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Abstract
The X-ray repair cross-complementing group 3 (XRCC3) protein plays an important role in

the repair of DNA double-strand breaks. The relationship between XRCC3 polymorphisms

and the risk of radiation-induced adverse effects on normal tissue remains inconclusive.

Thus, we performed a meta-analysis to elucidate the association between XRCC3 polymor-

phisms and radiation-induced adverse effects on normal tissue. All eligible studies up to

December 2014 were identified through a search of the PubMed, Embase and Web of Sci-

ence databases. Seventeen studies involving 656 cases and 2193 controls were ultimately

included in this meta-analysis. The pooled odds ratios (ORs) with corresponding 95%

confidence intervals (CIs) were calculated to evaluate the association between XRCC3
polymorphisms and the risk of radiation-induced normal tissue adverse effects. We found

that the XRCC3 p.Thr241Met (rs861539) polymorphism was significantly associated with

early adverse effects induced by radiotherapy (OR = 1.99, 95%CI: 1.31–3.01, P = 0.001). A

positive association lacking statistical significance with late adverse effects was also identi-

fied (OR = 1.28, 95%CI: 0.97–1.68, P = 0.08). In addition, the rs861539 polymorphism was

significantly correlated with a higher risk of adverse effects induced by head and neck area

irradiation (OR = 2.41, 95%CI: 1.49–3.89, p = 0.0003) and breast irradiation (OR = 1.41,

95%CI: 1.02–1.95, p = 0.04), whereas the correlation was not significant for lung irradiation

or pelvic irradiation. Furthermore, XRCC3 rs1799794 polymorphism may have a protective

effect against late adverse effects induced by radiotherapy (OR = 0.47, 95%CI: 0.26–0.86,

P = 0.01). Well-designed large-scale clinical studies are required to further validate our

results.
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Introduction
Radiotherapy is an important and commonly used modality in cancer treatment, but normal
tissues both in the vicinity of the target area and the pathway of the radiation beam are inevita-
bly irradiated, which may result in a spectrum of normal tissue adverse effects [1]. The pre-
scribed dose of radiotherapy in most malignant diseases is restricted by the tolerance of normal
tissue to radiation [2]. However, patients exhibit large variability in normal tissue toxicity even
to the same treatment schedule [3]. Some patients display hyper-sensitivity to standard radio-
therapy, while typically sensitive patients can receive higher doses of radiotherapy improving
the likelihood of a cure for malignant tumors [4]. If the individual risk of adverse effects can be
predicted prior to radiotherapy, it would be of great benefit to the personalization and optimi-
zation of treatment strategies [5–6].

In recent years, accumulating evidence has supported the hypothesis that the risk of radio-
toxicity correlates with genetic susceptibility [5,7]. Single nucleotide polymorphisms (SNPs)
account for most known genetic variation [6,8]. By altering the amino acid composition of the
encoded proteins, SNPs in DNA repair genes may alter protein function and an individual’s
capacity for the repair of damaged DNA [9–11].

DNA is widely considered the main target of radiotherapy, which causes cell death by
inducing both single-strand breaks (SSBs) and double-strand breaks (DSBs) [12]. DSBs are
potent inducers of mutations and cell death and occur frequently following irradiation [13–
15]. X-ray repair cross-complementing group 3 (XRCC3), a member of the RAD51-related
protein family [16], participates in homologous recombination (HR) repair for DNA DSBs
[17] and plays an important role in maintaining chromosome stability and DNA damage
repair [18–19]. Several trials have been conducted based on the hypothesis that SNPs in genes
involved in DNA repair may interfere with an individual’s DNA repair capacity and thus fur-
ther influence the occurrence of radiation-induced adverse effects [20–22]. Previous studies on
the association between XRCC3 polymorphisms and radiation-induced adverse effects have
reported inconclusive results. Thus, we reviewed this controversial evidence and performed a
meta-analysis to evaluate the association between XRCC3 polymorphisms and the risk of radia-
tion-induced adverse effects.

