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Purpose: Pulmonary positron emission tomography (PET) imaging is confounded by blurring
artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative
accuracy. In this paper, the authors present a complete data acquisition and processing framework
for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body
PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies.
Methods: The authors have developed an MCIR framework based on maximum a posteriori
or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed
a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it
in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-
projection navigator signal encapsulated within this pulse sequence along with a histogram-based
gate assignment technique to retrospectively sort the MR and PET data into individual gates. The
authors compute deformation fields for each gate via nonrigid registration. The deformation fields are
incorporated into the PET data model as well as utilized for generating dynamic attenuation maps.
The framework was validated using simulation studies on the 4D XCAT phantom and three clinical
patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR
scanner.
Results: The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) recon-
struction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC
relative to UG in the range of 21%–107% for 14 mm diameter lung lesions and 39%–120% for 10 mm
diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using
XCAT simulations, and applied to the clinical studies. The authors’ results show that the MC image
yields 19%–190% increase in the CNR of high-intensity features of interest affected by respiratory
motion relative to UG and a 6%–51% increase relative to OG.
Conclusions: Standalone MR is not the traditional choice for lung scans due to the low proton density,
high magnetic susceptibility, and low T∗2 relaxation time in the lungs. By developing and validating
this PET/MR pulmonary imaging framework, the authors show that simultaneous PET/MR, unique
in its capability of combining structural information from MR with functional information from
PET, shows promise in pulmonary imaging. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4921616]

Key words: PET/MR, motion compensation, multimodal imaging, pulmonary, gating, MAP
reconstruction

1. INTRODUCTION

Respiratory motion poses a significant challenge to pulmonary
positron emission tomography (PET) imaging by causing blur-
ring artifacts, which degrade both image quality and quantita-

tion. Motion-induced blurring, which may lead to underesti-
mation of tumor activity and overestimation of tumor volume,1

is a major deterrent for therapeutic monitoring, which relies
on the consistency of quantitative information across scans.
Additionally, motion artifacts may have a tremendous impact
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on lesion detectability and often result in small lesions remain-
ing undetected,2,3 thereby jeopardizing diagnosis and staging.
As PET plays an important clinical role in the staging and
treatment evaluation of thoracic lesions,4,5 such inaccuracies
in quantitation hinder cancer management. A variety of motion
tracking systems are available, which generate external chest
motion trajectories (most commonly through visual markers
monitored with cameras or through pressure sensors mounted
on bellows) that can be used as surrogates for internal motion
measures.6 The respiratory signals generated by these systems
can be used to perform respiratory gating, a technique in which
emission events detected during short time windows corre-
sponding only to a specific respiratory phase or gate (within
which motion effects can be assumed to be negligible) are
used for reconstruction.7,8 This technique, however, sacrifices
signal-to-noise ratio (SNR) as it only uses a small fraction of
the emission events.

A more sophisticated solution to the motion problem is by
means of determining volumetric deformation fields and using
them to compensate for motion. Motion compensation via
pre-reconstruction affine repositioning of the lines of response,
which has been successfully applied to neuroimaging studies
involving rigid motion of the head,9,10 is unsuitable for pulmo-
nary applications as respiratory motion causes non-rigid defor-
mations of the thorax and upper abdomen.11,12 Instead, accu-
rate compensation of respiratory motion requires volumetric
deformation fields computed through non-rigid registration
typically of 4D anatomical images, gated in synchrony with the
PET. The final PET image corresponding to a chosen reference
gate is either computed via a reconstruct-transform-average
(RTA) approach using individual gated PET images13–15 or
by incorporating the deformation fields directly into a mo-
tion compensated image reconstruction (MCIR) framework
that outputs a single PET image at the reference gate.16–20

Some works have taken these approaches one step further
by performing joint estimation of images and deformation
fields.21–24 Studies comparing the RTA approach with MCIR
generally concur that the latter approach yields higher quanti-
tative accuracy.25–29 While in principle it is possible to perform
MCIR using motion information derived directly from 4D
PET images, either without attenuation correction30 or with
attenuation correction using a respiratory-averaged computed
tomography (CT) image,31,32 the accuracy of these methods
is limited by the poor anatomical detail in the PET images.33

Hence, despite the added radiation dose imposed by 4D CT,
the majority of MCIR studies reported are based on motion
information derived from 4D CT images.18,19,25,34 Due to
the sequential nature of the PET and CT scans in PET/CT
systems, accurate synchronization of PET and CT gates can
be challenging and is further complicated by the inherent
variability in the breathing patterns of patients over time.35–37

