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Abstract

Background

Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal
dementia. Spectral EEG can predict damage in structural and functional networks in fronto-
temporal dementia but has never been applied to ALS.

Methods

18 incident ALS patients with normal cognition and 17 age matched controls underwent 128
channel EEG and neuropsychology assessment. The EEG data was analyzed using Field-
Trip software in MATLAB to calculate simple connectivity measures and scalp network
measures. SLORETA was used in nodal analysis for source localization and same methods
were applied as above to calculate nodal network measures. Graph theory measures were
used to assess network integrity.

Results

Cross spectral density in alpha band was higher in patients. In ALS patients, increased
degree values of the network nodes was noted in the central and frontal regions in the theta
band across seven of the different connectivity maps (p<0.0005). Among patients, cluster-
ing coefficient in alpha and gamma bands was increased in all regions of the scalp and con-
nectivity were significantly increased (p=0.02). Nodal network showed increased
assortativity in alpha band in the patients group. The Clustering Coefficient in Partial
Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta,
gamma, theta and delta frequencies (p=0.05).

Discussion

There is increased connectivity in the fronto-central regions of the scalp and areas corre-
sponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption
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of neuronal networking in early disease states. Spectral EEG has potential utility as a bio-
marker in ALS.

Introduction

Amyotrophic Lateral Sclerosis (ALS) is an age-related neurodegenerative disorder of relentless
progression and fatal outcome. It has a lifetime risk of 1:300 [1]. There is compelling evidence
that ALS affects domains outside of the motor system, including cognition. Thirteen percent of
those with ALS exhibit a full blown frontotemporal dementia (FTD), and a further 40% have
evidence of progressive cognitive and behavioral impairment [2, 3]. There is also considerable
heterogeneity in genotype. Up to 11% of those with ALS carry a hexanucleotide repeat expan-
sion on Chromosome 9p21 and these individuals are more likely to exhibit deficits in cognition
and behavior [4]. Up to 40% of those with ALS remain cognitively unaffected and experience a
slower disease trajectory compared to those with executive impairment [2].

There is an urgent need for clinically useful biomarkers of diagnosis and progression in
ALS. While neurophysiologic measurement tools including electromyography (EMG)-based
Motor Unit Number Estimation (MUNE) and Motor Unit Number Index (MUNIX) can mea-
sure progressive loss of motor units and are useful and reliable predictors of clinical progres-
sion [5], reliable markers of upper motor neuron dysfunction remain elusive.

ALS necessarily leads to alterations in motor networks of the brain. Measurement of neural
connectivity therefore represents a potentially useful clinical biomarker that encompasses both
motor and cognitive decline.

Connectivity measurements can be structural, functional and effective [6]. Structural con-
nectivity explores the anatomic connections between different brain areas; whereas functional
connectivity refers to an inferred relationship between brain regions based on statistically simi-
lar patterns of activation over time. Finally, effective connectivity measurements not only infer
statistical relationships between regions, but also make inferences as to how activity in one
brain region influences another region, either in an excitatory or inhibitory manner [7].

Analysis of resting-state functional connectivity using both model-based and model-free
approaches, has suggested the existence of at least three major networks: (i) a central executive
network (CEN), the key nodes of which include the dorsolateral prefrontal cortex (DLPFC),
and posterior parietal cortex (PPC); (ii) the default-mode network (DMN), which includes the
ventro-medial prefrontal cortex (VMPFC) and posterior cingulate cortex (PCC); and (iii) a
salience network (SN), which includes the ventrolateral prefrontal cortex (VLPFC) and ante-
rior insula (jointly referred to as the fronto-insular cortex; FIC) and the anterior cingulate cor-
tex (ACC). During the performance of cognitively demanding tasks, the CEN and SN typically
show increases in activation whereas the DMN shows decreased activation [8].

