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Magnetic nanoparticles are promising tools for a host of therapeutic and diagnostic medical

applications. The dynamics of rotating magnetic nanoparticles in applied magnetic fields depend

strongly on the type and strength of the field applied. There are two possible rotation mechanisms

and the decision for the dominant mechanism is often made by comparing the equilibrium

relaxation times. This is a problem when particles are driven with high-amplitude fields because

they are not necessarily at equilibrium at all. Instead, it is more appropriate to consider the

“characteristic timescales” that arise in various applied fields. Approximate forms for the character-

istic time of Brownian particle rotations do exist and we show agreement between several analyti-

cal and phenomenological-fit models to simulated data from a stochastic Langevin equation

approach. We also compare several approximate models with solutions of the Fokker-Planck equa-

tion to determine their range of validity for general fields and relaxation times. The effective field

model is an excellent approximation, while the linear response solution is only useful for very low

fields and frequencies for realistic Brownian particle rotations. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922858]

I. DESCRIBING DRIVEN NANOPARTICLE ROTATIONS

In many magnetic nanoparticle (MNP) applications like

biosensing,1–7 hyperthermia,8,9 and magnetic particle imag-

ing,10–13 nanoparticles are driven to rotate by oscillating

magnetic fields.14 Understanding the resulting magnetic par-

ticle dynamics is important to advance these applications. A

typical way to discuss the dynamics is through the timescales

of the nanoparticle rotations.15–17 In particular, we often con-

sider the relaxation time: the timescale for a sample of par-

ticles to return to equilibrium after some perturbation (e.g.,

alignment with a field). Conventional magnetic particles are

understood to have two rotational mechanisms. The entire

particle can rotate as a rigid body by Brownian rotations,18

and the particle’s magnetic moment can also rotate internally

due to restructuring of electronic states in N�eel rotation.19,20

The equilibrium relaxation time is different for each mecha-

nism and depends on many parameters.21,22 However,

because most applications involve magnetically excited par-

ticles, it is more important to examine non-equilibrium time-

scales determining the speed of movements in varying

driving fields—these timescales can be very different from

the relaxation time. One only needs to imagine that in a

stronger field, the particles will align faster to see why this is

true. We will hence refer to those non-equilibrium timescales

as the “characteristic times” of the rotations.

In reality, the possibility for N�eel rotations complicates

the matter and it is important to understand which mecha-

nism is dominant for chosen nanoparticles.23,24 This is an

open problem because these processes will in general not be

decoupled. If the processes did truly happen independently

(in parallel) the more prevalent relaxation mechanism would

be that with the shorter relaxation time; but, because the

equilibrium relaxation time is not a precise metric, simply

comparing these times will not immediately determine the

dominant rotation method.25–27 The notion then of purely

N�eel or purely Brownian particles is unrealistic, particularly

in nanoparticles with a wider size distribution.

It is possible to create a fully general model for the time

dynamics of magnetically driven magnetic particles includ-

ing varying rotation methods as well as the specific condi-

tions the particles experience in various applications.23 Two

main formalisms exist: The Langevin equation formalism

describes a single particle’s dynamics with a stochastic dif-

ferential equation that can be solved repeatedly to describe

the average properties of an ensemble of particles. The

Fokker-Planck formulation instead describes the time evolu-

tion of the probability distribution of a sample of magnetiza-

tions, so that ensemble averages can be found at any time

from the distribution function. In this work, concentrating on

Brownian particle rotations that are used in biosensing appli-

cations, we solve both types of equations, using them to

assess various models for nanoparticle relaxation times and

characteristic times as well as approximate models for time

dynamics.