Simultaneous whole body PET/MR in an emerging tech-
nology that unifies PET (a physiological imaging technique)
with magnetic resonance (MR, primarily used for imaging
the anatomy), thereby enabling synchronized capture of both
structure and function. PET/MR successfully addresses several
of the limitations of PET/CT in MCIR. Unlike CT, MR yields
superb soft-tissue contrast and high spatial resolution without

any radiation burden. Additionally, the simultaneity of the
PET and MR components eliminates the problems due to
mismatch between the PET and the CT in terms of position
and respiratory phase frequently encountered with PET/CT.
Despite the initial success of PET/MR in MCIR,38–42 high
quality pulmonary imaging with this new technology is still an
open problem since the low proton density, large susceptibility,
and very short T∗2 in the lungs make pulmonary MR imaging
challenging. While tagged MR studies have been successfully
used in phantoms, rabbits, and primates,39–41 tags fade too
quickly to capture the longer breathing cycle in humans. A
variety of methods have been proposed to generate 4D MR
image sequences in the presence of breathing motion. A slice-
stacking technique based on a 2D navigator was described in
Ref. 43. 2D and 3D MR protocols were compared in Ref. 44.
A navigator-based MR sequence with radial phase encoding
was presented in Ref. 45 and was used in PET/MR simulation
studies for nonrigid bulk motion correction. PET/MR phantom
imaging results based on a real-time MR sequence with 1D
navigators were presented in Ref. 46. These studies highlight
the merits of MCIR in simulation and phantom studies.

In this paper, we present an MCIR framework for pulmo-
nary PET/MR imaging and validate it using clinical datasets.
This is an extension of our prior reports,47,48 which, to our
knowledge, present the first clinical results using PET/MR
pulmonary imaging with MCIR. Two subsequent studies have
shown preliminary clinical results demonstrating the utility of
PET/MR in capturing and correcting for respiratory motion
in the lungs.49,50 4D MR images were assembled from 2D
slices using a 1D pencil beam navigator and used to generate
thoracic PET images using the RTA method in Ref. 49. In
contrast with this work, which uses Cartesian sampling, we
have designed a radial MR sequence, which is more well-
suited for 4D imaging applications. A self-gated 3D radial
stack-of-stars MR sequence was presented in Ref. 50 and
was used for RTA-based motion correction of PET images.
One key difference between this method and our approach is
that we use a navigator, which, compared to self-gating, is less
prone to corrupting factors such as noise, scanner gradient
delay, field changes etc.

The main contributions of this work are as follows: We
have designed a navigator-encapsulated golden-angle radial
MR pulse sequence and combined it with sparsity-enforcing
iterative reconstruction to generate high-quality 4D MR im-
ages of the lungs under free-breathing conditions. We have
developed an optimized histogram-based data binning scheme
for retrospective gating that leads to roughly equal amounts of
PET and MR data per gate. We have also developed an MCIR
framework for PET based on maximum a posteriori (MAP)
estimation with gradient-based optimization. The advantages
of regularization in MCIR have been demonstrated in Ref. 51
using the one-step-late expectation maximization or OSL-EM
approach. Unlike OSL-EM, which has been shown to converge
only for certain forms of the regularizer,52 our MAP technique
with gradient ascent guarantees convergence of the inverse
problem for a wide range of priors.

Section 2 provides details on all the data processing steps,
the key components of the MCIR framework, the simulation

Medical Physics, Vol. 42, No. 7, July 2015



4229 Dutta et al.: Pulmonary imaging using respiratory motion compensated simultaneous PET/MR 4229

setup, the details of the clinical experiments, and the figures
of merit used for evaluation. In Sec. 3, we present results
from a simulation study and three clinical patient studies. A
discussion of our results is presented in Sec. 4.

2. MATERIALS AND METHODS
2.A. Overall framework

The data acquisition and processing framework shown in
Fig. 1 was developed for a Biograph mMR whole body simul-
taneous PET/MR scanner (Siemens Medical Systems, Erlan-
gen, Germany). The PET detector assembly in this scanner,
consisting of arrays of MR-compatible avalanche photodiodes
(APDs) and detector blocks with 4 × 4 × 20 mm3 lutetium
oxyorthosilicate (LSO) crystals, is housed in the bore of a
3 T superconducting magnet. The PET field of view (FOV)
is 59.4 cm in the transaxial direction and 25.8 cm in the axial
direction. For MCIR, PET data are acquired in list mode. MR
k-space data are collected simultaneously with the PET. Both
the PET and the MR raw data are binned to gates retrospec-
tively. The gated MR images are used to compute deformation
fields and gated attenuation maps, which serve as inputs to the
PET reconstruction module. The MAP reconstruction module
then outputs the final PET image.

2.B. PET data model and MAP reconstruction

The PET data model for MCIR can be obtained by concat-
enating the models for the individual gates and incorporat-
ing deformation information. The unknown activity image is
assumed to correspond to a reference gate, a discrete phase of

motion selected as the reference. Deformation fields map this
reference gate to all other gates. The mean of the data vector
corresponding to the kth gate, ȳk ∈Rm, can be modeled as53

ȳk = PsensPblurPk
attnPgeomT kx+ r̄k+ s̄k . (1)

Here, x ∈Rn is the reference gate image, Psens ∈Rm×n is a diag-
onal matrix representing the detector sensitivity, Pblur ∈Rm×n

accounts for detector blurring due to scattering, random coin-
cidences, and crystal penetration, Pk

attn ∈ Rm×n is a diagonal
matrix consisting of attenuation coefficients for the kth gate,
Pgeom ∈Rm×n is the geometric projector, the (i, j)th element of
which represents the probability that a photon pair produced
in voxel j reaches the front faces of the detector pair i, T k

is a trilinear interpolation matrix generated from voxelwise
deformation fields, which transforms x to the kth gate, and r̄k

and s̄k represent the mean of the random and scattered events
for the kth gate. This model assumes motion effects to be
negligible within each gate.

