for genes in group A were significantly higher in fat body of the wandering larvae (5.0) and early pupae (6.2) and muscles of day 0.5, 5^{th} instar larvae (4.8, 4.8) than in the other libraries. Group B had thirteen members including five CLIPs. Their mRNA levels were also highest in the wandering larval (5.7) and early pupal (5.5) fat body samples, and the levels in the muscles of *wandering* larvae (4.5, 5.1) were also significantly higher than in the other 48 libraries. Group C consisted of 11 CLIPs and 10 other SPs, whose transcripts were most abundant in heads of larvae, pupae and adults as well as muscles of the late 4th and early 5th instar larvae. Group D includes 10 CLIPs and 26 other SPs/SPHs. Characteristically high mRNA levels were found in heads of the late pupae (2.0), in the late embryos (2.8), and in midgut of the 2^{nd} (2.7) and 3^{rd} (2.3) instar larvae. Group E was composed of 1 CLIP and 14 SPs, with mRNA levels significantly higher in adult fat body (4.1) and Malpighian tubules (4.8, 2.8), pupal and adult testis (2.5, 1.5) than the other libraries. Group F included 6 SPs and 6 SPHs. Their highest transcript levels were found in late pupal and early adult fat body (4.9, 4.3) and midgut (4.4, 6.4). Some of these expression patterns may reflect transcriptional co-regulation.

We also identified unique expression patterns in certain SP genes (Table S2). For instance, the mRNA levels or log₂(FPKM+1) values of SP56 (A: 6.6) and SP102 (F: 12.1) were highest in ovaries of late pupae, SP84 (B: 9.7 and 8.3) was at high levels in midgut of prewandering and wandering larvae, SP39 (D: 8.8) in heads of late 4th instar larvae, and SP75 (F: 8.1) in fat body of early pupae, compared other tissues (Fig. 5). Such information on tissue/stage-specific expression is useful for their cDNA isolation and functional analysis.

3.7. Concluding remarks

Serine proteases and their homologs constitute one of the largest protein families in insects. Here, we have analyzed 125 of the 193 SPs and SPHs in *M. sexta* and established a framework of knowledge which is expected to facilitate research on their functions in processes not related to food digestion. Over half of the 105 SPs/SPHs have arisen by lineage-specific gene duplications, making it difficult to identify orthologs in closely related insects. Nevertheless, the extensive RNA-Seq data not only ensure the quality of gene annotation but also reveal their temporospatial expression patterns. Based on the correct sequences, we have identified ten types of regulatory domains. Interestingly, the classification of CLIPs and evolutionary relationships deduced from sequence alignments, in

the most part agree well with structural diversity of the clip domain models and conservation of the putative proteolytic activation sites. This information, along with the predicted specificity of PDs, will guide our biochemical elucidation of the SP-SPH network that mediates or modulates immune mechanisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by NIH grants GM58634 (to H. Jiang) and GM41247 (to M. Kanost), NSFC grant 31272367 (to Z. Zou), Chinese IPM1304 (to Z. Zou), and a DARPA grant (to G. Blissard). This work was approved for publication by the Director of Oklahoma Agricultural Experimental Station, and supported in part under project OKLO2450 (to H. Jiang). Computation for this project was performed at OSU High Performance Computing Center at Oklahoma State University supported in part through the National Science Foundation grant OCI–1126330.

Abbreviations

SP	serine protease
SPH	serine protease homolog
НР	hemolymph (serine) protease
GP	gut (serine) protease
GPH	gut (serine) protease homolog
PD	SP catalytic domain
PLD	SPH protease-like domain
LDLa	low-density lipoprotein receptor class A repeat
SR	scavenger receptor
TSP	thrombospondin
CUB	C1r/C1s, Uegf, Bmp1
SEA	sperm protein, enterokinase, agrin
LC	low complexity
MSP	modular serine protease
PSP	plasmatocyte spreading peptide
HTU	hypothetical taxonomic units
CLIP	clip-domain SP or SPH
PO and proPO	phenoloxidase and its precursor
PAP	proPO activating protease

References

- An C, Ishibashi J, Ragan EJ, Jiang H, Kanost MR. Functions of *Manduca sexta* hemolymph proteinases HP6 and HP8 in two innate immune pathways. J Biol Chem. 2009; 284:19716–19726. [PubMed: 19487692]
- Barillas-Mury C. CLIP proteases and *Plasmodium* melanization in *Anopheles gambiae*. Trends Parasitol. 2007; 23:297–299. [PubMed: 17512801]
- Bauer F, Schweimer K, Klüver E, Conejo-Garcia JR, Forssmann WG, Rösch P, Adermann K, Sticht H. Structure determination of human and murine β-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci. 2001; 10:2470–2479. [PubMed: 11714914]
- Buchon N, Poidevin M, Kwon HM, Guillou A, Sottas V, Lee BL, Lemaitre B. A single modular serine protease integrates signals from pattern-recognition receptors upstream of the *Drosophila* Toll pathway. Proc Natl Acad Sci USA. 2009; 106:12442–12447. [PubMed: 19590012]
- Cao X, Jiang H. Integrated modeling of protein-coding genes in the *Manduca sexta* genome using RNA-Seq data from the biochemical model insect. Insect Biochem Mol Biol. 2015 in press.
- Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Hetru C, Hoa NT, Hoffmann JA, Kanzok SM, Letunic I, Levashina EA, Loukeris TG, Lycett G, Meister S, Michel K, Moita LF, Müller HM, Osta MA, Paskewitz SM, Reichhart JM, Rzhetsky A, Troxler L, Vernick KD, Vlachou D, Volz J, von Mering C, Xu J, Zheng L, Bork P, Kafatos FC. Immunity-related genes and gene families in *Anopheles gambiae*. Science. 2002; 298:159–165. [PubMed: 12364793]
- Finnerty CM, Karplus PA, Granados RR. The insect immune protein scolexin is a novel serine proteinase homolog. Protein Sci. 1999; 8:242–248. [PubMed: 10210202]
- Gunaratna R, Jiang H. A comprehensive analysis of the *Manduca sexta* immunotranscriptome. Dev Com Immunol. 2013; 39:388–398.
- Huang R, Lu Z, Dai H, Vander Velde D, Prakash O, Jiang H. The solution structure of the clip domains from *Manduca sexta* prophenoloxidase activating proteinase-2. Biochemistry. 2007; 46:11431–11439. [PubMed: 17880110]
- Kellenberger C, Leone P, Coquet L, Jouenne T, Reichhart JM, Roussel A. Structure-function analysis of grass clip serine protease involved in *Drosophila* Toll pathway activation. J Biol Chem. 2011; 286:12300–12307. [PubMed: 21310954]
- Kim CH, Kim SJ, Kan H, Kwon HM, Roh KB, Jiang R, Yang Y, Park JW, Lee HH, Ha NC, Kang HJ, Nonaka M, Söderhäll K, Lee BL. A three-step proteolytic cascade mediates the activation of the peptidoglycan-induced toll pathway in an insect. J Biol Chem. 2008; 283:7599–75607. [PubMed: 18195005]
- Krem MM, Di Cera E. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci. 2002; 27:67–74. [PubMed: 11852243]
- Kuwar, et al. Evolution and regulation of digestive enzyme genes in *Manduca sexta*. Insect Biochem Mol Biol. 2015 manuscript in preparation.
- Jang IH, Nam HJ, Lee WJ. CLIP-domain serine proteases in *Drosophila* innate immunity. BMB Rep. 2008; 41:102–107. [PubMed: 18315944]
- Jiang H, Wang Y, Gu Y, Guo X, Zou Z, Scholz F, Trenczek TE, Kanost MR. Molecular identification of a bevy of serine proteinases in *Manduca sexta* hemolymph. Insect Biochem Mol Biol. 2005; 35:931–943. [PubMed: 15944088]
- Jiang H, Wang Y, Kanost MR. Pro-phenol oxidase activating proteinase from an insect, *Manduca sexta* : a bacteria-inducible protein similar to *Drosophila* easter. Proc Natl Acad Sci USA. 1998; 95:12220–12225. [PubMed: 9770467]
- Jiang H, Wang Y, Kanost MR. Four serine proteinases expressed in *Manduca sexta* haemocytes. Insect Mol Biol. 1999; 8:39–53. [PubMed: 9927173]
- Jiang H, Kanost MR. The clip-domain family of serine proteinases in arthropods. Insect Biochem Mol Biol. 2000; 30:95–105. [PubMed: 10696585]
- Jiang H, Wang Y, Yu X-Q, Kanost MR. Prophenoloxidase-activating proteinase-2 (PAP-2) from hemolymph of *Manduca sexta*: a bacteria-inducible serine proteinase containing two clip domains. J Biol Chem. 2003a; 278:3552–3561. [PubMed: 12456683]