II. THE FOKKER-PLANCK EQUATION FOR BROWNIAN
NANOPARTICLE ROTATIONS AND ASSOCIATED
APPROXIMATE MODELS

The Fokker-Planck equation (FPE) governs the distribu-

tion function Wðh;/; tÞ of an ensemble of particle magnet-

izations. It can be derived heuristically from a continuity

equation with an additional diffusion term.19 Each nanopar-

ticle’s magnetization is imagined to be a vector moving on
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the unit sphere, and the diffusion is parameterized by D. The

general FPE is then written

@W

@t
¼ r � Dr� dm

dt

� �
W; (1)

where the magnetization time dynamics are given by different

differential equations for Brownian and N�eel rotation. We

focus on the Brownian case because fewer assumptions must

be made (e.g., constraining the anisotropy axis). The distribu-

tion is used to determine magnetization statistics using

the definition of the probability moments
Ð

mjWðh;/; tÞ dX
¼ hmjðtÞi. The magnetization dynamics of Brownian particle

rotations are dominated by torques caused by an applied field

and the viscous drag from the fluid. Several papers go through

derivations for the equations of motion.15,16,22,28 We choose a

compact form for the equation

dm

dt
¼ m� nð Þ �m

2sB

; (2)

in terms of the equilibrium Brownian relaxation time sB

sB ¼
3gVh

kBT
; (3)

determined by the suspension viscosity g, the hydrodynamic

volume of the particle Vh, and the local temperature T with

Boltzmann’s constant kB. The unitless magnetic field n is a

vector quantity

n ¼ lH

kBT
; (4)

incorporating the nanoparticle’s magnetic moment l and

an applied field H. The magnetization m is normalized

and therefore unitless. Replacing the velocity of the magnet-

ization in Eq. (1) with that from Eq. (2) and assuming a

Maxwell-Boltzmann distribution at equilibrium (when
@W
@t ¼ 0) we find D¼ 1/2sB and write

@W

@t
¼ 1

2sB

r � r � nþm m � nð Þ½ �W; (5)

for which a general solution is not currently analytically pos-

sible. Since many applications use a single oscillating field

(see, for example, magnetic particle imaging11 or magnetic

nanoparticle spectroscopy4–6), we choose n! nðtÞ ẑ and

simplify the FPE to only depend on the polar angle and time

W(h, t). Writing out letting x ¼ cos h the 1-D FPE is written

@W

@t
¼ 1

2sB

@

@x
1� x2ð Þ @W

@x
� n tð ÞW

� �� �
: (6)

A solution to this equation is possible by expanding with

Legendre polynomials.17,23,29

A. Linear response

Following Debye,30 it is possible to obtain an analytical

solution to the FPE assuming a small amplitude oscillating

field n¼ n0eixt. In the small amplitude case, it is fair to

assume the distribution function is linear in x, with the gen-

eral form Wlin¼AþBx. Inputting Wlin into Eq. (6) leads to

the average normalized magnetization in the direction of the

oscillating field

hmi ¼ n0

3

eixt

1þ ixsB

: (7)

The susceptibility or slope of this equation is not realis-

tic for larger fields when n0> 3 because the magnetization is

normalized to be on the unit sphere. The results are slightly

better (see Fig. 5) if we use

hmi ¼ L n0ð Þ
eixt

1þ ixsB

; (8)

where for small fields, the Taylor expansion of the Langevin

function provides the equivalent susceptibility including the

factor of 1/3 and for large fields, the magnetization does not

grow above unity.

B. Moment equations from the FPE

Moment equations are found from Eq. (6) by multiplica-

tion with powers of x and subsequent integration over x. The

normalization condition defined by the probability distribu-

tion W(x, t) and the definition of the statistical moments are

used. For example, after multiplying by x and two steps of

integration by parts we find

2sB

@hxi
@t
¼ n� 2hxi � nhx2i: (9)

The dynamics of the mean thus depend on the second

moment and a similar procedure gives the second moment31

sB

@hx2i
@t
¼ 1þ nhxi � 3hx2i � nhx3i; (10)

and so on. An infinite series of coupled differential equations

emerge that can be truncated by a clever closure technique

termed the “effective field” method.32

C. Truncating the moment equation

The moment equation is truncated by assuming a distri-

bution function that is similar to the equilibrium distribution

except having an “effective field” ne. The field is free to be

slightly different than the applied field.31,32 The advantages

of the effective field model are the simpler more intuitive

form and the ease of implementation relative to the stochas-

tic or FPE methods. It is clear that the model describes an ex-

ponential decay when the applied field is zero, and when the

effective field is equal to the actual field, the mean magnet-

ization does not change. This is equivalent to assuming equi-

librium. We note that the calculational simplicity only holds

for 1D modeling. Each moment can be computed from the

effective normalized distribution function

We ¼
ne

2 sinhne

exne : (11)
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The mean and the second moments are functions of the

