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Abstract

Objective

To investigate therapeutic effects of annexin A1 (anxA1) on atherogenesis in LDLR-/- mice.

Methods

Human recombinant annexin A1 (hr-anxA1) was produced by a prokaryotic expression sys-

tem, purified and analysed on phosphatidylserine (PS) binding and formyl peptide receptor

(FPR) activation. Biodistribution of 99mTechnetium-hr-anxA1 was determined in C57Bl/6J

mice. 12 Weeks old LDLR-/- mice were fed a Western Type Diet (WTD) during 6 weeks

(Group I) or 12 weeks (Group P). Mice received hr-anxA1 (1 mg/kg) or vehicle by intraperito-

neal injection 3 times per week for a period of 6 weeks starting at start of WTD (Group I) or 6

weeks after start of WTD (Group P). Total aortic plaque burden and phenotype were ana-

lyzed using immunohistochemistry.

Results

Hr-anxA1 bound PS in Ca2+-dependent manner and activated FPR2/ALX. It inhibited rolling

and adherence of neutrophils but not monocytes on activated endothelial cells. Half lives of

circulating 99mTc-hr-anxA1 were <10 minutes and approximately 6 hours for intravenously

(IV) and intraperitoneally (IP) administered hr-anxA1, respectively. Pharmacological treat-

ment with hr-anxA1 had no significant effect on initiation of plaque formation (-33%; P =

0.21)(Group I) but significantly attenuated progression of existing plaques of aortic arch and

subclavian artery (plaque size -50%, P = 0.005; necrotic core size -76% P = 0.015, hr-

anxA1 vs vehicle) (Group P).
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Conclusion

Hr-anxA1 may offer pharmacological means to treat chronic atherogenesis by reducing

FPR-2 dependent neutrophil rolling and adhesion to activated endothelial cells and by

reducing total plaque inflammation.

Introduction
Atherosclerosis is a systemic chronic inflammatory disease affecting the vascular wall of arter-
ies and is the major cause of morbidity and mortality in both developed and developing coun-
tries. The disease is characterized by confined manifestations of atherosclerotic lesions in the
arterial vessel wall that may develop into unstable plaques causing adverse outcomes over time
[1–3]. Unstable plaques are characterized by abundant presence of inflammatory cells, a large
necrotic core and a thin fibrous cap [4]. Inflammatory cells are considered key players in initia-
tion of- and progression to an unstable plaque [5,6]. Activated neutrophils act as important
effectors and regulators of inflammation through their ability to produce a myriad of effector
molecules including cytokines, chemokines and angiogenic factors [7]. Reducing recruitment
of neutrophils to the inflamed arterial vessel wall by neutrophil-specific antibodies and gene-
deletions of chemokines and their receptors, suppresses arterial lesion development in mouse
models of atherosclerosis [8–10].

Annexin A1 (anxA1) is a member of the multigene annexin family [11] with potent anti-
inflammatory activity [12]. The polypeptide chain of anxA1 comprises a C-terminal core
domain, which is conserved amongst all members of the family and harbors the Ca2+/phospho-
lipid binding sites, and an N-terminal tail that varies between annexin members. The N-terminal
tail of anxA1 can interact with the receptor for formylated peptides (FPR2/ALXR) [11,13–16]. In
absence of calcium and a phospholipid surface, the tail is concealed within the core domain.
However, upon membrane binding anxA1 changes conformation and exposes the N-terminus at
the surface enabling interaction with FPR-2 [15]. AnxA1-FPR2 interaction results in inhibition
of neutrophil recruitment to inflamed sites [17]. Alternatively, proteolysis can cause release of the
N-terminal peptide [18], which then can interact with FPR1 and 2 evoking anti-inflammatory
activity [19]. Pharmacological treatment of inflammation using anxA1 and its N-terminal pep-
tide has been studied in mouse models of neutrophil-dependent edema [20], cardiac ischemia-
reperfusion injury [21,22] and acute peritonitis [23], however, hitherto not in atherosclerosis.

Recently it was shown by gene-knockout strategies that the anxA1-FPR2/ALX axis contrib-
utes to atherogenesis in apoE-/- mice by mediating recruitment of inflammatory cells to the ath-
erosclerotic plaque [24]. In this paper we studied pharmacological effects of recombinant
human recombinant anxA1 (hr-anxA1) on the initiation of atherosclerosis and the progression
of established atherosclerotic plaques in an LDLR-/- mouse model. We demonstrate that hr-
anxA1 has no significant effect on initiation of early plaque development, but significantly
attenuates progression of existing lesions to unstable plaques.