- Jiang H, Wang Y, Yu X-Q, Zhu Y, Kanost MR. Prophenoloxidase-activating proteinase-3 (PAP-3) from *Manduca sexta* hemolymph: a clip-domain serine proteinase regulated by serpin-1J and serine proteinase homologs. Insect Biochem Mol Biol. 2003b; 33:1049–1060. [PubMed: 14505699]
- Jiang H, Vilcinskas A, Kanost MR. Söderhäll K. Immunity in lepidopteran insects. Invertebrate Immunity. 2010; 708:181–204. Adv Exp Med Biol.
- Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12:323. [PubMed: 21816040]
- Murugasu-Oei B, Balakrishnan R, Yang X, Chia W, Rodrigues V. Mutations in masquerade, a novel serine-protease-like molecule, affect axonal guidance and taste behavior in *Drosophila*. Mech Dev. 1996; 57:91–101. [PubMed: 8817456]
- Pallaghy PK, Scanlon MJ, Monks SA, Norton RS. Three-dimensional structure in solution of the polypeptide cardiac stimulant anthopleurin-A. Biochemistry. 1995; 34:3782–3794. [PubMed: 7893675]
- Park JW, Kim CH, Rui J, Park KH, Ryu KH, Chai JH, Hwang HO, Kurokawa K, Ha NC, Söderhäll I, Söderhäll K, Lee BL. Söderhäll K. Beetle immunity. Invertebrate Immunity. 2010; 708:163–180. Adv Exp Med Biol.
- Pauchet Y, Wilkinson P, Vogel H, Nelson DR, Reynolds SE, Heckel DG, ffrench-Constant RH. Pyrosequencing the *Manduca sexta* larval midgut transcriptome: messages for digestion, detoxification and defense. Insect Mol Biol. 2010; 19:61–75. [PubMed: 19909380]
- Perona JJ, Craik CS. Structural basis of substrate specificity in the serine proteases. Protein Sci. 1995; 4:337–360. [PubMed: 7795518]
- Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011; 8:785–786. [PubMed: 21959131]
- Piao S, Song YL, Kim JH, Pak SY, Park JW, Lee BL, Oh BH, Ha NC. Crystal structure of a clipdomain serine protease and functional roles of the clip domains. EMBO J. 2005; 24:4404–4414. [PubMed: 16362048]
- O'Brien, D.; McVey, J. Blood coagulation, inflammation, and defense. In: Sim, E., editor. The Natural Immune System, Humoral Factors. New York: IRL Press; 1993. p. 257-280.
- Rawlings RD, Barrett AJ. Evolutionary families of peptidases. Biochem J. 1993; 290:205–218. [PubMed: 8439290]
- Ross J, Jiang H, Kanost MR, Wang Y. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationship. Gene. 2003; 304:117–131. [PubMed: 12568721]
- Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010; 5:725–738. [PubMed: 20360767]
- Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967; 27:157–162. [PubMed: 6035483]
- Shen HB, Chou KC. Signal-3L: A 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun. 2007; 363:297–303. [PubMed: 17880924]
- Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Barillas-Mury C, Bian G, Blandin S, Christensen BM, Dong Y, Jiang H, Kanost MR, Koutsos AC, Levashina EA, Li J, Ligoxygakis P, Maccallum RM, Mayhew GF, Mendes A, Michel K, Osta MA, Paskewitz S, Shin SW, Vlachou D, Wang L, Wei W, Zheng L, Zou Z, Severson DW, Raikhel AS, Kafatos FC, Dimopoulos G, Zdobnov EM, Christophides GK. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science. 2007; 316:1738–1743. [PubMed: 17588928]
- Wang Y, Jiang H. Interaction of β-1,3-glucan with its recognition protein activates hemolymph proteinase 14, an initiation enzyme of the prophenoloxidase activation system in *Manduca sexta*. J Biol Chem. 2006; 281:9271–9278. [PubMed: 16461344]
- Wang Y, Zou Z, Jiang H. An expansion of the dual clip-domain serine proteinase family in *Manduca sexta*: gene organization, expression, and evolution of prophenoloxidase-activating proteinase-2, hemolymph proteinase 12, and other related proteinases. Genomics. 2006; 87:399–409. [PubMed: 16324822]

Whaley, K.; Lemercier, C. The complement system. In: Sim, E., editor. The Natural Immune System, Humoral Factors. New York: IRL Press; 1993. p. 121-150.

X, et al. The genome of *Manduca sexta*. 2015 manuscript in preparation.

- Yu X-Q, Jiang H, Wang Y, Kanost MR. Nonproteolytic serine proteinase homologs are involved in prophenoloxidase activation in the tobacco hornworm, *Manduca sexta*. Insect Biochem Mol Biol. 2003; 33:197–208. [PubMed: 12535678]
- Zhang Y, Doherty T, Li J, Lu W, Barinka C, Lubkowski J, Hong M. Resonance assignment and threedimensional structure determination of a human alpha-defensin, HNP-1, by solid-state NMR. J Mol Biol. 2010; 397:408–422. [PubMed: 20097206]
- Zhang S, Zhang X, Gunaratna R, Najar F, Wang Y, Roe B, Jiang H. Pyrosequencing-based expression profiling and identification of differentially regulated genes from *Manduca sexta* a lepidopteran model insect that lacks genome sequence. Insect Biochem Mol Biol. 2011; 41:733–746. [PubMed: 21641996]
- Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008; 9:40. [PubMed: 18215316]
- Zhao P, Wang GH, Dong ZM, Duan J, Xu PZ, Cheng TC, Xiang ZH, Xia QY. Genome-wide identification and expression analysis of serine proteases and homologs in the silkworm *Bombyx mori*. BMC Genomics. 2010; 11:405. [PubMed: 20576138]
- Zou Z, Najar F, Wang Y, Roe B, Jiang H. Pyrosequence analysis of expressed sequence tags for *Manduca sexta* hemolymph proteins involved in immune responses. Insect Biochem Mol Biol. 2008; 38:677–682. [PubMed: 18510979]
- Zou Z, Lopez D, Kanost MR, Evans JD, Jiang H. Comparative analysis of serine protease-related genes in the honeybee genome: possible involvement in embryonic development and innate immunity. Insect Mol Biol. 2006; 15:603–614. [PubMed: 17069636]
- Zou Z, Evans J, Lu Z, Zhao P, Williams M, Sumathipala N, Hetru C, Hultmark D, Jiang H.
 Comparative genome analysis of the *Tribolium* immune system. Genome Biol. 2007; 8:R177.
 [PubMed: 17727709]
- Zou Z, Shin SW, Alvarez KS, Kokoza V, Raikhel AS. Distinct melanization pathways in the mosquito *Aedes aegypti*. Immunity. 2010; 32:41–53. [PubMed: 20152169]

Highlights

• Identify 125 nondigestive SPs/SPHs, 52 with 1–10 cystine-stabilized domains;

- Reveal phylogenetic relationships among members in each of the 19 branches;
- Build reliable 3D-models for the group-2, -1a, and -1b clip domains;
- Profile mRNA levels of the 125 SPs/SPHs in tissues at different stages.

Cao et al.

Fig. 1. Domain organization of 42 multi-domain SPs and SPHs in *M. sexta* Signal peptide and other structural elements were predicted as described in Section 2.2. There are 27 single clip SPs, 6 single clip SPHs and 8 dual clip SPs represented by PAP1, SPH1 and PAP2, respectively.

Fig. 2. Phylogenetic relationships of the 125 nondigestive *M. sexta* SPs and SPHs The amino acid sequences of the entire proteins were aligned for constructing the neighborjoining tree as described in *Section 2.2*. On the basis of an arbitrary bootstrap value cutoff (>350 out of 1000 trials), arrowheads are placed at nineteen nodes closest to the tree center. These twigs are clockwisely numbered branches 1 through 19. Clip-domain SPs/SPHs in the CLIPA (\star), CLIPB (O), CLIPC (\blacktriangle) and CLIPD (\blacklozenge) subfamilies are marked with the symbols, whose numbers correspond to the clip domain counts. The expression profiles (A, B, C, D, E and F, see Fig. S1) are indicated next to their names.

Page 19

Cao et al.

Sequence alignments and neighbor-joining trees were constructed as described in *Section* 2.3. For proteins with multiple clip domains, these domains are numbered 1, 2, 3... Bootstrap values of greater than 200 in 1000 trials are marked at the corresponding nodes. Vertical bars and names (A:3, B:2, C:1a, D1:1b and D2:1c) indicate the CLIP (A to D2) and clip domain (1a to 3) groups.