Langevin function with respect to the effective field

hxie ¼ LðneÞ ¼ cothne � 1=ne (12)

and

hx2ie ¼ 1� 2

ne

L neð Þ: (13)

Using the first moment equation (Eq. (9)), we now have a

differential equation for the mean magnetization purely in

terms of the Langevin function and the effective field

d

dt
hxie ¼ �

hxie
sB

1� n

ne hxie
� �

 !
; (14)

where the effective field ne is a function of the mean value.

To solve this implicit differential equation, the effective field

at each time can be found by inverting the Langevin function

for a given magnetization using a Pad�e approximant.33

D. Analytical characteristic timescales

Martensyuk, Raikher, and Shliomis (MRS) develop an

approximation to the characteristic timescale for a general

effective field that is a small perturbation on the equilibrium

field.32 Here, we show the characteristic time to begin

aligned in the perpendicular direction and then evolve to

align with the field, so that we may compare with simulated

data. The perpendicular characteristic time is

sMRS

sB

¼ 2L nð Þ
n� L nð Þ : (15)

And from this, low- and high-amplitude field approximations

to the perpendicular characteristic time can be easily written

slow

sB

¼ 1� 1

10
n2;

shigh

sB

¼ 2

n
: (16)

In practice, we find that for fields of n> 5, the large field

approximation suffices. We also summarize the characteris-

tic timescales in Table I.

E. Fully general N�eel relaxation time

While this paper is designed to focus on Brownian nano-

particle rotations, it is important to consider the fully general

expressions for N�eel relaxation times, which are not always

used in their complete forms. In particular, the N�eel event

time s0 is sometimes determined solely from experiments,

but, in principle, can be broken down into several other pa-

rameters for more specific measurements as

s0 ¼
l

2kBTc
1þ a2

a
; (17)

with the Gilbert damping parameter a, the gyromagnetic ra-

tio c, and the magnetic moment l.21

Depending on the unitless anisotropy constant

r¼KVc/kBT, where K is the anisotropy constant and Vc is

the magnetic core volume, two approximations exist for

the equilibrium N�eel relaxation time

sN ¼
s0r 1� 2

5
rþ 48

875
r2

� ��1

if r < 1

s0

2

ffiffiffiffiffi
p
r3

r
exp rð Þ if r � 1:

8>>><
>>>:

(18)

N�eel rotations are more likely in smaller single domain

nanoparticles where the energy scale to reverse the magnet-

ization is comparable to the thermal energy (i.e., r� 1 as in

superparamagnetic nanoparticles), or in large magnetic fields

where n>r N�eel rotations are also certainly possible.

Especially, in poly-disperse samples, it is less likely that

both nanoparticle rotation mechanisms are not simultane-

ously occurring.34

III. SIMULATION RESULTS

A. Comparison of characteristic timescales

A stochastic Langevin equation can be developed from

the magnetization equation (2) in different fashions, though

it is important to note that there is no completely general

way to add in thermal fluctuations. Typically, a Gaussian

fluctuating term is appended to the differential equation

defined by

hk tð Þi ¼ 0; hki tð Þkj t0ð Þi ¼ dijd t� t0ð Þ
sB

; (19)

with i, j 2 x, y, z. Simulations of the Brownian Langevin

equation (Eq. (2) with additional stochastic torques) can be

completed15,16,28 to examine the characteristic time and com-

pare with the analytical expressions.