MAP estimation involves maximization of the posterior
probability density function, p(x |y)= p(y |x)p(x)/p(y).53 For
PET imaging, p(y |x) is the Poisson likelihood with mean ȳ
(mean data vector concatenated over all gates). The prior prob-
ability is usually assumed to follow a Gibbs distribution of the
form p(x)= (1/Z)e−βU(x), where U(x) is a Gibbs energy func-
tion and β is the regularization parameter. Taking logarithms
of both sides and dropping the term which is constant with
respect to the unknown image, the MAP objective function can
be represented as

Φ(x,y)= L(y |x)− βU(x), (2)

F. 1. Data acquisition and processing framework for MCIR using simultaneous PET/MR.
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where L(y |x) is the Poisson log likelihood and U(x) is
the uniform quadratic penalty, which represents a uniform
Gaussian distribution on the nearest-neighbor intensity differ-
ences within the local neighborhood, Nj, of a voxel j. In
this paper, we compare three different image generation
approaches:

• OG: Conventional sinogram-based MAP reconstruction
using counts for one gate—the reference gate (k = 1) with

LOG =

m
i=1

(y1
i )log( ȳ1

i )− ( ȳ1
i ),
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1
2
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l )2. (3)

• UG: Conventional sinogram-based MAP reconstruction
using all (ungated) counts with
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• MC: MAP MCIR using gated sinograms with

LMC =

p
k=1

m
i=1

(yk
i )log( ȳk

i )− ( ȳk
i ),

UMC =
1
2

n
j=1


l ∈Nj,l> j

(xMC
j − xMC

l )2. (5)

In each case, we minimize the objective function in (2)
using the preconditioned conjugate gradient algorithm with a
bent Armijo line search to impose non-negativity.54

2.C. MR image acquisition and reconstruction

MR imaging of the lungs is challenging due to the following
facts: (1) The lungs contain only about 800 g of tissue and
blood, distributed over a volume of 4–6 l, leading to very
low proton density and hence low MR signal intensity, and
(2) the high magnetic susceptibility at the alveolar surfaces
leads to a very short T∗2 and hence causes rapid dephasing of
the MR signal.55 Additionally, thoracic motion necessitates the

use of fast MR pulse sequences to prevent motion artifacts,
further contributing to the challenge. For real-time motion cap-
ture, we have developed a novel MR pulse sequence entitled
Golden-angle RAdial Navigated Gradient Echo (GRANGE).
This sequence uses radial sampling, which enables oversam-
pling of the central part of k-space (where most of the use-
ful image information is typically concentrated) with gradual
azimuthal undersampling of the extremities. Each radial line
in k-space captures both low and high frequency informa-
tion. A reduction in the number of k-lines therefore does not
directly translate to a loss of resolution or ghosting artifacts
unlike some Cartesian trajectories. Instead undersampling for
radial sequences, as we will demonstrate, typically translates
to radial streaking artifacts. Three key enabling characteristics
of our approach described below, including two features of the
GRANGE sequence and the use of sparsity-enforcing itera-
tive reconstruction, make our approach ideal for pulmonary
imaging with free breathing and retrospective data binning and
processing.

2.C.1. Slice-projection navigator

For each repetition time (TR), our sequence first acquires
a fast 1D slice-projection navigation signal to track the dia-
phragm position.56 It then acquires radial k-space lines in a
slice-interleaved fashion as illustrated in Fig. 2. The same
sequence of k-lines is acquired from all the prescribed coronal
slices in each TR. Each radial line is assigned to a respiratory
bin based on its nearest navigator signal. If required, the spatial
resolution can be further improved by interpolation. It is also
possible to use an intrinsic signal from the DC point of the
k-space lines for respiratory gating purposes.57 However, a
navigator is used in this work because it is less prone to
corrupting factors such as noise, scanner gradient delay, field
changes etc.

2.C.2. Golden-angle phase encoding

From one TR to the next, the radial k-lines are prescribed
according to the golden angle formula: θk =mod(2.399 96k,
2π).58 As shown in Fig. 3, with phase encoding based on a fixed
angular increment, a free breathing setting may lead to nonuni-
form and partial coverage of k-space. With golden-angle phase

F. 2. GRANGE: A slice-interleaved golden-angle radial gradient echo pulse sequence with slice-projection navigator encapsulation.
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F. 3. Golden-angle coverage of k-space: (A) Phase encoding based on a fixed angular increment, θ0. The coverage of k-space is less uniform. A free breathing
setting may lead to partial coverage of k-space. (B) Phase encoding based on the golden angle, θg. The coverage of k-space is more uniform for an arbitrary
number of k-lines.

encoding, the coverage of k-space is more uniform even for
an arbitrary number of k-lines, thereby imparting binning
flexibility for gate assignment. We note that, while continuous
golden-angle radial lines yield a more uniform distribution,
the coverage might not be optimal when combining multiple
respiratory cycles together.59,60 However, this approach is still
superior to sequential acquisition.