Recent studies of functional connectivity in ALS using Magnetic Resonance Imaging (MRI)
have suggested altered network integrity in salience and default mode networks [9, 10]. How-
ever, MRI is costly and many patients cannot cooperate, particularly in those with respiratory
failure, and in those with worsening cognitive and behavioral impairment. The lack of transfer-
ability of findings across different scanners is also an important limitation. Moreover, signal
measured by MRI represents hemodynamic changes in the brain which serve only as an indi-
rect measure of neural activity.

Advanced neurophysiologic measurements including magnetoencephalography (MEG) and
high resolution electroencephalography (EEG) have a number of advantages compared to
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MRI. While MEG requires specialized equipment housed in a dedicated setting, high density
surface EEG recording is relatively inexpensive, widely available and easily applied in a clinical
setting [11]. EEG data are more closely linked to real-time neural activity with a much greater
temporal resolution (milliseconds) than the hemodynamic MR signal (seconds). This is partic-
ularly important in measuring connectivity based on statistical relationships. The improved
temporal resolution of EEG allows specific analysis of such relationships within a number of
well-known frequency bands, each of which has characteristic biological and pathophysiologi-
cal significance. This partitioning of the time-varying EEG into different frequency bands is
commonly known as spectral EEG and is typically performed using the Fourier transform [12].
The output of this transform is a number of numerical coefficients each of which indexes the
power in the EEG signal at a particular frequency. Variations in these values can then be exam-
ined over time and compared between different brain areas to obtain indices of functional and
effective connectivity [11, 13].

Functional connectivity is assessed by examining statistical relationships between activity in
different brain regions (or data from different electrodes): These can be directed and undi-
rected measures. Undirected measures assess simultaneous activation of regions, while directed
measures attempt to take into account directionality of connections (to determine whether the
activity of one region leads or lags activity in the other region). The directed approach can be
more useful as it provides measures of both forward and backward connectivity between
regions [7].

Once functional connectivity between different brain regions has been estimated, the con-
nection strengths (or “weights”) can then be represented as a connectivity map. In mathematics
such a map is known as a graph and it can be quantified using mathematical graph theory [14].
Studies in Alzheimer’s disease using quantitative graph theory measures suggest that com-
monly observed patterns of network activity disintegrate to a random pattern as the disease
progresses [13]. Conversely, the limited network studies that have been performed in FTD sug-
gest an evolution towards a more ordered network structure, possibly reflecting a different
underlying patho-physiological process [13]. In particular it has been postulated that the
salience network becomes more structured as dementia progresses [13]. Activity in these net-
works is thought to control switching between resting state behavior and active task
engagement.

As there is evolving evidence of overlap between ALS and frontotemporal impairment, with
up to 13% of ALS patients fulfilling the clinical criteria for FTD [3], the aim of the present
study was to explore functional connectivity in a cohort of ALS patients with particular refer-
ence to the underlying salience network, and to evaluate the possible utility of spectral EEG-
based network measures as disease biomarkers.

Materials and Methods
Subject demographics

A total of 18 patients with non-familial ALS (6 female; mean age 56 years, range 42-67 years)
and 17 healthy controls (7 female; mean age 51 years, range 30-78 years) were recruited after
obtaining informed written consent. 15 Patients had spinal onset, 2 respiratory onset and 1 bul-
bar onset disease. All patients were of Irish nationality. All patients were within 18 months of
disease onset, all fulfilled the El Escorial diagnostic criteria for Possible, Probable or Definite
ALS, and all had undergone detailed neuropsychological testing using an established neuropsy-
chology battery of tests (Table C in S1 File) [3] and did not exhibit any evidence of cognitive or
behavioral impairment. ALSFRS-R was performed at the time of recording. All were tested for
known genes including hexanucleotide repeat expansions in C9orf72 and were negative.
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All patients were on Riluzole 50 milligrams twice daily. This was not stopped or changed
during the study. They were not on any other medications. All the patients were tested earlier
for respiratory insufficiency and were found to be normal, and none of the tested patients were
on non-invasive ventilatory support. None of the patients suffered from mood disorders or
sleep disturbances.