Our first result is intuitively obvious. If particles are ini-

tiated in a state completely aligned with some axis, and a

field is turned on perpendicularly, the magnetizations align

with the field. Several example magnetizations simulated

with averages over 104 particles using an Euler-Marayuma

integration scheme for the stochastic differential equation

are shown in Fig. 1. They illustrate the decreasing character-

istic time for increasing field strength as n¼ 0 ! 30. The

large changes in the dynamics indicate that it is incorrect to

use the Brownian relaxation time to describe rotations.

The alignment to the field perpendicular to the original

state results in magnetization curves that can be fitted with

TABLE I. Summary of characteristic timescales with descriptions.

Abbreviation Expression Description

sB

3gVh

kBT
Equilibrium relaxation time18

sMRS

2LðnÞ
n� LðnÞ sB Timescale to align to a perpendicularly

applied static field of amplitude

n (Ref. 32)

sYE

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:21n2

p sB Phenomenological fit to FPE simulations

of perpendicularly applied static field

of amplitude n (Ref. 29)
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an exponential of the form hmzi / 1� e�t=sc . Thus, we can

extract the approximate characteristic time for each applied

field strength though for strong enough fields the exponential

form even breaks down. Yoshida and Enpuku also found the

characteristic time using FPE simulations.29 From their

simulated data, they developed a phenomenological fit to the

relationship between characteristic time and field strength as

sYE ¼
sBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 0:21n2
p : (20)

The YE form is a good approximation and in the low- and

high-amplitude field limits approaches the analytical forms

from the effective field characteristic times Eq. (16). The

values of the characteristic time (with respect to the applied

field) from our simulations agree with both the form of sYE

and the approximate characteristic time sMRS. This is shown

in Fig. 2.

B. Validity regimes between models in oscillating
fields

When the applied field is oscillatory n ¼ n0 cos xt, as in

many applications, we can compare the various model

approximations at different field strengths n0, frequencies

f¼x/2p, and relaxation times sB. It has been shown that a

complete description of the dynamics using the FPE can be

parameterized by the combination variable fsB.17

To connect with biosensing experiments, we use typical

values of the relaxation time (500 ls for 100 nm particles at

room temperature and water viscosity), fields of 1 kHz then

lead to fsB� 0.5 and moments of 70 emu/g, and fields of

10 mT/l0 lead to n0� 10. As mentioned previously, when

the unitless field is greater than the unitless anisotropy

(n0> r), however, N�eel rotations are expected and the

dynamics are more complicated. Typical magnetite nanopar-

ticles may have anisotropies of the order of 1 kJ/m3 and

10 nm core radii leading to r� 10 as well.13,35

In principle, the Langevin equation and the FPE

approaches should be identical, and averaged solutions of

the Langevin equation15 compared to the FPE truncated after

fifty iterations of the series solution moments17 lead to van-

ishingly small error. We also note that the advantage of the

stochastic model is that it is amenable to different field geo-

metries and additional physics, while even the FPE is only

solvable for very specific cases.23 However, if computation

time is a problem, it can certainly be useful to employ the ap-

proximate models.

We calculate the error as the squared error E between

functions at and bt

E ¼
ð

T

ðat � btÞ2 dt

� �1=2

; (21)

where T is a period of the oscillating field. The error between

the Langevin and FPE approaches is constant over fields and

can be made as small as desired by more averaging, or

shorter time steps, or both. An example is shown in Fig. 3.

We see that neither the field nor the frequency relaxation

FIG. 1. Stochastic Langevin equation simulations of normalized mean mag-

netizations that begin aligned in the x-direction (perpendicular) and then

evolve with static fields applied in the z-direction (parallel) at various ampli-

tudes. As the amplitude increases, the particles align faster to the field in the

parallel direction and go to zero faster in the perpendicular direction, so that

magnetic saturation occurs in a fraction of the original relaxation time.

FIG. 2. Comparison of the analytical expression (MRS, Eq. (15)) for the

characteristic time with the data fit model (YE, Eq. (20)) and stochastic

Langevin simulations.