2.C.3. Iterative reconstruction

Binning of the k-lines into a larger number of gates causes
progressive undersampling of k-space data per gate. Recon-
struction using conventional filtered backprojection (FBP)
leads to increasing levels of streaking artifacts as the number
of gates is increased. Gridding reconstruction, another recon-

struction algorithm widely used in radial MR reconstruction,
suffers from a similar problem due to insufficient sampling.
We adopted k-t space FOCal Underdetermined System Solver
(k-t FOCUSS), a compressive sensing based reconstruction
technique.61,62 This iterative method commences by finding
a low-resolution estimate and then prunes this solution to
a sparse signal representation. This method takes advantage
of the spatiotemporal sparsity of the images to reconstruct
cine MR images from undersampled data. Figure 4 shows
reconstructed images for 6, 8, and 12 gates, which correspond
to undersampling factors of 0.59, 0.79, and 1.18, respectively.
As demonstrated in Fig. 4, this enables robust reconstruction
even in the presence of undersampling (12 gates), thus pre-
venting image degradation and suppressing artifacts when the
number of gates increases.

F. 4. Comparison of reconstruction methods. Top row: Conventional FBP leads to increasing levels of streaking artifacts (from left to right) as the number of
gates is increased (and the data per gate consequently reduced). Bottom row: k-t FOCUSS reconstruction prevents image degradation and suppresses artifacts
when the number of gates increases. The undersampling factors for 6, 8, and 12 gates are 0.59, 0.79, and 1.18, respectively.
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2.D. Gate assignment

The binning of PET data into gates is usually either time-
based or amplitude-based.7 Time-based methods define gate
indices by dividing the respiratory signal into equal-sized
temporal bins. In contrast, amplitude-based methods define
equal-sized bins along the amplitude axis. Time-based gating
techniques fail when the breathing patterns are not perfectly
regular. Several studies have shown that amplitude-based
methods are more robust against inter- and intracycle vari-
ability of respiratory signals than time-based approaches.7,63

However, traditional amplitude-based gating leads to varying
numbers of event counts per gate. We have implemented a
histogram-guided, amplitude-based gating strategy that incor-
porates information from MR navigator projections and as-
signs gate indices while ensuring that each gate has roughly
the same amount of data. In comparison with traditional
amplitude-based gating, where the gate assignment relies on
equal-width amplitude bins, we use varying-width amplitude
bins determined from histogram equalization. Figure 5 illus-
trates our gate assignment strategy. The navigator projections
yield a set of 1D MR images along the superior–inferior
direction, perpendicular to the diaphragm. Figure 5(A) shows
a typical MR navigator image time series from a human. We
extract a 1D correlation trace from this image as shown in
Fig. 5(B) by computing Pearson’s correlation coefficients with
respect to a reference time point. This 1D trace is treated
as our respiratory signal. The points on this trace are then
sorted according to the correlation magnitude and divided into

a chosen number of bins, such that each bin contains the same
number of discrete data points. Figure 5(C) shows the corre-
sponding equalized histogram, where the x-axis represents the
fraction of data points in each bin and the y-axis indicates the
corresponding unequal bin widths for the correlation values.
The upper and lower limits for each bin [indicated using
asterisks on the y-axis of Fig. 5(C) and using horizontal dotted
lines in Fig. 5(B)] are used to quantize the correlation values
[y-axis of Fig. 5(B)] to discrete gate indices. The dotted vertical
lines (corresponding to the time points where the correlation
trace intersects the horizontal lines) segment the time axis into
separate gates. The result is shown in Fig. 5(D), which shows
the division of the data acquisition time scale into a set of
discrete gates. Since the PET and MR scans are synchronous,
time stamps derived from the raw data can be used to align
the time scales for the two modalities. The gate indices in Fig.
5(D) can, therefore, be directly used to bin the PET events into
individual gates.

2.E. Deformation field computation and attenuation
correction

Non-rigid registration based on diffeomorphic demons is
used to compute the deformation fields mapping the refer-
ence gate MR image to the other gates.64 In addition to being
directly used by the MAP reconstruction module for PET
image warping, the deformation fields are required for accurate
attenuation correction of the PET images. Compton interac-
tions with tissue scatter photons and diminish their energy