Fig. 4. Molecular modeling of the clip domains in the 35 SPs and 7 SPHs of *M. sexta* The 54 clip domains were modeled and compared as described in *Section 2.4.* (Sub)groups of the models and their representatives are shown in *A* through *H* and *I* through *P*, respectively. *Panel A*: the 1st clip domain (group-2) in the CLIPB proteases GP33, HP12, HP15, HP23, HP24, HP26, PAP2, PAP3, and SPH42; *Panel B*: the 2nd clip domain (group-2) in the same eight CLIPB proteases; *Panel C*: the clip domains (group-2) in the CLIPB proteases GP6, HP5, HP8 and PAP1; *Panel D*: the group-1a clip domains in the CLIPC proteases HP2, HP6, HP13, HP18a, HP18b, HP21, HP22, HP28, SP30, SP33 and

SP144; *Panel E*: the group-1b clip domains in CLIPD1 proteases HP1a, HP1b, HP17a, HP17b, SP52 and SP60; *Panel F*: the group-1c clip domains in the CLIPD2 proteases SP131, SP132, SP140, SP141, SP142 and SP143; *Panel G*: the group-3 clip domains of SPH1a, SPH1b, SPH2, SPH4 and SPH101 (CLIPAs); *Panel H*: the five group-3 clip domains in SPH53 (CLIPA); *Panels I* through *P*: clip domains with the lowest RMSD in each (sub)group are HP24 clip domain-1 (*I*), HP24 clip domain-2 (*J*), PAP1 (*K*), HP13 (*L*), HP17a (*M*), SP132 (*N*), SPH1a (*O*) and SPH53-3 (*P*). The six Cys residues predicted to form three disulfide bonds (Cys1-Cys5, Cys2-Cy4, and Cys3-Cys6) are colored yellow, red, and magenta, respectively.

Fig. 5. Transcript profiles of the nondigestive SPs/SPHs in the 52 *M. sexta* **tissue samples** $Log_2(FPKM+1)$ values for the SP-related mRNAs are shown in the gradient heat map from blue (0) to red (10). The values of 0~0.49, 0.50~1.49, 1.50~2.49 ... 8.50~9.49, 9.50~10.49 10.50~11.49, 11.50~12.49 and 12.50~13.49 are labeled as 0, 1, 2 ... 9, A, B, C and D, respectively. Cluster analysis has revealed six distinct patterns. A (\blacklozenge), B (\Box), C (\triangle), D (\blacktriangle), E (+), and F ($\textcircled{\bullet}$). The 52 cDNA libraries (1 through **52**) represent the following tissues and stages: heads [1. 2nd (instar) L (larvae), d1 (day 1); 2. 3rd L, d1; 3. 4th L, d0.5; 4. 4th L, late; **5**. 5th L, d0.5; **6**. 5th L, d2; **7**. 5th L, pre-W (pre-wandering); **8**. P (pupae), late; **9**. A (adults),

d1; 10. A, d3; 11. A, d7], fat body (12. 4th L, late; 13. 5th L, d1; 14. 5th L, pre-W; 15. 5th L, W; 16. P, d1–3; 17. P, d15–18; 18. A, d1–3; 19. A, d7–9), whole animals [20. E (embryos), 3h; 21. E, late; 22. 1st L; 23. 2nd L; 24. 3rd L), midgut (25. 2nd L; 26. 3rd L; 27. 4th L, 12h; 28. 4th L, late; 29. 5th L, 1–3h; 30. 5th L, 24h; 31. 5th L, pre-W; 32–33. 5th L, W; 34. P, d1; 35. P, d15–18; 36. A, d3–5; 37. 4th L, 0h), MT (38. 5th L, pre-W; 39. A, d1; 40. A, d3), muscle (41. 4th L, late; 42–43. 5th L, 12h; 44–45. 5th L, pre-W; 46–47. 5th L, W), testes (48. P, d3; 49. P, d15–18; 50. A, d1–3), and ovaries (51. P, d15–18; 52. A, d1).