The research was approved by the Ethics Committee of Beaumont Hospital.

Data acquisition

EEG data were recorded in a dedicated laboratory from 128 scalp electrode positions, filtered
over the range 0-134 Hz and digitized at 512 Hz using an ActiveTwo system (BioSemi B.V,
Amsterdam, Netherlands). Each subject was fitted with an appropriately sized EEG cap.

Resting state EEG was recorded from all subjects. Each subject was asked to relax while fix-
ating on an ‘X’ on a sheet of paper in order to reduce eye movement artifacts. Three 2-minute
blocks of data were recorded while subjects had their eyes open and one block of two minutes
with eyes closed. The sampling rate of the EEG was 512Hz which facilitated avoidance of high
frequency aliasing when analyzing frequencies up to 100Hz.

Data preprocessing

Preprocessing of the raw EEG data was performed with an EEG processing toolbox (FASTER)
[15], based within the MATLAB software environment (Mathworks, Natick, MA, USA).

Segments of 128 channel EEG data uncontaminated by eye-blinks or muscle artifacts were
visually selected from the preprocessed data. These were subsequently divided into 2 second
epochs to facilitate subsequent analysis.

The preprocessing included statistical identification of bad channels (i.e. those contami-
nated by noise), and the replacement of data on those channels by a weighted average of the
data from neighboring clean channels. Low pass (100 Hz), high pass (0.5 Hz) and notch
(50 Hz) filters were applied to the digitized signals to remove high frequency noise, noise due
to baseline drift, and noise from the electrical mains supply, respectively.

Data analysis

Data analysis was undertaken in two modes, scalp measure-based connectivity and nodal con-
nectivity. The earlier refers to analyzing connectivity measures based on the data recorded
directly from the scalp electrodes while the latter is based on the activity of the anatomically
localized sources of those scalp data (Fig 1).

Data analysis—scalp based connectivity. Data analysis was undertaken in two stages. The
first stage involved calculating various quantitative measures of similarity between the EEG
data on each pair of 128 electrodes for each frequency band of interest. This produced indices
of the interdependent connectivity between each pair of electrodes in the form of 128 x 128
matrices, one matrix for each quantitative measure used and for each frequency band. The sec-
ond stage then involved an analysis to determine which electrode pairs showed connectivity
strengths that were statistically greater than chance. This resulted in a graph of connections for
each subject for each quantitative measure (Fig 1). These graphs were then quantified using
mathematical graph theory [16]. Our analysis then involved searching for statistical differences
in these graph theoretic measurements between patients and controls.

Stage 1: Frequency analysis was performed for each subject by calculating the fast Fourier
transform (FFT) of all their selected epochs. This was performed at 100 frequencies evenly
spaced between 1Hz and 100Hz. Various connectivity measures (Table A in S1 File) are calcu-
lated on the frequency domain representation of the data. An exception was the calculation of
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for scalp connectivity and nodal connectivity.

doi:10.1371/journal.pone.0128682.g001

measures based on auto-regressive (AR) modelling of EEG time series (i.e. Granger Causality,
Directed Transfer Function and Partial Directed Coherence) where spectral analysis is per-
formed after the AR modelling.

Stage 2: Once the 128 x 128 matrices of similarity were computed, we then conducted an
analysis to determine which electrode pairs showed connectivity strengths that were statisti-
cally greater than chance. This was undertaken within each of the following characteristic EEG
bands: delta, theta, alpha, low beta, high beta and gamma frequency bands (1-3Hz, 4-7Hz,
8-13Hz, 14-21Hz, 22-30Hz and 31-60Hz, respectively). Similarity measures at different
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individual frequencies were averaged together to form aggregate measures for each frequency
band.

We then performed two-sample unpaired student t-tests on each of the six frequency bands:
delta, theta, alpha, low beta, high beta and gamma to compare between controls and subjects.
Due to the large number of interconnected electrode pairs (8128 pairs for undirected measures)
statistical significance was calculated to satisfy a corrected significance level (p<0.0005) [17] to
account for effects of multiple testing. All electrode pairs that showed significant relationships
using this criterion were deemed to be connections in an overall network of neural function,
allowing generation of a graphical representation of connectivity differences between groups.