F. 5. Retrospective gate assignment. The x-axis for the first column represents time in seconds. The y-axis for the middle row represents the Pearson’s
correlation coefficient. (A) Time series of 1D navigator images from a human subject. (B) Correlation trace derived from the navigator image series. The dotted
horizontal lines represent the upper and lower bounds on the correlation that lead to an equalized histogram. The dotted vertical lines (corresponding to the time
points where the correlation trace intersects the horizontal lines) segment the time axis into separate gates. (C) Equalized histogram of data points resulting from
nonuniform binning of the correlation coefficients. The computed bounds for each bin are marked using asterisks on the y-axis. (D) Gate indices derived from
the correlation trace assigned to each time segment.
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leading to an attenuation effect which is accounted for in the
data model in (1) as Pk

attn, a diagonal matrix containing survival
probabilities representing the attenuation map. The attenuation
correction factors for each gate are dependent on the phase of
respiratory motion associated with that gate.65,66 It was been
shown that the use of either an average or a static attenua-
tion map leads to prominent attenuation artifacts.32,67,68 We
therefore use dynamic attenuation maps. The Biograph mMR
generates separate attenuation maps for the scanner hardware
dependent component and the patient or object dependent
component. For our experiments, the latter is generated by
the scanner using an MR Dixon scan acquired in breath-hold
mode at the end of exhalation followed by segmentation into
four tissue classes (air, lung, fat, and nonfat soft tissue) and
assignment of constant attenuation values to each class. This
static attenuation map was first registered to the MR reference
gate image. The deformation fields were then applied to this
image to generate attenuation maps for the remaining gates.

2.F. Simulation and patient studies

The PET/MR MCIR framework was evaluated using a
simulation study and three patient studies. For each study, we
compared the performance of the OG, UG, and MC cases.
The study designs and figures of merits used for quantitative
assessment are described below.

2.F.1. Simulation study

To validate the MAP MCIR framework for PET, we
performed a simulation experiment using the 4D XCAT
phantom, a spatiotemporal human torso phantom derived
from CT datasets with cardiac and respiratory motion models
obtained using 4D tagged MRI data and 4D high-resolution
respiratory-gated CT data, respectively.69 12 spherical pulmo-
nary lesions were added, with six lesions each of diameter
14 mm in the right lung and liver and six of diameter
10 mm in the left lung and upper left abdomen. Standardized
uptake values (SUVs) were assigned to emulate typical
[18F]FDG distributions: lungs 0.5, muscle 1, bones 2, liver 2.5,
myocardium 4, and lesions 8 (all in units of g/ml). The resul-
tant phantom is shown in Fig. 6. We simulated a 5 s breath-
ing cycle divided into eight gates. Poisson deviates of the
gated images were projected using the system model in (1)
to generate 100 noisy sinograms mimicking realistic clinical
count rates. Since the goal of the simulation study is to test
the MAP reconstruction framework, we assumed an accurate
system model. Intragate motion was therefore ignored in this
setup.

For smoothing regularizers such as the uniform quadratic
penalty, regularization-imposed bias leads to loss of spatial
resolution. In setting the MAP regularization parameter, we
seek to ensure fair comparison of the OG, UG, and MC cases
(both in terms of image quality and quantitation) by ensuring
similar regularization-imposed bias and hence similar image
resolution in corresponding voxels. This is achieved by setting
consistent relative weights between the data-fit and regulariza-
tion terms for the three cases. Any differences in the observed

F. 6. Coronal slice from the XCAT phantom showing the assigned SUVs
in g/ml and simulated lesions labeled 1–12 in the thorax and upper abdomen.

bias (e.g., bias due to motion artifacts) would be attributable
to inaccuracies in the data model alone. For MC, we set the
regularization parameter βMC to 103, 3×103, 104, 3×104, 105,
3×105, and 106. For fair comparison of OG and UG with MC,
we select the regularization parameters βOG and βUG to ensure
similar relative weighting between the data-fit term and the
prior relative to MC. The log likelihood for MC in (5) is based
on counts from all the gates, while the prior corresponds to
only the reference gate. In comparison, for OG, the counts in
the log likelihood in (3) are reduced roughly by a factor of p,
the number of gates, while the prior remains unchanged since
the reconstructed image xOG has roughly the same number of
counts as xMC. The regularization parameter for this case was
set to βOG = βMC/p. For UG, the log likelihood is based on
the same number of detected events as MC and is therefore
comparable. But the counts in the unknown image xUG are
greater by a factor of p. The regularization parameter for this
case was also set to βUG= βMC/p.