Author Manuscript

Table 1

Author
Manuscript
Autho

Autho	
or Ma	
Inusc	
ript	

QPM MARTING T(DG) MARTING T(DG) MARTING T(DG) MARTING T(DG) MARTING T(DG) MARTING		cutting site	specificity '	length "	exp.	domain '	name ^a	cutting site "	specificity *	length "	exp.	domain
(F) (F) <td>$GP6^{g}$</td> <td>DRDRIVGG</td> <td>T (DGG)</td> <td>431</td> <td>Ω</td> <td>clip PD</td> <td>SP94</td> <td>AADRIIGG</td> <td>T (DGG)</td> <td>299</td> <td>ш</td> <td>Δd</td>	$GP6^{g}$	DRDRIVGG	T (DGG)	431	Ω	clip PD	SP94	AADRIIGG	T (DGG)	299	ш	Δd
CHILE CAL PLID SPR10 Control Contro Contro <thcontro< th=""></thcontro<>	GP33 ^g	VGNKIVGG	E (SGT)	440	A	2clip PD	96HdS	VMGRVAGG		295	ц	PLD
WIND MAND MAND <th< td=""><td>GPH35</td><td>KSPRIIGG</td><td></td><td>256</td><td><u>т</u> с</td><td>PLD PLD</td><td>794S</td><td>GKARISNG</td><td>E(ASA)</td><td>319</td><td>ວເ</td><td>04 0</td></th<>	GPH35	KSPRIIGG		256	<u>т</u> с	PLD PLD	794S	GKARISNG	E(ASA)	319	ວເ	04 0
SPI10 NUMBARY AT Open to a spectral sector SP10 SP11 SP11 <t< td=""><td>SPH19</td><td>DDATANAV</td><td></td><td>CC7</td><td>ם מ</td><td>rLU Alin PLD</td><td>201100 SPH101</td><td>050 TY494</td><td>(DDU)I</td><td>107</td><td><u>ب</u> ر</td><td>UT UT allo</td></t<>	SPH19	DDATANAV		CC7	ם מ	rLU Alin PLD	201100 SPH101	050 T Y 494	(DDU)I	107	<u>ب</u> ر	UT UT allo
SPH1 Distr A Gip UD SPH1(I) NUMBERS SS F P SPH1 NUMPERSO CAAAA 38 R P 38 F P SP13 DENTACCC TOSA 38 C Gip PU SP13 DENTACCC 38 C A SP3 SP3 DENTACCC TOSA 38 B DO	SPHIB	VAVRTTGD		417		clip PLD	SP102	EDVSIVGG	E(SGT)	260) IL	PD
SPH1 DIDLUD SM MIHO RPUID SMET SMET <t< td=""><td>SPH2</td><td>LGFTIVGN</td><td></td><td>398</td><td>A</td><td>clip PLD</td><td>SPH103</td><td>RVGRVAGG</td><td>~</td><td>282</td><td>н</td><td>PLD</td></t<>	SPH2	LGFTIVGN		398	A	clip PLD	SPH103	RVGRVAGG	~	282	н	PLD
PPN TURLING TUB	SPH3	DDSLVLDG		305	A	ΡLD	SPH104	RVGRVAGG		286	ч	PLD
SPI0 Clock MA Ma <t< td=""><td>SPH4</td><td>VVVRTGD</td><td></td><td>389</td><td>æ</td><td>clip PLD</td><td>SP111</td><td>EDDSIVGG</td><td>E(SGT)</td><td>281</td><td>ш</td><td>ΡD</td></t<>	SPH4	VVVRTGD		389	æ	clip PLD	SP111	EDDSIVGG	E(SGT)	281	ш	ΡD
SP13 Internet Internet <th< td=""><td>SP30</td><td>GTGLIVGG</td><td>T (DGG)</td><td>395</td><td>ပ</td><td>clip PD</td><td>SP112</td><td>KREPISGG</td><td>E(SSV)</td><td>620</td><td>A</td><td>3Sushi PD</td></th<>	SP30	GTGLIVGG	T (DGG)	395	ပ	clip PD	SP112	KREPISGG	E(SSV)	620	A	3Sushi PD
SP33 LTEAPROG C(AS) 341 B PDD SP13 REXTVGG TOGAL 341 B DD PD SP13 REXTVGG TOGAL 361 DD PD SP13 REXTVGG TOGAL 363 DD PD SP13 REXTVGG TOGAL 363 DD PD SP13 REXTVGG TOGAL 264 DD PD SP14 REXTVGG TOGAL SP14 REXTVGG SP14 <td>SP31</td> <td>NDTKETNS</td> <td>C (AAA)</td> <td>387</td> <td>в</td> <td>PD</td> <td>SP129</td> <td>TRRRIVGG</td> <td>T(DGG)</td> <td>325</td> <td>۵</td> <td>PD</td>	SP31	NDTKETNS	C (AAA)	387	в	PD	SP129	TRRRIVGG	T(DGG)	325	۵	PD
SH33 Intractione Intractin Intractione In	SP32	ILPIMSGG	E (ASA)	341	е	DD	SP130	RAGRUVGG	T(DGG)	268	Ω	PD
PHI13 SP134 TLAGTOGG FAM Andit Wold PAM	SP33	LPRAPAGG	T(DGG)	411	э	clip PD	SP131	RSNRIVGG	T(DGG)	400	a i	clip PD
NEW IDDA SVIA	SPH33	DUSLVLUG		430	< c	Sushi Wonton PLD	SP132	DDWTN.T.A.	1(DGG)	200	ם נ	clip LCS PL
MYD SUMD	SP34	DDAT DDA	E (ASA)	310	μ	CL 6	SP134	SULL THAN	C(IAG)	767	ц	Ul I
ATM MULTION Class Des Des <thde< th=""> Des Des <thde<< td=""><td>CCAS</td><td>SUSKVVGG</td><td>E (GAN)</td><td>207</td><td></td><td>5</td><td>SP158</td><td>DYNTT.I.S</td><td>U(AAV)</td><td>408</td><td>י כ</td><td>LC PU</td></thde<<></thde<>	CCAS	SUSKVVGG	E (GAN)	207		5	SP158	DYNTT.I.S	U(AAV)	408	י כ	LC PU
SY33 NUMBALING Code D SY141 AGRALINGS T(DOD) SY111	0646	DDAT UNIT	C (AAS)	290		U1 6	CD140	DDATAGA		244	ц C	
SPN3 SEGUTOR C (SOR) SM D D SM SACTOR T (DOC) D(OC) D(OC) D D D SN44 SEMARYNG T (DOC) 310 E PD SN44 SEMARYNG PAS PA	515/ SD29	DDAT AUGU	(000) C	007			SP140 SD141	DDTTTYC		100		Cup PD
Struth	SP30	DDA TUCIS'I	(1000) (1001)	284		5 6	SP142	DEN TYYZY	T(DOG)	1050		clin LCe PL
SPH41 STATUD STATUD </td <td>CDAD</td> <td>DOTT COLLO</td> <td>(1000) E</td> <td>316</td> <td></td> <td></td> <td>SD142</td> <td></td> <td>TUDGG</td> <td>048</td> <td></td> <td>olin LCe DF</td>	CDAD	DOTT COLLO	(1000) E	316			SD142		TUDGG	048		olin LCe DF
SPH14 SWMEOVNY 366 C dip RAIN ASSNOVES T48 D ZIAL SP43 KVGRTVGG C(AGT) 323 D PD HP1 AOGNVFGS T(DG) 388 C C DD SP44 KVGRTVGG C(AGT) 323 D PD HP1 AOGNVFGS T(DG) 388 C C DD SP44 KVALTVGG C(AGT) 323 A PD HP1 AOGNVFGS T(DG) 388 C C DD SP44 RVALTVGG T(DG3) 291 D DD HP1 RVALTVGG T(DG) 388 B DD	SP41	PSARVRVP	T (DGG)	303	ц	2 Q	SP144	ADGLIVGG	T(DGG)	409	ם מ	clip PD
AFTHAL DETTLAG DETTLAG <thdettlag< th=""> <thdettlag< th=""> <thde< td=""><td>CUITUS</td><td>ATAT SO CI MAD</td><td></td><td>226</td><td>ç</td><td>alta DI D</td><td>CDI1146</td><td></td><td>~</td><td>740</td><td>¢</td><td>SEA Frizzle</td></thde<></thdettlag<></thdettlag<>	CUITUS	ATAT SO CI MAD		226	ç	alta DI D	CDI1146		~	740	¢	SEA Frizzle
RHJ RACARTING CUCK DD HP1 ADSERVEG T(DGG) 388 C GID SH4 XURLING C(GST) 534 C L(Z*D) HP1 ADSERVEG T(DGG) 388 C GID SP44 XURLING C(GST) 534 C L(Z*D) HP1 ADSERVEG T(DGG) 388 C GID SP44 XURLING T(DGG) 239 A HP1 ADSERVEG T(DGG) 357 A HP1 SP44 RADALICS T(DGG) 351 L HP1 ADDL AD	SPH42	NINTARA		005	ر	cup rlu	CHIH2C	RADNGVEG		/48	h	2LDLa PLI
Ryth Ryth <th< td=""><td>SP43</td><td>KKGRIVGG</td><td>C (AGT)</td><td>323</td><td>Ω</td><td>DD</td><td>HPla</td><td>AQGRVFGS</td><td>T(DGG)</td><td>388</td><td>U</td><td>clip PD</td></th<>	SP43	KKG R IVGG	C (AGT)	323	Ω	DD	HPla	AQGRVFGS	T(DGG)	388	U	clip PD