For graph-theoretic analysis, matrices were thresholded to include only the top 20% results
as an initial way of filtering the results to include most significant results. Subsequently, the
network connectivity measures of the resultant graphs were calculated. ((Table B in S1 File)
Quantitative comparison of graph theory-based measures of network connectivity differences
between groups required a different approach: the similarity measures were not averaged
across frequencies in the first place. Connectivity measures were assessed at each individual fre-
quency between 1 and 100 Hz permitting identification of “clusters” of statistically significant
differences between patients and controls across both electrode and frequency.

The connectivity measure of assortativity produces one measure for the entire network, as
opposed to a measure for each electrode. Accordingly, we averaged the assortativity measure
across frequencies to obtain aggregate measures for each of our six frequency bands as before.

Network measures were calculated using FieldTrip toolbox in MATLAB [18].

Data analysis-nodal analysis. We assessed connectivity between brain regions that were
likely contributing to scalp recordings. To do this we followed the same two stage process on
the data as outlined above, after performing source analysis to estimate which brain regions
were contributing to our EEG signal. This source localization was done using sSLORETA soft-
ware [19] that uses the Montreal Neurological Institute (MNI) coordinate system [20]. In this
study, we specified 17 brain regions of interest (ROI) out of 136 nodes in source analysis. These
17 ROIs (named in supplementary material) correspond to the Default Mode Network
(DMN), Central Executive Network (CEN) and Salience Network (SN).

The output signals of sSLORETA were analyzed in the same way as the electrode-level data
mentioned above. The connectivity between ROIs was calculated, using the same two analysis
stages, for all of the same connectivity measures described above.

Likewise, the same method for statistically comparing the connectivity between controls
and patients was used with an alpha value of p = 0.05 for nodal network analysis.

Statistical analysis

Scalp connectivity/nodal connectivity. For scalp connectivity, p value was set at
p<0.0005 based on similar EEG studies in degenerative conditions which were specifically
looking for p value levels to account for multiple testing [17].

Scalp network connectivity/nodal network connectivity. For scalp network analysis, a 2
sample unpaired t-test with alpha value of 0.02 was used. For nodal network analysis, a 2 sam-
ple unpaired t-test with alpha value of 0.05 was used. We applied more stringent criteria to the
scalp network analysis to account for larger number of connection pairs in scalp network com-
pared to nodal network (8128 vs. 136).

Test for discriminatory power. We further analyzed the measures with the highest signif-
icant between-group differences to assess the potential for discrimination for use in clinical
screening or confirmatory diagnosis. This included comparing the distribution of the measure
for patients vs. controls, as well as calculating the receiver operating characteristic (ROC) curve
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[21]. The ROC curve is used to find the best combination of specificity and sensitivity of the
optimal binary classifier based on this measure. Calculations were performed in MATLAB.

Results

Connectivity measures were assessed in four levels namely scalp connectivity, scalp network
connectivity, nodal connectivity and nodal network connectivity. Scalp connectivity and nodal
connectivity refers to results calculated without thresholding, while scalp network connectivity
and nodal network connectivity are calculated after thresholding (Fig 1).

Scalp connectivity

Cross Spectral Density showed significant differences between patients and controls. This
occurred for data in the alpha band and theta band frequency ranges over parietal scalp, with
higher values for patients (p<0.0005). No significant differences were noted using other mea-
sures of scalp connectivity in any frequency band.