2.F.2. Patient studies

To validate the overall data acquisition and processing
framework, we conducted PET/MR clinical experiments on
three patients. The subjects scanned were a 24 yr old male
(P1), a 65 yr old female (P2), and a 62 yr old female (P3).
PET list-mode data and GRANGE MR k-space data were
simultaneously acquired on the Biograph mMR scanner. All
procedures were performed following protocol and institu-
tional standards with prior approval from the institutional
review boards at Massachusetts General Hospital, Boston,
MA, and SDN, Naples, Italy, the two data acquisition sites.
The MR acquisition parameters in the studies were as follows:
TR 3.3 ms/slice, bandwidth 1 kHz/pixel, readout oversampling
factor of 2, and 256 samples per radial line. For P1, 24 coronal
slices with a slice thickness 5 mm were used to cover the
lung volume, and 4096 radial lines were acquired per slice.
For P2 and P3, 24 and 26 coronal slices, respectively, with a
slice thickness of 8 mm were used to cover the lung volume
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with 4000 radial lines per slice. The excitation angle was set
to 30◦ based on the Ernst angle to provide higher SNR. A
short-duration (∼3 ms) slice-projection navigator was inserted
for every TR. The patients were injected with between 5 and
12.5 mCi [18F]FDG radiotracer. For P1, P2, and P3, PET list-
mode data were acquired for 6, 7, and 7 min, respectively,
simultaneously with the MR acquisition. The PET and MR
data were processed following the steps described in Fig. 1.
Gates were assigned by means of histogram equalization on
correlation coefficients derived from the navigator projections.
The PET list-mode events and MR k-lines were grouped into
six amplitude-based gates per respiratory cycle. As our gating
strategy does not distinguish between “wax” and “wane”
phases of the respiratory cycle, these six gates therefore effec-
tively represent 12 phases of motion per cycle. The binned k-
space data were used to reconstruct gated MR images, from
which the deformation fields were computed. The geometric
component of the system matrix, Pgeom, for the Biograph mMR
was computed by incorporating the block structure of the
scanner and the gaps between the detector blocks. The point
spread function of the scanner (in Pblur) was modeled using
Monte Carlo simulations that accounted for blurring phenom-
ena such as photon pair nonlinearity, intercrystal scatter, and
crystal penetration as well as the block structure.70 The gated
list-mode data were binned into span 11 sinograms of size
344× 252× 837. The gated sinograms and the deformation
fields were used to perform MAP MCIR. The reconstructed
image dimensions were 256× 256× 129 and the voxel size
was 2.025×2.025×2.025 mm3. A set of 30 MAP iterations
was used in each case.

2.F.3. Evaluation metrics

For the simulation study, in which the ground truth is
known, we rely on the bias-variance trade-off for validating the
MAP reconstruction framework and for testing the proposed

strategy for regularization parameter tuning. Accordingly, we
plot absolute bias vs standard deviation curves for the overall
volume.71

As a figure of merit for both the simulation and clinical
studies, we compute the contrast-to-noise ratio (CNR)72,73 of
high-intensity features in the lungs as

CNR=
s̄ROI+ s̄background
σ2

ROI+σ
2
background

. (6)

Here, s̄ and σ represent the mean and standard deviation,
respectively, of intensities in the region of interest (ROI) and
the background muscle tissue (a region with relatively uniform
tracer uptake).

We also compute the mutual information (MI) between the
features of interest in the UG, OG, and MC PET images with
the corresponding feature in the MR image for the reference
gate. This metric is a measure of the similarity between the
intensity distributions of the MR and PET images. Both noise-
induced variations (as anticipated in the OG case) and motion-
induced blurring (as anticipated in the UG case) tend to reduce
this metric.

Overestimation of the volume of high-intensity features
such as lesions is a well-known consequence of motion-
induced blurring. We therefore compute the volume in ml for
each feature of interest as another figure of merit for the clinical
images. The volumetric mask is determined by using 50% of
the peak intensity of the feature as a threshold.

3. RESULTS
3.A. Simulation results

The absolute bias and standard deviation images based on
100 noise realizations for each of the three cases with βMC
= 3× 104, 105, and 3× 105 are shown in Fig. 7. The spatial

F. 7. (A) Absolute bias and (B) standard deviation images for three different values of the MC regularization parameter, βMC= 3×104, 105, and 3×105. For
the OG case, we set βOG= βMC/p and for the UG case, we set βUG= βMC/p to ensure similar relative weighting of the data-fit and regularization terms and
hence similar levels of regularization-induced bias. For each value of βMC, the OG and MC cases have similar bias and the UG and MC cases have similar
standard deviation. The OG standard deviation is much higher due to fewer emission events. The UG bias is high due to the inaccuracy in the data model, which
does not account for motion effects.
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T I. Bias and standard deviation comparison.

βMC= 3×104 βMC= 105 βMC= 106

Bias
Standard
deviation Bias

Standard
deviation Bias

Standard
deviation

OG Mean value, µOG 2.41×10−1 4.89×10−3 3.14×10−1 1.81×10−3 3.97×10−1 6.34×10−4

(µOG− µMC)/µMC 0.10 6.58 0.03 7.13 0.00 7.26
UG Mean value, µUG 3.75×10−1 6.79×10−4 4.11×10−1 2.30×10−4 4.59×10−1 7.83×10−5

(µUG− µMC)/µMC 0.71 0.05 0.34 0.03 0.16 0.02
MC Mean value, µMC 2.19×10−1 6.46×10−4 3.06×10−1 2.23×10−4 3.96×10−1 7.67×10−5

averages of the bias and standard deviation for the three cases
are tabulated in Table I. For each value of βMC, OG and MC
show comparable bias (0%–10% difference) while OG ex-
hibits increased standard deviation (658%–726% difference).
The difference in standard deviation is as expected since the
OG result is based on 1/8th the total counts. The UG and MC
results exhibit similar variance behavior for each value of βMC
(2%–5% difference). But the UG result shows a much stronger
bias effect (16%–71% difference) manifesting as smearing
artifacts caused by respiratory motion. This increase in bias
is the result of the systematic error arising from not modeling
the motion effects. The plot of the overall standard deviation
against the overall absolute bias (computed as spatial averages)
for all values of βMC is shown in Fig. 8(A).