Materials and Methods

Search strategy and inclusion criteria
Two investigators (Y.Z. Song and C.C. Xia) independently searched the PubMed, Embase and
Web of Science databases using the terms “polymorphism” or “SNP,” “XRCC3” or “X-ray
repair cross-complementing group 3,” “radiotherapy” or “radiation,” and “injury” or “toxicity”
or “adverse effect” or “complication.” Studies satisfying the following criteria were eligible for
inclusion: (1) case-control study or cohort study; (2) evaluated the effect of SNPs in XRCC3 on
radiation-induced adverse effects on normal tissue; (3) adequate information provided to cal-
culate the odds ratio (OR) and the corresponding 95% confidence interval (95%CI). There
were no limitations on the language of publication. To avoid exaggerating the effects of certain
studies, the patient cohorts of the included studies were verified to ensure that only one appro-
priate comparison from each cohort was included for the calculation of the pooled statistic.

Data extraction
Two investigators (Y.Z. Song and W.Y. Shi) independently extracted data from each included
study. Disagreements were resolved by discussion among all investigators. The following data
were extracted: first author, year of publication, ethnicity, cancer type, normal tissue toxicity,
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subtype of SNP in XRCC3, and numbers of cases and controls who possessed the major allele
homozygote, heterozygote and minor allele homozygote genotypes.

Statistical methods
The pooled OR and 95%CI were calculated to assess the association strength between XRCC3
polymorphisms and the risk of adverse effects induced by radiotherapy under a dominance
model (minor allele homozygote /heterozygote vs. major allele homozygote). The heterogene-
ity between studies was assessed with the chi-squared based Q-test and I2 statistics [23–24].
When the chi-squared P was<0.10 or the I2 statistic was�50%, the heterogeneity was consid-
ered statistically significant, and a random-effects model (DerSimonian-Laird method) was
used [25]; otherwise, a fixed-effects model (Mantel-Haenszel method) was accepted [26]. If
more than 10 studies were included for one SNP, subgroup analysis was conducted by adverse
effect and irradiation area. Sensitivity analysis was performed to confirm the stability and reli-
ability of the pooled results by excluding each study individually and recalculating the pooled
ORs and 95%CIs. If more than 10 studies were included in this meta-analysis, publication bias
was evaluated via Begg’s funnel plot and Egger’s test [27–28]. If publication bias existed, the
“trim and fill”method was used to estimate the number of missing studies and to adjust the
pooled result [29]. A two-sided P<0.05 was considered significant for all of the analyses except
the heterogeneity tests. Statistical analyses were performed using Review Manager (Rev-Man
version 5.0, provided by the Cochrane Collaboration, Oxford, England) and STATA (Version
12.0, StataCorp LP, College Station, TX, USA).

Results

Eligible studies
A flow diagram summarizing the literature review process and reasons for exclusion is pre-
sented in Fig 1. A total of 17 studies involving 2849 patients were eventually included in this
meta-analysis. The baseline characteristics of the 17 studies are presented in Table 1. All proto-
cols of the 17 included studies were approved by the relevant ethics committee. The studies
were published from 2005 to 2014, and the sample sizes ranged from 34 to 698. The cancer cat-
egories included head and neck cancer (five studies), breast cancer (five studies), prostatic car-
cinoma (two studies), non-small cell lung cancer (two studies), bladder cancer (one study) and
gynecologic cancer (one study). In addition, one study included miscellaneous cancers (mainly
breast cancer and head and neck cancer). Three subtypes of SNPs in XRCC3 were included in
this meta-analysis. Fifteen studies were identified for rs861539, five studies for rs1799794 and
two studies for rs1799796. For rs861539, six studies evaluated the early adverse effects induced
by radiotherapy, while nine studies focused on late adverse effects.

Meta-analysis results
Early effect. A statistically significant association was identified between rs861539

and early adverse effects induced by radiotherapy (OR = 1.99, 95%CI: 1.31–3.01, P = 0.001)
(Fig 2). Subgroup analysis was conducted by specific adverse effect, and the results indicated
that rs861539 significantly correlated with acute skin toxicity (OR = 1.86, 95%CI: 1.13–3.05,
P = 0.01) and mucositis (OR = 2.89, 95%CI: 1.24–6.76, P = 0.01) (Fig 3). For rs1799794 and
rs1799796, the number of identified studies was relatively small, and the statistical associations
were not significant (rs1799794: two studies, OR = 1.57, 95%CI: 0.90–2.76, P = 0.11;
rs1799796: one study, OR = 1.82, 95%CI: 0.74–4.49, P = 0.19) (Fig 2).
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Late effect. A positive association lacking statistical significance was identified between
rs861539 and late adverse effects (OR = 1.28, 95%CI: 0.97–1.68, P = 0.08) (Fig 2). Further
extracting fibrosis from late adverse effects in the subgroup analysis by specific adverse effect,
we observed a significant association between rs861539 and fibrosis induced by radiotherapy
(OR = 1.95, 95%CI: 1.01–3.75, P = 0.05) (Fig 4). For rs1799794, a significant association was

Fig 1. Flow diagram of the literature review process.

doi:10.1371/journal.pone.0130388.g001
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Table 1. Baseline Characteristics of the Eligible Studies.