Scalp network connectivity

Among patients, increased Degree values of network nodes were recorded in the central and
frontal regions in the theta band across seven different connectivity maps (coherence, cross
spectral density, phase locking value, partial directed coherence, power correlation, pairwise
phase consistency and weighted pairwise phase consistency). The Clustering Coefficient was
increased in the theta range in ALS patients compared to controls across all regions of the
scalp. Gamma range Clustering Coefficient was also increased in the occipital, parietal and
frontal regions in the ALS patients compared to controls. This was observed for all of the fol-
lowing connectivity maps: coherence, CSD, phase locking value, partial directed coherence,
power correlation, pairwise phase consistency and weighted pairwise phase consistency (Fig 2).

Using ratio of variances (or F-ratio), which undertakes comparisons using an F-distribution,
higher connectivity was noted in the patient group compared with the control group, however
these differences were not statistically significant.

Nodal connectivity

Statistically significant differences between ALS patients and controls (p = 0.01) were identified
in four of the 12 methods used to calculate connectivity, namely Partial Directed Coherence,
Directed Transfer function, Granger Causality, and Weighted Phase Lag Index (Fig 3). This
included all of the undirected or effective measures in addition to weighted phase lag index.

Additionally, correlation based connectivity measures, (Coherence, Power Correlation,
Phase locking value, pairwise phase consistency) differed significantly between patients and
controls (p = 0.05). Specifically, differences in alpha band directed transfer function were statis-
tically significant in anterior insular cortex, inferior parietal cortex, and ROI from frontal
regions (p = 0.01).

Nodal network connectivity

Significant differences between the patients and controls were present in assortativity of PDC
connectivity in the alpha band (p = 0.0032) (Fig 4). Additionally, statistically significant
increases were present in the Degree of PDC and Coherence values in the Anterior Cingulate
Cortex and Fronto-insular Cortex in beta and gamma frequencies (Fig 5).
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doi:10.1371/journal.pone.0128682.9002

Significantly higher values for Clustering Coefficient in PDC was identified for patients in
Anterior Insular Cortex, Dorsomedial and Ventrolateral Prefrontal cortex, Posterior Parietal
Cortex across alpha, beta, gamma, theta and delta frequencies.

Discriminatory power

The measure with the most significant and most consistent (across various bands and various
regions) between-group difference, i.e. the clustering coefficient of PDC values in nodal analy-
sis for beta band, was tested for the level of afforded discrimination. Fig 6 shows the median,
interquartile range and range of this measure in boxplots for patients vs. controls. The median
clustering coefficient of PDC in beta range was 0.12 for patients while it was 0.098 for controls.
The p-value of the distributions was 0.0057. The ROC analysis to determine the sensitivity and
specificity of this measure showed that the optimum-threshold classifier has a sensitivity of
58% and specificity of 100%.

Discussion

We have shown that spectral EEG measurements in ALS patients are different from healthy
age-matched controls. All ALS patients had undergone detailed neuropsychological testing
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and, as a group, did not differ from controls. Scalp nodal connectivity was consistently higher
across 7 connectivity measures tested in fronto-central region, showing an increased number
of connections in network nodes in these regions in ALS patients compared to controls. Simi-
larly, clustering coefficient, which measures the triangular connections in a network, and a
measure of network efficiency, was increased in ALS patients compared to controls. This mea-
sure was consistently increased when tested across various connectivity measures, and is thus
robust. As in the case of Degree measurements, these changes occurred predominantly in fron-
tal regions.

Assortativity, which measures the hierarchy of brain networks, was significantly higher
among ALS patients compared to controls, reflecting pathologically organized networks [7].
Nodal connectivity measures also demonstrated increased connectivity in the ALS group.
Increased connectivity has also been demonstrated in FTD patients [13]. These observations in
ALS are congruent with fMRI changes in ALS [10] showing increased connectivity among ALS
patients in Default Mode Network and fronto-parietal regions, attributed to enhanced recruit-
ment of cortical networks as compensation for neuronal loss or due to cortical disinhibition.
The findings are also consistent with pathological changes reported in ALS [22], and with the

PLOS ONE | DOI:10.1371/journal.pone.0128682 June 19,2015 9/14



D)
@ : PLOS | ONE Resting State Spectral EEG as a Potential Biomarker for ALS

0.6 ‘
%* B Controls
HPatients|
0.4
0.2

Delta Theta Alpha Beta Gamma(L) Gamma(H)