SP45 VENTURG C (GG) S34 C LG, PD HP2 ADDLIT C (GG) 255 A PD SP46 XISRLYOG T (DGG) 253 A PD HP4 WWGYMGG T (DGG) 255 A PD SP46 XISRLYOG T (DGG) 515 C LLG PD HP4 WWGYMGG T (DGG) 257 A PD SP51 LAPPAVGG T (DGG) 515 C LG PD HP1 WYGYMGG T (DGG) 357 A PD SP53 SERVICG T (DGG) 515 C DD HP1 WYGYMGG T (DGG) 357 A PD SP53 SERVICG T (DGG) 515 C DD HP1 WYGYMGG T (DGG) 357 A PD SP54 MCMUCG T (DGG) 371 D T (DGG) 357 A PD SP54 MCMUCG T (DGG)	SP44	AVRRIVGG	T (DGG)	505	ш	PD LCs	HP1b	PQGRVFDS	T(DGG)	388	в	clip PD
SP40 ATEAL IVOG Code Diag	SP45	RVPLIFNG	C(GSI)	534	ပ ၊	LCs PD	HP2	ADELIVGG	T(DGG)	405	٧·	clip PD
SP44 MEARAUGE (1006) 200 A PD	SP46	SDA LASTA	C (GGS)	288	т, -	(14 1	HF3	DDA TDANN	(DOG))	255	A C	(14 (14)
Field Tildlar Field Tildlar Field Tildlar Field Tildlar Field	SP4/ SD40	DOLLACO	T (DGG)	667			HP4 UD5	PMVGVAGG		736	- > د	UT Alin DD
PF50 AESRV/0G T (DGG) 57 A dip SP51 LAPRAVG T (DGG) 515 C LGS PD HP CULLER CULLER PD HP CULLER CULER CULER CULER	0410	DDA TYDOY	(55)T) T	167	ב	21 DI 6 DI 21 DI 6	CIU	DDTTNACA		400	¢	cupru
SP51 LAPPAVGG T (DGG) 515 C LCS PD HP3 RVBLECK T (DGG) 371 A PI SP54 SGGRUVGG T (DGG) 515 C LCS PD HP3 RNBLTVGG T(DGG) 371 A PI SP54 SGGRUVGG T (DGG) 267 A PI R <td>SP50</td> <td>AESRUVGG</td> <td>T (DGG)</td> <td>1990</td> <td>ц</td> <td>SR PLD 3LDLa SR</td> <td>HP6</td> <td>LDLHILGG</td> <td>T(DGG)</td> <td>357</td> <td>V</td> <td>clip PD</td>	SP50	AESRUVGG	T (DGG)	1990	ц	SR PLD 3LDLa SR	HP6	LDLHILGG	T(DGG)	357	V	clip PD
SF3: SGGRUNGG T (DGG) 371 A Clip DI SP43: SMGRWIGG T (DGG) 371 A Clip DI SP45: SMLRUGG T (DGG) 371 A Clip DI SP55 DMIRLIGG T (DGG) 479 D 2TSPPD HP11 KCGURG 705G) 371 A 2clip DI SP55 DMIRLIGG T (DGG) 479 D 2TSPPD HP11 KCGURG 370 A 2clip DI P1 SP54 KULRFIGG T (DGG) 311 D VUCGURA T (DGG) 411 A 2clip DI SP54 LQFRUGG T (DGG) 310 E PD HP14 GGAT 637 D WULL SP64 IDERRUGG T (DGG) 310 E PD HP14 GTGAT 637 D WULL SP64 IDERRUGG T (DGG) 230 E PD HP14 GTGAT 666 J	SP51	LAPPAVGG	T (DGG)	515	C	L/Cs PD	HP7	GVI.AIEGK	TUDGG	267	V	Ud
SPHI53 RMCWMG 683 D Schip PLD HP0 KPSPATGG T(DGG) 393 B T/I SP54 SOERTUGG T(DGG) 270 A ZULI A ZULI A ZULI A ZULI A ZULI ZULI <td>SP52</td> <td>EGGRIVGG</td> <td>T (DGG)</td> <td>498</td> <td></td> <td>clin PD</td> <td>HP8</td> <td>NNDRIVGG</td> <td>T(DGG)</td> <td>371</td> <td>×</td> <td>clin PD</td>	SP52	EGGRIVGG	T (DGG)	498		clin PD	HP8	NNDRIVGG	T(DGG)	371	×	clin PD
SP54 SGRIVGG T (DGG) 262 C PD HP10 EXCGVEAS T(DGG) 277 A PD SP55 DMTRITGG T (DGG) A TM 2LIDLaSR PD HP11 KQLIMCG CGGG) 267 E P1 SP55 GQPRVVGG T (DGG) 1649 A TM 2LIDLaSR PD HP11 KQLIMCG CGGG) 267 E P1 SP55 KQPRVVGG T (DGG) 301 E PD HP14 GTELLVGG T(DGG) 411 A Cdip A 2410 SP50 DERRIVGG T (DGG) 256 D PD HP14 GTELLVGG T(DGG) 411 C 2410 SP60 DERRIVGG T (DGG) 257 D PD HP14 GTELLVGG T(DGG) 414 B LC 610 SP61 DGRRIVGG T (DGG) 257 D PD HP14 SFRUVGG T(DGG) 241 C Cdip	SPH53	RMGRUMGG		683		5clip PLD	6dH	KPSFAIGG	T(DGG)	393	В	DJ
SP55 DMIRTIGG T (DGG) 479 D $2TSPPD$ HP11 KOLRTIGG C(GG) 267 E P1 SP56 QQPRVGG T (DGG) 1649 A TUDLa RP1 WSDK11GG (GG) 455 A 2clip SP57 KQLRTGG C (SGG) 301 E PD HP14 GTEJUGG 441 A $clip$ SP59 RTDRTVGG T (DGG) 356 F PD HP14 GTEJUGG 441 A $clip$ SP60 DERRTVGG T (DGG) 300 E PD HP14 GTGLUNG (TOG) 441 A LC SP61 APPRITVGG T (DGG) 300 E PD HP14 GTGLUNG (TOG) 441 C (Cii) Y Y Z	SP54	SGGRIVGG	T (DGG)	262	C	μD	HP10	PKCGVEAS	T(DGG)	270	V	DD
FF56 CORRVIGG T (DGG) 1649 A TM2LDLaS HP12 VSDK11GG T(GGG) 455 A 2 (dp) SP57 KQLRFKGG C (SGG) 1649 A LDLa HP13 ADSLIVGG T(DGG) 411 A (dp) Monte SP58 HTERTSUR E (NGV) 377 D PD HP14 GTOLINGG (AT) 666 A S/4LDL SP60 DERRIVGG T (DGG) 316 E PD HP14 GTOLINGG (AT) 656 A S/4LDL SP61 LQERIVGG T (DGG) 258 D PD HP14 GTOLINGG (AT) 656 A S/4LDL SP61 LQERIVGG T (DGG) 258 D PD HP14 HTELIVGG C (GAT) 656 A S/4LDL SP61 PQENTVGG T (DGG) 258 D PD HP14 RTELIVGG C (AT) 67 C (D) FS	SP55	DMIRIGG	T (DGG)	479		2TSP PD	HP11	KOLRILGG	C(GGG)	267	; ш	D
SP30 OUDERNINGS (1.004) 1.014	1900	COLUMN COO		1740	•	TM 2LDLa SR PD	CTUT1		(DOOT	100	•	
PS7 KULMITGG C (SGG) 301 E PD HP143 ADSLIVGG T(DGG) 411 A clip L SP50 DERRIVGG T (DGG) 317 D PD HP146 GTOLINGG C(AT) 66 A A(JDL SP60 DERRIVGG T (DGG) 316 C clip PD HP166 HTGLIVWG E(SSG) 441 C Zolip SP60 DERRIVGG T (DGG) 236 D PD HP166 HTGLIVWG E(SSG) 441 C Zolip SP60 VPQRIVGG T (DGG) 238 D PD HP175 SFERVING T(DGG) 394 B LC SP60 VPQRITIGG T (DG3 233 E PD HP175 SFERVING T(DGG) 343 B LC Si SP71 NIPLITIGG T (DG3 233 E PD HP175 SFERVING T(DGG) 343 B LC Si	002	550 N X 400	(550).T.	1049	A	LDLa	717H	NSUAL LGG	I(DOU)	664	V	LT quist
PPSS HTERTSUR E (MUV) 377 D PD HP14a GTELNUGG G(GAT) 666 A 5/41DL SP60 DEERRIVGG T (DGG) 215 C elip HP14b GTCLINGG 616 A 5/41DL SP60 DEERRIVGG T (DGG) 255 C elip HP16b HTGLIVNG E(SSG) 444 A LC SP61 LQFRIVGG T (DGG) 231 D PD HP16b HTGLIVNG E(SSG) 444 A LC SP61 AQRIVGG T (DGG) 231 D PD HP16b HTGLIVNG E(SGG) 339 B LC 616 SP73 MDRLIGG T (DGG) 231 E LD HP16b HTCLIVNG E(SSV) 444 A LC SP73 MDRLIGG T (DGG) 231 E LD HP16b HTCLIVNG E(SSV) 444 LC 616 PD LC <	SP57	KQLRIFGG	C (SGG)	301	ш	PD	HP13	ADSLIVGG	T(DGG)	411	A	clip LC PD
SP59 ATDBLIVGG T(DGG) 255 F PD HP14b GTQLIGG C(AT) 637 D Wond SP60 DERRIVGG T(DGG) 316 C clip PD HP16 HTGLIVNG E(SSG) 444 A LC Set SP60 SQRISGG T(DGG) 256 D PD HP17a STSRVGG T(DGG) 344 A LC Si SP60 WERLIVGG T(DGG) 258 D PD HP17a STSRVGG T(DGG) 399 C clip PD F LC Si D PD HP18a RTRASTVG T(DGG) 399 C clip PD F LC Si D PD F PD F PD F F CG Si D F CG Si D F CG Si D CG Si D CG Si C CG D D D <t< td=""><td>SP58</td><td>HTEFTSVR</td><td>E (NGV)</td><td>377</td><td>Ω</td><td>ΡD</td><td>HP14a</td><td>GTELVLGG</td><td>C(GAT)</td><td>666</td><td>A</td><td>5/4LDLa Sus</td></t<>	SP58	HTEFTSVR	E (NGV)	377	Ω	ΡD	HP14a	GTELVLGG	C(GAT)	666	A	5/4LDLa Sus