FIG. 3. The error of the Langevin equation simulation with respect to the

FPE solution at different magnetic fields and for two fsB combinations. In

principle, this error can be made arbitrarily small by increased averaging.
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time combination effect the error percentage. This is unlike

the other models that have inherent approximations that con-

strain their range of validity. These simulations use 105 aver-

ages of the Langevin equation and thirty components of the

series expansion solution to the FPE.

Fig. 4 qualitatively demonstrates the problems with the

models. For small fields, the Debye model is accurate but for

larger fields the amplitude is too large. The amplitude error

can be slightly corrected by using the Langevin function to

choose the susceptibility. The purely equilibrium Langevin

function model matches the correct amplitude for larger

fields but does not account for phase lags and thus only

begins to approach the correct solution at the large fields.

For practical purposes, we conclude that this model is

useless.

Fig. 5 quantitatively shows the agreement of the various

approximate models against the FPE solution. The data

include comparisons against the linear response model

Eq. (8) with (Debye2) and without (Debye1) the Langevin

function susceptibility (see Sec. II A), the equilibrium

Langevin function model hmi ¼ L½nðtÞ� and the effective

field model Eq. (14) over a large range of applied fields and

for several field and relaxation time combinations. The error

is calculated using Eq. (21).

The results show that the effective field of MRS32 works

quite well over a very large range of the variables. The equi-

librium Langevin function model begins to be reasonable

only at very high fields and never reaches the accuracy of the

effective field. The challenge of the Debye model is in deter-

mining the susceptibility. If this number is chosen as the

value of the Langevin function, the model works very well

for low fields. In fact, it even surpasses the accuracy of the

effective field model when the amplitude is low, and the fre-

quency relaxation time combination is high. The altered

Debye model is thus an accurate predictor of dynamics for a

small range of AC susceptibility biosensing.

IV. CONCLUSIONS

We have shown that the useful concept of equilibrium

relaxation times for magnetic nanoparticle rotations can be

extended to include the amplitude of a field driving the par-

ticles. These “characteristic times” are a more general way

to describe the timescales of non-equilibrium rotations and

are summarized in Table I. Our Langevin equation simula-

tions can be used to calculate the characteristic times, and

for dynamics where the distribution function is close to equi-

librium (e.g., the driving field is almost adiabatically rotating

the nanoparticles) our simulations agree with a numerical

approximation (sYE) proposed by Yoshida and Enpuku.29

We also demonstrate that our simulations, as well as those of

Yoshida and Enpuku can be characterized using the analyti-

cal approximation sMRS originally derived by Martsenyuk,

FIG. 4. Example magnetizations for the various models (summarized in

Table II at different fields and fsB¼ 1 compared to the FPE solution. The

amplitude error of the Debye models and the phase error of the Langevin

model are clear.

FIG. 5. Errors calculated with Eq. (21) for the approximate models with

respect to the FPE. Many magnetic field amplitudes are used and the value

of fsB is varied from 0.1 to 10.
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Raikher, and Shliomis.32 This is no mistake as the high- and

low-field approximations to sMRS appear numerically similar

to the equivalent expressions for sYE. These results highlight

the importance of considering the characteristic time instead

of simply the equilibrium relaxation time in describing par-

ticles that are driven to rotate as opposed to those freely

relaxing to equilibrium.

Multiple commonly used approximate forms for oscil-

lating dynamics of particles have also been shown, as well as

the appropriate ranges of validity for each model. The mod-

els are collected in Table II. Each model was compared

against the FPE solution simulation. We found that the

combination of the Langevin function for the susceptibility

and the Debye model to account for relaxation (Debye2 in

Table II) is a reasonable approximation (below 1% error)

especially at low fields when fsB is large and n is small. The

effective field model (EF in Table II) is consistently accurate

to within 1% for lower field amplitudes and is simpler to cal-

culate in a 1D geometry. However, in realistic biosensing

applications that require knowledge of Brownian nanopar-

ticle dynamics, and especially if full 3D simulations are

required, we conclude that it is likely necessary to use the

stochastic Langevin equation model because it is easily ame-

nable to variable field geometries or additional physics.
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