Fig 4. Aggregated nodal network connectivity. Assortativity of Partial Directed Coherence, showing differences between patients (Yellow) and controls
(Green) with p = 0.0032 for Alpha range (Delta p = 0.74, theta p = 0.26, beta p = 0.46, gamma p = 0.47).
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known biological link between ALS and FTD [4]. Directed Transfer of Function (an indicator
of directional influence of network nodes in a multivariate environment), demonstrated statis-
tically significant increase in connectivity in the frontal cortex, anterior insular cortex, and
parietal cortex. These finding are consistent with the role of the anterior insular cortex as the
switching area of Salience network, and the anterior cingulate gyrus as a direct relay node next
to anterior insular cortex [8].

The neuropsychology tests were all within the normal range for patients who participated in
the study. The individual scores of neuropsychology tests did not show any correlation with
the Clustering Coefficient or the Degree of PDC connectivity of the Salience network (Spear-
man’s rank correlation, p > 0.05, Bonferroni corrections with n = 40).

The clustering coefficient of PDC in the nodal network analysis was selected for discrimina-
tory power analysis as the results were consistently spread over multiple adjacent frequency
bands and multiple regions with a high p-value which makes the findings unlikely to be due to
chance (Type-I error). When we plotted the values separately for patients and controls (Fig 6),
their median values were different; however, there is overlap between the distributions of val-
ues. Therefore, this measure, though useful on a group basis, might not be immediately appli-
cable on an individual basis. The ROC analysis for this measure showed that the optimum
classifier gives a sensitivity of 58% and a specificity of 100%. This again makes this measure
useful and important as a confirmatory tool, but probably not yet for screening purposes.
Though promising, a study with larger sample size is warranted to assess the feasibility of these
measures as a definite biomarker, on an individual basis.

Notwithstanding, taken together, these results suggest increased activity in the salience net-
work in ALS patients. Further evidence of disruption in the salience network included
increased nodal network connectivity in insular Cortex, dorsomedial and ventrolateral Pre-
frontal cortex, and posterior parietal cortex. The involvement of parietal and occipital cortical
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areas, which form part of default mode network, raises the possibility that hyperactive, patho-
logically plastic salience network may take over from other networks in the initial stages of dis-
ease, leading to the initial formation of giant networks which fail in later stages of disease. The
hypothesized giant functional network formation could be a compensation for structural neu-
ronal loss or white matter damage as part of the disease. It could also be hypothesized second-
ary to pathologic hyper plasticity of the network elements. It could also be secondary to loss of
inhibitory control over network regions as part of the disease process.

Limitations

Although our findings are novel, our study has limitations. The objective was to apply a large
group of connectivity measures and various methods to the connectivity and network assess-
ment to a cross section of ALS population that was selected for clinical homogeneity: all
patients were within 18 months of first symptom, had undergone extensive neuropsychological
assessment and were cognitively intact, were negative for known genetic mutations, and the
majority had spinal onset disease (83%). Based on our findings, a more extensive network
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disruption could be anticipated in ALS patients with associated cognitive and behavioral
impairment

Our numbers in this pilot study are small, and the study is cross-sectional in nature and will
require replication in larger cohorts with longitudinal follow up. Our focus on this study was to
establish the usefulness of high density spectral EEG as a useful tool in bringing out the connec-
tivity changes among ALS patient cohort, with a view to enable expanded studies with larger
cohort using multiple modalities. Nevertheless, extension of the study to and validation of the
results against other imaging modalities like DTT and fMRI are interesting research directions.
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Our data-driven analysis provides credible proof of concept as to the utility of spectral EEG
as a novel, inexpensive and clinically applicable biomarker tool of central network disruption
in those with ALS and normal cognition. Our data encourages detailed use of longitudinal
studies to measure changes in network impairment over time.

Supporting Information
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