SP60 DEBRIVGG T(DGG) 516 C dip PD HP15 VGMKTIGG T(DGG) 441 C C alip SP61 LOFRLYOG T(DGG) 300 E PD HP16 HTGLIVNG E(SSG) 444 A LC SP63 APQRLYGG T(DGG) 231 D PD HP17a SFSRVGG T(DGG) 394 B LC di SP60 VWERLYGG T(DGG) 231 D PD HP17a SFSRVUGG T(DGG) 394 B LC di P LC	SP59	ATDRIVGG	T (DGG)	255	ц	PD	HP14b	GTQLIMGG	C(AAT)	637	D	Wonton PL
SP61 IQPERIVGG T(DGG) 300 E PD HP166 HTGLIVNG E(SSG) 444 A LC SF65 SQR1SGG T(DGG) 256 D PD HP166 HTGLIVNG E(SSG) 444 A LC SF66 VPQRIVGG T(DGG) 258 D PD HP17a SFSRVUGG T(DGG) 394 B LC 61 SF70 DGARLVGG T(DGA) 278 D PD HP17a SFSRVUGG T(DGG) 394 B LC 61 SF70 DGARLVGG T(DGA) 312 C LD HP13a SFRRAYING T(DGG) 394 B LC 61 SF71 NIPLITIG T(DGA) 313 D PD HP13a SFRRAYING T(DGG) 345 B LC 61 SF73 NGTEUTVG T(DGA) 318 F PD LP LP LP LC LC LC <td>SP60</td> <td>DEERIVGG</td> <td>T (DGG)</td> <td>516</td> <td>ပ</td> <td>clip PD</td> <td>HP15</td> <td>VGNKIIGG</td> <td>T(DGG)</td> <td>441</td> <td>ပ</td> <td>2clip PD</td>	SP60	DEERIVGG	T (DGG)	516	ပ	clip PD	HP15	VGNKIIGG	T(DGG)	441	ပ	2clip PD
SPR2 SOGRETIGG C(GG) 256 D PD HP16b HTGLIVIG E(SSC) 444 B LC SP66 VPORIVGG T(DGG) 231 D PD HP17b SFSRVYCG T(DGG) 639 A LCcli SP66 VPORIVGG T(DGG) 231 D PD HP17b SFSRVYCG T(DGG) 339 C clip SP70 OWERLYCG T(DGA) 232 E DD HP17b SFRASYNG T(DGG) 339 C clip SP73 GDDRLYCG T(DGA) 323 E DD HP12b DLDLYCG T(DGG) 345 B LCs SP73 GDDRLYCG T(DGA) 318 F PD HP21 DDLLGG T(DGG) 443 C Cdip SP74 YGTEDRA 818 F PD HP21 ADDL1GG T(DGG) 443 C Cdip SP74 YGTEDRA 810 <td>SP61</td> <td>LQF<mark>R</mark>IVGG</td> <td>T (DGG)</td> <td>300</td> <td>ш</td> <td>PD</td> <td>HP16a</td> <td>HTGLIVNG</td> <td>E(SSG)</td> <td>444</td> <td>A</td> <td>LC PD</td>	SP61	LQF <mark>R</mark> IVGG	T (DGG)	300	ш	PD	HP16a	HTGLIVNG	E(SSG)	444	A	LC PD
\$\$N63 XPQRIVGG T(DGG) 291 D PD HP17a SFSRVIGG T(DGG) 305 A LC cli \$\$N69 WERLYGG T(DGG) 238 D PD HP17b SFSRVING T(DGG) 339 C clip \$\$N70 DGARIVGG T(DGA) 280 D PD HP18b RFFASTNG T(DGG) 339 C clip \$\$N71 DGARIVGG T(DGA) 812 C LCS PD HP19 PTLVVNG E(SN) 548 A LCS \$\$N73 GNDRIVGG T(DGA) 318 F PD HP12 DDLHPSGG E(ANA) 348 B LCS \$\$N75 YGPRISKG E(ASA) 318 F PD HP22 ADLIUGG 1(DGG) 441 A CS clip \$\$N75 YGPRISKG E(ASA) 330 D PD HP22 ADLIUGG 440 A CS clip <tr< td=""><td>SP62</td><td>SQGRISGG</td><td>C (GGN)</td><td>256</td><td>Ω</td><td>ΡD</td><td>HP16b</td><td>HTGLIVNG</td><td>E(SSG)</td><td>444</td><td>в</td><td>LC PD</td></tr<>	SP62	SQGRISGG	C (GGN)	256	Ω	ΡD	HP16b	HTGLIVNG	E(SSG)	444	в	LC PD
SP66 VPORLYGG T(DGG) 238 D PD HP17b SFKRVING T(DGG) 394 B LC di SP60 WRERLYGG 7 (SY7) 278 D PD HP18b RFRASYNG T(DGG) 399 C clip SP70 DGARLYGG 7 (SY7) 278 D PD HP18b RFRASYNG T(DGG) 399 C clip SP73 NITPLITGG T (DG3) 312 C LCs PD HP12 LDHYVGG F(DG) 345 B LCs SP74 MGTEDTNS E (ASA) 318 F PD HP21 LDHYVGG F(DG) 413 B LCs SP76 GKXELESG E (ASA) 318 F PD HP23 REMLIAT T(DGG) 413 C Clip SP76 GKXELESG E (ASA) 318 F PLD HP24 FEMKLIAT T(DGG) 413 C Clip SC	SP63	APQRIVGG	T (DGG)	291	D	ΡD	HP17a	SFSRVVGG	T(DGG)	605	A	LC clip PD
SPF06 OWERATOGG T(DGG) 278 D PD HP18a REPASYNG T(DGG) 339 C clip SP77 NIPLIGG T(DGA) 212 C LDS HP18a REPASYNG T(DGG) 339 C clip SP73 NIPLIGG T(DGA) 312 C LCS PDLCs HP19 PIPLEVVNG E(SSV) 348 A LCs SP74 NGTEDTNE E(ASA) 318 F PD HP21 LDHVSGG E(ANA) 345 B LCs SP76 GKGKLSRG E(ASA) 310 D PD HP23 BENKLLAT T(DGG) 413 C 2dip SP76 GKGKLSRG E(ASA) 330 D PP23 BENKLLAT T(DGG) 443 C 2dip SP16 GKGKLSRG E(ASA) 330 D PP23 BENKLLAT T(DGG) 443 C 2dip SP11 VSWENGG	SP66	VPQRIVGG	T (DGG)	258	D	PD	HP17b	SFKRVING	T(DGG)	394	в	LC clip PD
SP70 DGARLYGG 7 (SY) 280 D PD HP18b REFASTNG T(DGG) 399 C clip SP73 BDDKLYGG T (DGA) 812 C LCs PDL PD PPLPLYVNG E(SNY) 548 A LCs SP73 GDDKLYGG T (DGG) 812 C LCs PDL HP20 DHPYGSG E(ANA) 345 B LCs SP74 NGTEDTNS E (ASA) 310 C PD HP21 ADDLITGG T(DGG) 413 A LCs PD PD <td< td=""><td>SP69</td><td>QWERIVGG</td><td>T (GGD)</td><td>278</td><td>۵</td><td>DD</td><td>HP18a</td><td>RRFASYNG</td><td>T(DGG)</td><td>399</td><td>c</td><td>clip PD</td></td<>	SP69	QWERIVGG	T (GGD)	278	۵	DD	HP18a	RRFASYNG	T(DGG)	399	c	clip PD
SP73 NIPLIGG T (DGA) 812 C LCs PDLF NUGG ESN 548 A LCs SP73 SDDRIVGG T (DGA) 812 C LCs PDL PDL PDL PDL PD PD PD PD PDF PD PP22 ADDLITGG T(DGG) 413 A clip SP15 SP76 SP75 SP75 SP71 PD PP22 ADDLITGG T(DGG) 413 A clip SP15 SP17 PVSNLSGG E(ASA) 330 D PP10 PP22 ADLITGG T(DGG) 414 A SDI SDI SP15 SP11 PVSNLSGG F(ASA) 355 D CUB SDI PP10 PP2 PNLTGG T(DGA) 420 CD SDI	SP70	DGARIVGG	? (SV?)	280	Ω	DD	HP18b	RRFASYNG	T(DGG)	399	U	clip PD
SP73 GDDKTVGG T(DGG) 323 E PD HP20 IDHPVGG T(DGG) 315 B LC3 SP74 NGTEDTINS E(ASA) 318 F PD HP21 IDDLTIGG T(DGG) 413 B CID SP75 YGPKISKG E(ASA) 318 F PD HP21 ADDLTIGG T(DGG) 413 B CID SP76 GKKILSRG E(ASA) 330 C PD HP21 RDDLTIGG T(DGG) 413 C Colip SP76 GKKILSRG E(ASA) 330 C PD HP21 KURLAT T(DGG) 413 C Colip SP17 YVSWLGG T(DGG) 229 E PD HP21 KURLIGG T(DGA) 430 C Colip SP84 SSRUGG T(DGG) 275 E PD HP21 KURLIGG T(DGA) 340 B CID SP84 SSRUGG	SP72	NIPLIIGG	T (DGA)	812	ပ	LCs PD LCs	HP19	PIPLVVNG	E(SSV)	548	A	LCs PD
SP74 NOTEDTING E(ASA) 400 C PD HP21 ADDLIGG T(DGG) 413 A dip SP75 YGTERTNG E(ASA) 310 C PD HP21 ADDLIGG T(DGG) 413 C 20ip SP77 YVSNIESG E(ASA) 330 C PD HP24 VSNILGG T(DGG) 413 C 20ip SP17 YVSNIEGG E(ASA) 330 C PD HP24 VSNILGG T(DGG) 413 C 20ip SP17 YVSNIEGG E(ASA) 30 C PD HP24 VSNILGG T(DGA) 452 C 20ip SP81 ANDAVGG T(DGG) 257 B PD HP27 KONRIVGG T(DGA) 450 C 20ip SP84 GSSRUGG T(DGG) 257 B PD HP27 KONRIVGG T(DGA) 450 C 20ip SP84 USSRUGG	SP73	GDDKIVGG	T (DGG)	323	ш	PD	HP20	LDHFVSGG	E(ANA)	345	в	LCs PD