We treated the 12 lesions as the ROIs and muscle tissue
as the background. The CNR comparison for βMC = 3× 104

is shown in Fig. 8(B). For the pulmonary lesions 1 through 4
and 7 through 10, the CNR improvement for MC relative to
OG was in the range of 10%–15% without any clear pattern
of dependence on location (and hence degree of deforma-
tion). In comparison, relative to UG, MC led to a consistent
increase in CNR gain from the apex toward the base of the
lungs. For the lesion pairs (1,7), (2,10), and (3,11), which un-
dergo similar degrees of displacement and have similar back-
ground activity levels, the CNR gains for MC relative to UG

were (21%,39%), (69%,100%), and (107%,120%), respec-
tively. Thus the smaller lesions (7, 10, and 11) showed a larger
margin of CNR gain than the larger lesions (1, 2, and 3). For the
abdominal lesions (and also for lesion 4, located near the dome
of the liver), the CNR values were influenced by the spill-
in from the liver and abdominal tissue, which were assigned
higher activity levels than the lungs.

3.B. Experimental results

For MAP reconstruction of the patient data, the MC regu-
larization parameter was set to βMC = 6. Since the data were
binned into six gates, the regularization parameters for both
the OG and UG cases were set to βOG= 1 and βUG= 1, respec-
tively. Coronal slices from the MR and PET images of patient
P1 are shown in Fig. 9. Figure 9(A) shows the GRANGE MR
image corresponding to the reference gate while Fig. 9(B)
shows an overlay of the deformation field mapping the refer-
ence gate (end-exhalation) to the end-inhalation gate on the
MR image. Figs. 9(C)–9(E), show the OG, UG, and MC PET
images, respectively. As expected, the OG image is noisier
than the UG and MC images, because it uses only about 1/6th
the total photon count. Magnification of a blood vessel located
near the diaphragm, marked using a green box in Fig. 9(F),
indicates motion-induced blurring in the UG image, an artifact

F. 8. (A) Overall standard deviation vs overall absolute bias (computed as spatial averages) for different values of βMC. (B) CNR for the 14 mm diameter
lesions 1 through 6 and the 10 mm diameters lesions 7 through 12 as illustrated in Fig. 6.
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F. 9. Coronal slices from reference (end-exhalation) gate images of patient P1: (A) GRANGE MR, (B) red arrows representing the deformation field overlaid
on the MR and a feature of interest enclosed in a green box, (C) OG PET, (D) UG PET, (E) MC PET, and (F) magnified views of the feature of interest.

that is significantly reduced in the MC image. Profiles along
the blue lines in Fig. 9(B) marked a, b, and c are shown in
Figs. 10(A)–10(C), respectively. The profile in Fig. 10(A)
corresponds to a region with less movement. We observe
good matching between the UG and MC profiles, while the
OG profile shows sharper noise-induced variations. Figure
10(B) shows a profile across the blood vessel that exhibits
clear motion effects. We observe roughly a 34% improvement
in peak recovered activity in the MC image relative to UG.
Figure 10(C) shows a profile across the dome of the liver,
another key region affected by respiratory motion. Compared
to the MC image profile, the UG profile here shows consistent
underestimation of activity in all voxels, while the OG result
shows more pronounced noise effects. Coronal slices from
the MR and PET images of patients P2 and P3 are shown in
Figs. 11 and 12, respectively. High-intensity features near the
diaphragm (including a lung lesion in the case of P2) exhibiting
distinctive motion blur patterns are magnified in Figs. 11(F)
and 12(F).

We computed the volume, MI, and CNR for the features
in Figs. 9(F), 11(F), and 12(F) to compare the OG, UG,
and MC cases. These figures of merit are shown in Table II.
Relative to OG, UG leads to an overestimation of feature
volume by 11%–38%. In comparison, the overestimation for
MC is 2%–19%. The overestimation of feature volume in the
MC case is mainly attributable to inaccuracies in deformation
fields, intragate motion, and interpolation errors. The OG and
UG cases exhibit consistently lower MI with the reference gate
MR image feature compared to the MC image. Although the
OG image is morphologically the most similar to the reference
gate MR image, it exhibits more fluctuations in intensity values
due to noise effects, which very likely lead to a lower MI than
the MC case. In the UG case, the lower MI can be attributed
by the motion artifacts which impact the intensity distribution.
For CNR computation, a uniform activity area of muscle tissue
near the shoulder was treated as the background. Our results
indicate that MC leads to a CNR improvement of 19%–196%
relative to OG and 6%–51% relative to UG.