Author,
Year

Country Ethnicity Disease SNP Adverse Effect Assessment
Criteria

Sample
Size (N)

Cases/
N

Study
Design

EBRT Dose,
Gy

Chemotherapy
Involved

Alsbeih
2010[30]

Saudi
Arabia

Asian HNC rs861539 Late effect:
fibrosis

RTOG/
EORTC�G2

60 50% Case-
control

66–70 Yes

Azria 2008
[7]

France Caucasian Mixeda rs861539 Late effect:
fibrosis

CTCAE
v3.0�G3

34 47.06% Case-
control

NA Yes

Burri 2008
[31]

USA Mixed Prostate
cancer

rs861539 Late effect:
rectal bleeding,
urinary
morbidity,
erectile
dysfunction

RTOG/
EORTC�G1

135 9.36% Cohort 45 Gy and/
OR
brachytherapy

NA

Chang-
Claude
2009[32]

Germany Caucasian Breast
cancer

rs861539 Late effect:
telangiectasia

RTOG/
EORTC�G2

401 31.67% Cohort 55–70 No

Cheuk
2014[33]

China Asian HNC rs861539,
rs1799794

Late effect:
fibrosis

RTOG�G1 120 24.17% Cohort 66–76 Yes

De Ruyck
2005[8]

Belgium Caucasian Gynecologic
cancerb

rs861539,
rs1799794,
rs1799796

Late effect: side
effect in the
pelvic area

CTCAE
v3.0�G2

62 35.48% Cohort 45–66 and/or
brachytherapy

Yes

Fachal
2012[34]

Spain Caucasian Prostate
cancer

rs1799794 Early effect:
gastrointestinal
morbidity,
genitourinary
morbidity

CTCAE
v3.0�G2

698 4.87% Cohort 70–76 NA

Falvo 2011
[35]

Italy Caucasian Breast
cancer

rs861539 Early effect:
acute skin
toxicity

CTCAE
v3.0�G1

57 33.33% Cohort 18–21 Yes

Flavo 2012
[36]

Italy Caucasian Breast
cancer

rs1799794 Late effect:
fibrosis or fat
necrosis

CTCAE
v3.0�G2

57 45.61% Cohort 18–21 Yes

Mangoni
2011[37]

Italy Caucasian Breast
cancer

rs861539 Early effect:
acute skin
toxicity

CTCAE
v2.0�G2c c

61 11.48% Cohort 50–62.8 Yes

Popanda
2006[38]

Germany Caucasian Breast
cancer

rs861539 Early effect:
acute skin
toxicity

CTCAE
v2.0�G2

444 17.12% Cohort 49.2–58.8 NA

Pretasi
2011[39]

Italy Caucasian HNC rs861539 Early effect:
mucositis

CTCAE
v3.0�G2

101 67.33% Cohort 54–70 Yes

Sakano
2010[40]

Japan Asian Bladder
cancer

rs861539 Early effect:
gastrointestinal
morbidity

CTCAE
v3.0�G2

94 9.57% Cohort 30.0–60.4 Yes

Tucker
2013[41]

USA Caucasian NSCLC rs861539 Late effect:
radiation
pneumonitis

CTCAE
v3.0�G3

141 19.86% Cohort 50.4–72 Yes

Werbrouck
2009[42]

Belgium Caucasian HNC rs861539,
rs1799794,
rs1799796

Early effect:
mucositis,
dysphagia

CTCAE
v3.0�G3

85 32.94% Cohort 66–69 Yes

Yin 2011
[43]

USA Caucasian NSCLC rs861539 Late effect:
radiation
pneumonitis

CTCAE
v3.0�G1

196 69.90% Cohort 60–70
(majority)

Yes

Zou 2014
[11]

China Asian HNC rs861539 Late effect:
xerostomia

�G 1 d 103 41.75% Cohort 70 Yes

Abbreviations: HNC = head and neck cancer, RTOG = the radiation therapy oncology group, EORTC = European Organization for Research and