SP75 Y GRXR1SKG E (ASA) 318 F PD HP22 ADELTGG T(DGG) 414 B clip SP77 YVSWIGG E (ASA) 330 D PD HP24 VENTLAG T(DGG) 414 B clip SP77 YVSWIGG E (ASA) 330 D PD HP24 VENTLAG T(DGG) 443 C 2clip SPH79 WMGRVAGG T (DGG) 330 C LCs PD HP24 VENTLAG T(DGG) 443 C 2clip SPR1 SAPDAVGG T (DGG) 238 F PLD HP25 TDRTIAGG F(ASA) 440 A Sush SPR4 GSSRUVGG T (DGG) 236 B PD HP25 FORNTVGG T(DGA) 343 B P1 SP88 VENRIVGG T (DGG) 237 B PD PAP1 VGDRIVGG T(DGG) 343 B P1 SP88	SP74	NGTEDTNS	E (ASA)	400	υ	DD	HP21	ADDLIIGG	T(DGG)	413	A	clip PD
SP75 GKGKLSRG E(A) 330 D PD HP23 EENKLIAT T(DGG) 443 C 2 clip SP77 YVSNISGG E(A) 330 C PD HP24 VEDRIGG FA3 C 2 clip SPH79 WMGXKAGG Z(A) 330 C PD HP24 VEDRIGG F(SA) 440 A Substrated Substrated T(DGA) 452 C C Substrated T(DGA) 355 D CUB Substrated T(DGA) 360 D Substrated T(DCA) Substrated T(DGA) <t< td=""><td>SP75</td><td>YGPKISKG</td><td>E (ASA)</td><td>318</td><td>ц</td><td>DD</td><td>HP22</td><td>ADELIVGG</td><td>T(DGG)</td><td>414</td><td>в</td><td>clip PD</td></t<>	SP75	YGPKISKG	E (ASA)	318	ц	DD	HP22	ADELIVGG	T(DGG)	414	в	clip PD
SP77 VVENTGG E(ASA) 330 C PD HP24 VSDR1GG T(DGA) 452 C C D D SPH79 VMERVAGG T(DGA) 372 C LC3 D P D HP24 VSDR11GG T(DGA) 452 C 2 clip SPR1 APAPAYOG T(DGG) 228 F PLD HP27 VSDR11GG T(DGA) 432 C 2 clip SPR3 CSKCLFYG E (TUM) 259 E PD HP27 KQNR1VGG T(DGA) 432 C 2 clip SPR4 VSMR1VG T(DGG) 275 E PD HP28 VFUTGG T(DGA) 433 A C UB S S C UB S C UB S S C UB S C UB S C UB S S C UB S S C UB S S<	SP76	GKGKISRG	E (ASA)	330		Qd	HP23	EENKLLAT	T(DGG)	443	0	2clip PD
SPH17 WGRVAGE TOGE Z98 F PLUD HP25 VJSLIGGE L(GA) 440 A sush SNB1 AAPAAVGG T(DGG) 523 C LGs PD HP26 VJSDKIGG T(GGA) 442 C 20ip SP83 CSKCIFYG E (GYN) 259 E PD HP26 VJSDKIGG T(DGA) 452 C 20ip SP84 GSSRUGG T(DGG) 256 B PD HP26 GVELYGG T(DGA) 400 A clip SP84 GSSRUGG T(DGG) 275 E PD HP18 GVERVGG T(DGA) 400 A clip SP84 GSSRUGG T(DGG) 275 E PD PAP1 GVERVGG T(DGG) 333 B P1 SP84 ESPRLVGG T(DGG) 333 D P1 PAP2 FDNKILGG T(DGG) 441 A 20ip SP89 ESPRLVGG T	SP77	YVSNISGG	E (ASA)	330	0	G	HP24	VSDRIIGG	T(DGA)	452	0	2clip PD
SP81 AAPAAVGG T (DGG) 5x2 C LLS PL VSDK11GG T (DGA) 455 C Z clip SP82 CSKCIFYG E (GW) 259 E PD HP27 KONRUVGG T (DGA) 455 D CUB SP84 GSSRLYGG T (DGG) 256 B PD HP28 GVBLUGG 7 (DGA) 395 D CUB SP86 VSMRIVGG T (DGG) 275 E PD HP29 SVPEVSGG E(ASA) 343 B P1 SP86 VSMRIVGG T (DGG) 276 B PD PAPI NGDRIYGG T (DGG) 383 A clip SP88 EMPRUVGG T (DGG) 230 D PD PAPI NGDRIYGG T (DGG) 383 A clip SP88 EMPRUVGG T (DGG) 330 D PD PAPI NGDRIYGG T (DGG) 343 B P1 SP88 EMPRUVGG	SPH79	VMGRVAGG		298	т, (PLD	HP25	TDRIIAGG	E(ASA)	440	A (Sushi PD
SPR2 CSKCLFYG E (GWA) 2.99 E PD HH27 KQWR105G T(DGA) 3.95 D OLUB SPR4 GSSR1VGG T(DGG) 2.75 B PD HP29 SVELVGG T(DGA) 3.40 A CUB SPR4 GSSR1VGG T(DGG) 2.75 E PD HP29 SVEPYSGG E(ASA) 440 A CUB SPR7 KURRUGG T(DGG) 2.75 E PD PAP1 NGDR1YGG T(DGG) 3.43 B P1 SPR8 EEPRLVGG T(DGG) 2.78 E PD PAP1 NGDR1YGG T(DGG) 3.43 B P1 SP88 EEPRLVGG T(DGG) 3.00 D PD PAP1 NGDR1YGG T(DGG) 3.43 B P1 SP98 EEPRLVGG T(DGG) 3.00 D PD PAP2 PONKI1GG T(DGG) 43.14 A CuB SCB SCB S	SP81	AAPAAVGG	T (DGG)	582	0	LCs PD	HP26	VSDKIIGG	T(DGA)	452	0	2clip PD
SP84 GSERTOG 276 B PD HP28 GVELTOG T(DGA) 400 A dip SP86 VSMRLVGG T(DGG) 275 E PD HP29 SVPFYGGG T(DGG) 343 B PI SP86 VSMRLVGG T(DGG) 275 E PD HP29 SVPFYGGG T(DGG) 343 B PI SP88 EXPRLVGG T(DGG) 275 E PD PAP1 NUDRITGG T(DGG) 343 B PI SP88 EXPRLVGG T(DGG) 300 D PD PAP2 FDMKTIGG T(DGG) 441 A 2clip SP90 EXERTOG T(DGG) 333 D PD Scolb FDTRAVNE T(DGG) 431 A 2clip SP91 IEGKTVGG T(DGG) 233 D PD Scolb FDTRAVNE E(SVV) 283 D PI SP91 IEGKTVGG T(DGS)	SP82	CSKCIFYG	E (GVN)	259	ш	G	HP27	KQNRIVGG	T(DGA)	395	D.	CUB PD
SP86 VSMRLVGG T(DGG) 275 E PD HP29 SVPFVGG E(SA) 343 B PI SP87 KNRLYGG T(DGG) 275 E PD PAP1 NGDR1YGG T(DGG) 333 A clip SP87 KNRLYGG T(DGG) 270 D PD PAP1 NGDR1YGG T(DGG) 333 A clip SP88 EEPRLVGG T(DGG) 300 D PD PAP2 VGNKITGG T(DGG) 441 A 2clip SP90 QENRLYGG T(DGG) 323 D PD ScolA IDTRAVNE 7(DGG) 233 D PI SP91 IEGKUVGG T(DGG) 323 D PD ScolB IDTRAVNE E(SVV) 223 D PI SP91 IEGKUVGG T(DGG) 276 E PD ScolB IDTRAVNE E(SVV) 223 D PI	SP84	GSSRIVGG	T (DGG)	276	ш	DD	HP28	GVELIVGG	T(DGA)	400	A	clip PD
SP87 KURRATOG T(DGG) 278 E PD PAPI NGDRIGG 383 A dip SP88 EEPRLUGG T(DGG) 233 A dip 201 SP88 EEPRLUGG T(DGG) 300 D PD PAP2 FDNKIEGG 411 A 2dip SP89 EASERUGG T(DGG) 309 D PD PAP2 FDNKIEGG T(DGG) 411 A 2dip SP90 QENRLUGG T(DGG) 323 D PD Scoll IDTRAVNE 7(DGG) 427 A 2dip SP90 QENRLUGG T(DGG) 323 D PD Scoll IDTRAVNE 5(SVV) 283 D PI SP91 IEGKUVGG T(DGS) 276 E PD Scoll IDTRAVNE 5(SVV) 282 A PI	SP86	VSMRIVGG	T (DGG)	275	ш	DD	HP29	SVPFVSGG	E(ASA)	343	ш	DJ
SP88 EEPRLVGG T(DGG) 300 D PD PAP2 FDNKLIGG (I)UGG) 441 A 2cing SP89 BEARLVGG T(DGG) 310 D PD FAP2 FDNKLIGG (I)UGG) 441 A 2cing SP80 BEARLVGG T(DGG) 310 D PD Scold TDTRAVNE T(DGG) 427 A 2clip SP90 DENRLVGG T(DGG) 323 D PD Scold TDTRAVNE 233 D PI SP91 IEGRIVGG T(DGS) 276 E PD Scold IDTRAVNE E(SVV) 282 A PI	SP87	KNRRIVGG	T (DGG)	278	ш (O I	PAPI	NGDRIYGG	T(DGG)	383	¥.	clip PD
SP89 EASRIVGG T(DGG) 309 D PD PD ScolA IDTRAVNE 1(DUCU) 427 A 2010 SP90 QENRIVGG T(DGG) 323 D PD ScolA IDTRAVNE 283 D PI SP91 IEGRIVGG T(DGS) 276 E PD ScolB IDTRAVNE E(SVV) 282 A PI	SP88	EEPRLVGG	T (DGG)	300	<u>م</u> د	9 f	PAP2	FDNKILGG	T(DGG)	441	٩.	2chp PD
SP90 QENERVGG T (DGG) 323 D P() Scola LUTRAVNE 283 D P() SP91 IEGKIVGG T (DGS) 276 E PD Scolb IDTRAVNE E(SVV) 282 A P)	SP89	EASRIVGG	T (DGG)	309	<u>م</u>	Ul a	PAP3	NGNKTTRG	T(DGG)	427	× ۹	2clip PD
SP91 IEGKINGG T.(DGS) Z76 E PD SCOID LUTRANNE E(SVV) Z82 A PI	064S	DENR I VGG	T (DGG)	323	ם י	<u>ମ</u> ହ	ScolA	IDTRAVNE	() II LU/L	283	<u>م</u> .	ก
	SP91	DEV LVGG	(SDA) T.	7/0	л (LU Y O	Scolb	1UTKAVNE	E(SVV)	787	Α	۲IJ