F. 10. Comparison of line profiles for the OG, UG, and MC cases. (A) Profile along blue line a in Fig. 9(B). Profile (A) is across a region exhibiting negligible
motion. (B) Profile along blue line b in Fig. 9(B) showing the intensity distribution across a moving blood vessel. MC leads to a 34% improvement in peak
recovered activity in this high-intensity feature relative to UG. (C) Profile along blue line c in Fig. 9(B) across the dome of the liver. Profiles (B) and (C) are
from regions close to the diaphragm undergoing noticeable movement caused by respiration.
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F. 11. Coronal slices from reference (end-exhalation) gate images of patient P2: (A) GRANGE MR, (B) red arrows representing the deformation field overlaid
on the MR and a feature of interest enclosed in a green box, (C) OG PET, (D) UG PET, (E) MC PET, and (F) magnified views of the feature of interest.

4. DISCUSSION

We have presented a complete data acquisition and pro-
cessing framework for pulmonary PET imaging. Standalone
MR is not the traditionally preferred choice for pulmonary
applications. However, given the unique capabilities of simul-
taneous PET/MR in correcting for voluntary or involuntary pa-
tient motion, MR-based motion correction is advantageous for
pulmonary PET imaging, which is greatly affected by breath-
ing motion. We presented GRANGE, a dedicated golden-angle
radial gradient echo MR pulse sequence that can be used
in conjunction with k-t FOCUSS reconstruction to generate
high-quality 4D MR images under free-breathing condition.
While 3D encoding is also implementable,74 the GRANGE
sequence currently uses 2D encoding. Although we have not
used parallel imaging in this work, the GRANGE technique
can also be combined with parallel imaging.

Our PET reconstruction approach is based on MAP esti-
mation with gradient ascent type optimization. Unlike unreg-
ularized reconstruction methods based on expectation maxi-
mization, our approach guarantees convergence. Additionally,
it is feasible to derive closed form estimates of the resolution
and variance of the MAP estimate for further statistical anal-
ysis.75–78 We have also proposed and validated a strategy for
regularization parameter selection based on consistent relative
weighting of the data-fit and regularizer terms for the OG, UG,
and MC cases. In the absence of consistent weighting, corre-
sponding voxels could have arbitrary resolution and variance
properties, making both quantitative and qualitative compar-
ison of the three cases less meaningful.

We presented a retrospective gating strategy that is guided
by a slice-projection navigator encapsulated in the GRANGE
sequence. This method ensures roughly equal distribution of
PET and MR data across the gates. Patient breathing may

F. 12. Coronal slices from reference (end-exhalation) gate images of patient P3: (A) GRANGE MR, (B) red arrows representing the deformation field overlaid
on the MR and a feature of interest enclosed in a green box, (C) OG PET, (D) UG PET, (E) MC PET, and (F) magnified views of the feature of interest.
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T II. Feature evaluation.

Volume (ml) MI CNR

OG UG MC OG UG MC OG UG MC

P1 0.66 0.91 0.79 5.58 5.57 5.74 1.70 3.33 5.04
P2 0.44 0.49 0.45 5.50 5.52 5.55 1.88 1.91 2.24
P3 1.45 1.90 1.73 5.27 5.41 5.43 2.47 4.07 4.34

vary substantially in course of an imaging scan. Our gate
assignment technique does not rely on perfect periodicity of
the respiratory signal and is therefore well-adapted to handle
intercycle variability in breathing. While this gating method
is capable of distinguishing between the “wax” and “wane”
phases of each breathing cycle, we avoided it in this work for
simplicity. Separating these phases in the gate assignment for
future studies would ensure more robust performance in the
presence of intracycle variability.

In our studies, we used the end-exhalation gate as the refer-
ence gate. Previous studies have shown that, in a typical breath-
ing cycle, patients spend the longest amount of time in an
end-expiration quiescent phase.36,79 Additionally, the scanner
generated attenuation maps typically correspond to this phase.
While our framework allows any gate to be used as the refer-
ence, the choice of end-exhalation as the reference reduces the
overall susceptibility of the reconstruction result to errors in
deformation field estimation and interpolation. During patient
data acquisition, a spinal coil and a flexible surface coil were
used on the mMR scanner. In our current reconstruction frame-
work, the attenuation due to the spinal coil and the scanner
bed is taken into account, while the attenuation of the surface
coil is ignored. The errors caused by this coil are expected to
be small as the coil is specially designed for this application.
However, to reduce these errors and further improve accuracy,
the attenuation of the flexible coil can be taken into account
in the reconstruction by using markers to measure its location
and shape.80

In the clinical experiment, the PET and the MR data were
simultaneously acquired for 5.5 min. For future studies, it
may be feasible to exploit the robustness of k-t FOCUSS
reconstruction to further reduce the MR acquisition time to <3
min. The saved time can, for instance, be used to run different
diagnostic MR sequences while the PET data are collected in
the background. As long as the slice-projection navigator is
embedded in the other MR sequences, it would be feasible
to use the simultaneously acquired PET events for MCIR.
Compared to higher dimensional navigator signals,81 the 1D
slice-projection navigator is less accurate but faster. The latter
characteristic makes it easily embeddable in MR sequences
and hence a more practical choice for this application.
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