Treatment of Cancer, EBRT = external beam radiation therapy, CTCAE = Common Terminology Criteria for Adverse Events. NA: not available
a Breast cancer, HNC and meningioma;
b Cervical cancer and endometrial cancer;
c method based on CTCAE, in which G2c was defined as at least one moist desquamation or interruption of radiotherapy due to toxicity.
d method developed by University of Michigan;

doi:10.1371/journal.pone.0130388.t001
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observed with late adverse effect induced by radiotherapy (OR = 0.47, 95%CI: 0.26–0.86,
P = 0.01) (Fig 2). For rs1799796, only one study was identified, and the statistical association
was significant (OR = 3.98, 95%CI: 1.31–12.05, P = 0.01) (Fig 2).

Subgroup analysis by radiotherapy area. Subgroup analysis was conducted by different
radiotherapy area irrespective of the type of adverse effect. A significant association was identi-
fied between rs861539 and radiation-induced adverse effects of head and neck irradiation
(OR = 2.41, 95%CI: 1.49–3.89, P = 0.0003) and breast irradiation (OR = 1.41, 95%CI: 1.02–
1.95, P = 0.04), while no significant association was observed for lung irradiation (OR = 1.07,
95%CI: 0.62–1.85, P = 0.72) or pelvic irradiation (OR = 0.80, 95%CI: 0.38–1.68, P = 0.56)
(Fig 5).

Fig 2. Forrest plot for the association between SNPs in XRCC3 and radiation-induced adverse effects. A fixed-effects model was used. The square
with the corresponding horizontal line represents the OR and 95%CI of each study. The area of the square reflects the weight of the study. The diamond
represents the pooled OR and 95%CI.

doi:10.1371/journal.pone.0130388.g002

Fig 3. Forrest plot for the association between rs861539 and radiation-induced early adverse effects by specific adverse effect. A fixed-effects
model was used. The square with the corresponding horizontal line represents the OR and 95%CI of each study. The area of the square reflects the weight of
the study. The diamond represents the pooled OR and 95%CI.

doi:10.1371/journal.pone.0130388.g003
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Heterogeneity and sensitivity analyses
The heterogeneities between studies of all analyses were not significant except the analysis for
the early effect of rs1799794 (I² = 89%, chi-squared P = 0.003). The pooled results were stable
in the sensitivity analysis.

Publication bias
The number of included studies for rs861539 was sufficient to evaluate the publication bias.
The distribution of included studies in Begg’s funnel plot was visually symmetrical (Fig 6).
However, the p-value of Egger’s test was 0.048, which indicates that potential publication bias
may exist. Using the “trim and fill”method [29], three more potential studies were filled to
reevaluate the pooled effect. The result was not altered significantly (pooled Est = 0.273, 95%
CI: 0.049–0.496, P = 0.017) from the initial results (pooled Est = 0.354, 95%CI: 0.123–0.584,
P = 0.003). The direction of the effect and the significant association were both constant, which
indicates that the pooled result was stable and representative.

Fig 4. Forrest plot for the association between rs861539 and radiation-induced late adverse effects by specific adverse effect. A fixed-effects model
was used. The square with the corresponding horizontal line represents the OR and 95%CI of each study. The area of the square reflects the weight of the
study. The diamond represents the pooled OR and 95%CI.

doi:10.1371/journal.pone.0130388.g004
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Fig 5. Forrest plot for the effect of rs861539 on adverse effects induced by radiotherapy of different body areas. A fixed-effects model was used. The
square with the corresponding horizontal line represents the OR and 95%CI of each study. The area of the square reflects the weight of the study. The
diamond represents the pooled OR and 95%CI.

doi:10.1371/journal.pone.0130388.g005
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Discussion
Radiation-induced adverse effects are commonly classified as early or late effects, depending
on the time before manifestation of relevant clinical symptoms. Early effects occur during
radiotherapy or within a few weeks after radiotherapy, while late effects emerge months to
years after radiotherapy [2]. Early effects are often more serious in rapidly proliferating tissues,
whereas late effects tend to occur in tissues with a slow turnover of cells [2,14]. Due to the
inconformity effect of XRCC3 on early and late effects previously reported and the possibility
of different molecular mechanisms [44], we analyzed the early and late effects separately. The
present meta-analysis systematically collected evidence linking XRCC3 polymorphisms to the
risk of adverse effects on normal tissue induced by radiotherapy. Three SNPs of XRCC3 were
included in our meta-analysis: XRCC3 NM_005432.3:c.722C>T, NP_005423.1:p.Thr241Met
(rs861539); XRCC3 NM_005432.3:c.-316A>G (rs1799794); and XRCC3 NM_005432.3:c.562-
14A>G (rs1799796). XRCC3 p.Thr241Met is the most commonly reported polymorphism of
XRCC3. Our meta-analysis indicated that the XRCC3 p.Thr241Met polymorphism is signifi-
cantly associated with an elevated risk of radiation-induced early adverse effect.