Author Manuscript

SP97, SPH1a, SP51, SPH101, and GP8, respectively. HP15b, SP68, SPH78, SPH78, SP85, SP105, SP106, SP107, SP108, SP109, SP113, SP120, SP121, SP122 (=SP123), and SP125 (=SP126) are ^aSP49, SP64, SP71, SP98, SP110, SP118, SP114, SP115, SP116, SPH117, SP119, SPH124, and SP133 are not listed since they are identical to PAP1, GP64, GP66, SP31, GP33, GP33, SP112, SP104, incomplete genes and not listed either.

 b Putative activation cleavage site with the P1 site highlighted red;

c enzyme specificity predicted based on Perona and Craik (1995). T: trypsin, C: chymotrypsin, E: elastase, blank: not applicable, letters in parentheses: residues determining the primary specificity of S1 pocket;

 $\frac{d}{\operatorname{size}}$ of entire protein including signal peptide;

e expression patterns;

fpD: SP protease domain; PLD: SPH protease-like domain; LDLa: low-density lipoprotein receptor class A repeat; SR: scavenger receptor Cys-rich domain; LC: low complexity;

 $^{g}\mathrm{SP(H)s}$ first identified in the midgut EST project (Pauchet et al., 2010).

Author Manuscript

Number of CLIP genes in the five holometabolous insects^a

	sexta	D. melanogaster	A. gambiae	A. aegypti	T. castaneum
A: SPHs ^b	6	14	20	10	17
B: SPs	13	14	20	36	15
C: SPs	11	7	8	10	9
D: SPs	12	10	7	7	11
total	42	45	55	63	49

and SPHs are based on Waterhouse et al., 2007. The T. castaneum gene counts are from Zou et al., 2007. The counts of D. melanogaster, A. gambiae, and A. aegypti clip-domain SPS

 b Dipteran clip-domain SPHs in subfamilies A and E are combined.

Author Manuscript

Table 3

re models
structu
their
and
domains
clip
55
f the
roperties of

Clip domain ^a	C1–C2 ^b	C2-C3	C3-C4	C4–C5	C5-C6	Group ^c	Avg. RMSD ^d	$Grp. RMSD^{e}$	Structuref
HP24-1	6	S	24	6	0	B:2	0.68		PAP2
HP26-1	6	S	24	6	0	B:2	0.74		PAP2
HP12-1	6	S	24	6	0	B:2	0.74		PAP2
PAP2-1	6	Ś	24	6	0	B:2	0.71		PAP28
GP33-1	6	ŝ	24	6	0	B:2	0.69		PAP2
HP15-1	6	S	24	6	0	B:2	0.74		PAP2
HP23-1	6	5	24	6	0	B:2	0.71		PAP2
PAP3-1	6	S	23	6	0	B:2	0.70		PAP2
SPH42	S	5	25	6	0	A:3	1.44	0.79	PAP2
HP24-2	6	5	23	∞	0	B:2	0.59		PAP2
HP26-2	6	S	23	8	0	B:2	69.0		PAP2
HP12-2	6	S	23	8	0	B:2	0.78		PAP2
PAP2-2	6	S	23	8	0	B:2	0.64		PAP28
GP33-2	6	Ś	23	8	0	B:2	0.65		PAP2
HP15-2	6	5	23	8	0	B:2	0.70		PAP2
HP23-2	6	S	23	8	0	B:2	0.71		PAP2
PAP3-2	6	2	23	×	0	B:2	0.89	0.66	PAP2
HP5	8	5	26	6	0	B:2	0.72		PAP2
GP6	8	S	26	6	0	B:2	0.83		PAP2
HP8	S	S	23	10	0	B:2	0.80		PAP2
PAP1	6	5	24	6	0	B:2	0.67	0.75	PAP2
	(6.9) 6-8	5 (5.0)	23-26 (23.7)	8-10 (8.7)	0 (0)	B:2		0.73	
HP6	10	5	17	6	0	C:1a	1.31		PAP2
HP28	10	S	16	10	0	C:1a	2.08		PAP2
SP30	10	S	16	10	0	C:1a	2.03		PAP2
HP18a	8	5	15	6	0	C:1a	1.61		PAP2

Clip domain ^a	C1–C2b	C2-C3	C3-C4	C4-C5	C5-C6	Group ^c	Avg. RMSD ^d	Grp. RMSD e	Structuref
HP18b	8	5	15	6	0	C:1a	1.32		PAP2
HP2	8	S	15	6	0	C:1a	1.47		PAP2
HP13	8	S	15	6	0	C:1a	1.26		PAP2
SP144	8	S	16	6	0	C:1a	1.33		PAP2
HP21	6	S	15	6	0	C:1a	1.32		PAP2
HP22	8	S	16	6	0	C:1a	1.57		PAP2
SP33	8	5	26	18	0	C:1a	3.04		PAP2
	8-10 (8.6)	5 (5.0)	15–17 (15.6)	9–10 (9.2)	0 (0)	C:1a		1.67	
HP1a	6	5	16	6	0	D1:1b	1.59		PAP2
HP1b	6	S	16	6	0	D1:1b	1.58		PAP2
HP17a	6	S	24	6	0	D1:1b	1.37		PAP2
HP17b	6	5	24	6	0	D1:1b	1.57		PAP2
SP52	6	S	14	6	0	D1:1b	1.80		PAP2
SP60	6	2	22	13	0	D1:1b	2.15	1.68	PAP2
	9 (0.0)	5 (5.0)	14-24 (19.3)	(0.9) 6	0 (0)	D1:1b		1.68	
SP131	8	5	10	7	0	D2:1c	4.38		HNPI
SP132	8	S	10	8	0	D2:1c	3.89		MBD8
SP140	8	5	10	7	0	D2:1c	4.55		No
SP141	5	S	10	9	0	D2:1c	4.50		MBD8
SP142	14	5	10	8	0	D2:1c	4.21		MBD8
SP143	10	5	10	8	0	D2:1c	4.48	4.39	MBD8
	8-10 (8.5)	5 (5.0)	10 (10.0)	6-8 (7.3)	0 (0)	D2:1c		4.39	
SPH1a	6	5	23	6	0	A:3	2.21		PAP2
SPH1b	6	5	23	9	0	A:3	2.38		PPAFII
SPH2	1	5	30	9	0	A:3	3.85		anthopleurin A
SPH4	6	5	22	9	0	A:3	2.89		PPAFII
SPH101	6	5	23	9	0	A:3	2.37	2.74	PPAFII

Clip domain^a

	3.91		A:3	000	5-6 (5.7)	22-30 (24.3)	5 (5 0)	(0.6).6	
No	5.07	5.67	A:3	0	6	11	8	3	SPH53-5
No		4.91	A:3	0	9	6	6	e	SPH53-4
$^{\rm No}h$		4.57	A:3	0	S	8	8	ю	SPH53-3
No		5.23	A:3	0	5	6	8	3	SPH53-2
$^{\rm No}h$		4.95	A:3	0	5	8	8	3	SPH53-1

^aClip domain with the lowest average root-mean-square deviation (RMSD) in each (sub)group is shaded light green.

b Number of residues between adjacent cysteines, with the ones differ significantly from others in each (sub)group shown in red font. The range and average (in parenthesis) number for each group (excluding the red ones) are enlisted.

^cGroup names of cSPs/cSPHs (B, C, D1, D2, and A) and corresponding clip domains (2, 1a, 1b, 1c, and 3) are indicated.

 d^{d} average of the RMSD values (Å) of a clip domain structure model pairwisely compared with the other models in the same (sub)group.

^eGroup and subgroup averages of average RMSDs, excluding SP33 and SPH42 (highlighted yellow), demonstrate variations of structure models in the same (sub)group.

Holorrichia diomphalia (Piao et al., 2005), HNP-1, human neutrophil peptide-1 (ie. human ci-defensin 1) (Zhang et al., 2010), MBD8, mouse β-defensin 8 (Bauer et al., 2001), and anthopleurin A, a cardiac f Most similar three-dimensional structure: PAP2, the two clip domains of *M. sexta* proPO activating protease-2 (Huang et al., 2007), PPAFII, a clip-domain SPH named proPO activating factor II from stimulant from the sea anemone Anthopleura xanthogrammica (Pallaghy et al., 1995).

^g Average RMSDs between the models and experimentally determined structures (Huang et al., 2007) are 0.821 Å and 0.636 Å for *M. sexta* PAP2 clip domain-1 and -2, respectively.

remarkably different from those in the two clip domains. In addition to that, the disulfide linkages of HNP-1 (CI-C6, C2-C4, C3-C5) (Zhang et al., 2010) are different from those in the known clip domain h. The structures of metallothionein and Amaranthus candatus AMP2 are most similar to the models of SPH53-1 and -3 respectively, but the locations of Cys residues and linkages of disulfide bonds are structures (C1-C5, C2-C4, C3-C6) (Huang et al., 2007; Piao et al., 2005).