A systematic review aimed to explore the association between 14 SNPs in 9 genes and
radiotoxicity in normal tissues of the head and neck [45]. Of the seven included studies, three
involved XRCC3. Due to obvious heterogeneity, no meta-analysis was undertaken. A positive
association between SNPs in DNA repair genes and acute radiotoxicity events has been
reported [45]. Since that report, two more articles evaluating the relationship between XRCC3

Fig 6. Begg’s funnel plot for the effect of rs861539 on radiation-induced adverse effects.Circles represent the actually included studies. Squares
represent studies added using the “trim and fill”method.

doi:10.1371/journal.pone.0130388.g006
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polymorphisms and the risk of radiation-induced adverse effects in head and neck cancer
(HNC) patients have been published, and they were included in the present meta-analysis. Our
meta-analysis focused on XRCC3 and provided more specific evidence. Subgroup analysis
according to irradiated area revealed that rs861539 significantly correlates with an elevated risk
of adverse effects induced by head and neck irradiation, with similar results observed for breast
irradiation.

To date, six genome-wide association studies (GWASs) have been published on normal tis-
sue radiobiology [46–51]. Most of the studies were performed using prostate cancer patient
cohorts (one study used both prostate and breast cancer patients). XRCC3 did not reach
genome-wide significance in these studies. In the present meta-analysis, the pooled OR of pel-
vic irradiation was also not significant (OR = 0.97, 95%CI: 0.47–2.01, P = 0.81) (Fig 5),
although only three studies involved pelvic irradiation.

For rs1799794, a significant association with late adverse effects was revealed (OR = 0.47,
95%CI: 0.26–0.86, P = 0.01), which indicates that rs1799794 polymorphism may have a protec-
tive effect against late adverse effects. Further studies are needed to confirm this conclusion.
The analysis evaluating the effect of rs1799794 on early adverse effects yielded a significant het-
erogeneity, because the only two identified studies reached opposing conclusions. For
rs1799796, only one study for each early and late effect was identified, and thus heterogeneity
was not applicable. No definite conclusion can be made for rs1799794 and rs1799796, due to
the relatively small number of identified studies.

XRCC3 is an important protein in the process of homologous recombination, one of the two
competitive mechanisms for repair of DNA DSBs [52–54]. Homologous recombination is gen-
erally considered high-fidelity [19]. By contrast, non-homologous end joining (NHEJ) is often
error prone [19]. XRCC3 p.Thr241Met is a non-conservative variant that may affect the struc-
ture of this DNA repair protein and lead to a deficiency in the homologous recombination
pathway [55]. Consequently, the repair mechanism of DSBs could be shifted toward NHEJ,
which promotes chromosome instability and further affects the cell’s ability to repair radiation
injury [19]. However, GWASs of erectile dysfunction (ED) have revealed that the most signifi-
cant SNPs lie in or near genes encoding biological activities involved in ED rather than DNA
damage repair genes [47]. It should be noted that this conclusion was based on an endpoint
that is a much more complex adverse effect compared with such adverse effects as skin toxicity
or mucositis. Based on a similar hypothesis of influencing radiotoxicity, the association of
XRCC3 polymorphisms with cancer risk has also been extensively evaluated. Evidence from
meta-analysis supports a positive association between the XRCC3 p.Thr241Met polymorphism
and the risk of bladder cancer [56–57], breast cancer [58–59], cervical cancer [60–61] and
hepatocellular carcinoma [62–63]. However, in glioma [64–65], NSCLC [66–67], colorectal
cancer [68–69] and gastric cancer [70–71] patients, the associations were not significant.

Although accumulating studies have evaluated the association between SNPs and radiation-
induced adverse effects, no SNPs have been identified that can indicate which patients are at
higher risk of normal tissue injury following radiotherapy [72]. Barnett et al. reevaluated 92
SNPs in 46 genes covering nearly all the SNPs previously reported to be associated with radio-
therapy toxicity. A score system was developed to estimate the overall radiation toxicity rather
than some specific adverse effect as was evaluated in the previous studies. None of the previ-
ously reported associations were confirmed using this method. The Q-Q plots indicated that
no more significant associations than chance existed between the tested SNPs and overall late
effects [73]. Nevertheless, a model that synthesizes multiple SNPs may possess greater power to
predict normal tissue response in radiosensitive patients [40,74–76]. Azria et al. reported a
higher risk of grade�3 toxicity in patients with�4 SNPs compared with those patients with
<4 SNPs (OR = 9.3, 95%CI: 1.4–62, P = 0.003) [7]. Similarly, Sterpone et al. reported that
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patients with�3 SNPs had a higher risk of grade�2 toxicity than patients with<3 SNPs
(OR = 2.42, 95%CI: 0.26–22.5, P = 0.39) [77]. However, these trials were not designed to evalu-
ate the combined effect of multiple SNPs. After deliberately assessing the individual effects of
selected SNPs, occasional combinations of involved SNPs were also performed. Further studies
are needed to clarify the selection criterion for combined SNPs. The models developed from
GWASs are more credible due to the sufficient genetic coverage. For example, one study pre-
sented a multivariate model comprising clinical factors and SNPs selected through a GWAS
that achieved a sensitivity of 80% and a specificity of 70% in predicting ED following radiation
therapy [47].

As a meta-analysis, heterogeneity among included studies should be considered. One of the
most important potential sources of heterogeneity is the evaluation of miscellaneous cancer
types together. However, the irradiated area, not the cancer type, is directly related to the
occurrence of adverse effects induced by radiotherapy. Radiosensitivity varies according to ana-
tomical site, but a common biological mechanism may occur in different irradiated organs.
Hence, it is rational to include different cancer types when evaluating the adverse effects
induced by radiotherapy on normal tissue [76]. Some of the heterogeneity among studies also
derived from the heterogeneous treatment protocols, which was due to the characteristics of
the radiotherapy and the inclusion of multiple cancer types in this meta-analysis. The radio-
therapy parameters [5], including total dose, dose per fraction, field size, irradiation volume
and depth of prescription point, were not identical. The majority of the treatment protocols in
the included studies were based on multimodality treatment that is an important potential con-
founding factor aggravating the adverse effects, particularly when adjuvant or concurrent che-
motherapy was involved. In addition, the criteria for assessing the adverse effects were not
consistent, and the specific grades chosen to divide patients into case or control arm were also
different among the included studies. Finally, 15 cohort studies and two case-control studies
were included in our meta-analysis. Thus, differences in study design also contributed to the
heterogeneity among studies.

In addition to heterogeneity, other limitations of the present meta-analysis should be noted
when interpreting the results. First, publication bias may exist for rs861539; however, after
adjustment using the “trim and fill”method [29], the result was stable in the direction of the
effect, and still presented a significant association. Thus, we believe that the pooled result of
rs861539 was not affected by any potential publication bias. Second, the eleven studies without
sufficient data could not be expressed by weight in the pooled result, which may have generated
some potential bias. Third, because miscellaneous irradiation areas and multiple adverse effects
were evaluated in the present meta-analysis, subgroup analysis was conducted 3 times to reach
more specific conclusions. The statistical power was reduced when the data were analyzed
repeatedly. Forth, the sample sizes of some of the included studies and the numbers of studies
in some of the subgroups were relative small, which also restricted the statistical power. In
addition, our results were based on the raw data, which was unadjusted for certain confounding
factors such as radiation dose or chemotherapy status.

To the best of our knowledge, the present meta-analysis is the first meta-analysis focusing
on the association between XRCC3 polymorphisms and the risk of radiation-induced adverse
effects. In conclusion, the meta-analysis suggests that the XRCC3 p.Thr241Met polymorphism
is significantly associated with a higher risk of radiation-induced early adverse effects such as
acute skin toxicity and mucositis. Although the association between rs861539 and late adverse
effects was not significant, rs861539 was significantly correlated with a higher risk of fibrosis.
In patients who received head and neck irradiation and breast irradiation, rs861539 was signifi-
cantly correlated with a higher risk of adverse effects. Our results need to be further confirmed
in well-designed large-scale clinical studies assessing the value of XRCC3 polymorphisms in
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identifying patients at higher risk of radiation-induced adverse effect. These patients might
benefit from individual radiotherapy regimens and early intervention for adverse effects
accordingly.
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