Methods

Design, production and purification of recombinant human (hr)-anxA1
cDNA coding for hr-anxA1 was amplified by polymerase chain reaction (PCR) using primers:
5’-GGTATCGAGGGAAGGGCAATGGTATCAGAATTC-3’ and 5’-GCTCAGCTAATTAAG
CTTTAGTTTCCTCCACAAAGAGC-3’. The primers introduced Stu-I and Hind-III
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restriction sites, required for the ligation into the expression vector pQE30Xa (Qiagen). His-
tagged hr-anxA1 was produced according to previously published protocol for anxA5 [25]. In
short, E. Coli (SG13009 pREP4) (Novagen) were fermented in Luria-Bertani broth medium
supplemented with Ampicillin (50ug/ml, Roche), Kanamycin (30ug/ml, Gibco) and 0.5% glyc-
erol. At OD450 of>6, over-expression of the protein was initiated by addition of 5mM isopro-
pyl β-D-1-thiogalactopyranoside (IPTG, Eurogentec). Proteins were purified by IMAC. Purity
and homogeneity were assessed by silver-stained SDS-PAGE, western blotting and MALDI-
TOF/TOF analysis.

Endotoxin determination
Endotoxin was determined with the Endosafe-PTS (Charles-River) according to manufactur-
er’s protocol. Purified protein preparations containing<1 unit/ml endotoxin were used for
experiments.

Ellipsometry
PS-binding property of purified hr-anxA1 was determined by ellipsometry using a bilayer of 20
mole% dioleoyl-phosphatidylserine / 80 mole% dioleoyl-phosphatidylcholine (20 mole%
DOPS/80 mole% DOPC; Avanti Polar Lipids, Alabaster, AL, USA) as described previously [26]

Cells
Primary bone marrow derived monocytes were isolated as described before [27]. Mice were
anesthetized with 5% isoflurane before sacrifice by cervical dislocation. Cells were grown for 8
days in RPMI 1640 containing 10 mMHepes, 10% heat inactivated fetal bovine serum (FBS,
Gibco-BRL), 15% L929-cell conditioned medium, 100U/ml Penicillin (Gibco-BRL) and
100 μg/ml Streptomycin (Gibco-BRL) [28].

The human monocytic cell line THP-1 (ATCC, Manassas, USA), was cultured in RPMI
1640 without color indicator (Gibco-BRL, Invitrogen, USA) supplemented with 2mM gluta-
mine (Gibco-BRL, Invitrogen), 10% heat-inactivated FBS, 100units/ml penicillin and 100μg/ml
streptomycin.

Polymorphonuclear leukocytes (PMN) were isolated from blood collected into 3.2% sodium
citrate, diluted 1:1 in RPMI 1640 (Sigma-Aldrich) before separation through a double-density
gradient as described previously [19].

Confluent human umbilical vein endothelial cells (HUVEC, PromoCell, C12203) were
grown to a monolayer in a μ-slide (Ibidi, 80666, Germany) before flow experiments.

Calcium mobilization and flow-chamber assay
Receptor binding studies were performed on FPR-2 transfected HEK293 cells as described pre-
viously [29]. Leukocyte rolling and adhesion flow chamber experiments were performed as
described previously [19]. Each flow experiment consisted in total of a 10 second recording at
3.3 frames per second. Cells of all 32 frames were counted: adhering cells were stationary in all
frames, while rolling cells were defined as all interacting non-stationary cells.

In vitro internalization of hr-anxA1
Binding and internalization of fluorescently labeled hr-anxA1 by apoptotic Jurkat cells was
visualized with confocal laser scanning microscopy (CLSM) as described previously [30].
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Animals
All animal experiments have been conducted under a protocol approved by the ethics commit-
tee for animal experiments of Maastricht University (DEC 2012–068) and comply with
ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines and followed the Euro-
pean Union Directive (2010/63/EU). All animal experiments were conducted as humane as
possible, a total of 52 animals were used. For pharmacological treatment with hr-anxA1, 12
weeks old LDLR-/- mice were fed a Western type diet (WTD, 0.15% cholesterol) (AB diets
4021.13) for 6 weeks (group I, n = 12) or 12 weeks (group P, n = 12). Mice received 1 mg/kg hr-
anxA1 or PBS (control) 3 times per week via intraperitoneal injection during 6 weeks initiating
at the start of WTD (group I) or 6 weeks after start of WTD (group P). Mice were sacrificed
under anesthesia of 5% isoflurane by vena cava puncture after subcutaneous injection of 0.1
mg/kg Buprenorphine (Temgesic). Aortic arches including major branch points were dissected,
fixed in 1% PFA o/n, paraffin embedded and sectioned at 4 μm thickness. Total plaque area
was determined for the entire aortic arch and the brachiocephalic, carotid and subclavian arter-
ies using standard hematoxylin/eosin (H&E) staining on every fifth section, and analyzed with
ImageJ Software (v1.45). Progression and stability of plaques was scored on the following
parameters: neutrophil and macrophage content, apoptosis and necrosis, cap thickness and cal-
cification status (see S1 and S2 Tables).

Nuclear imaging, biodistribution and blood clearance
Purified His-tagged hr-anxA1 was radiolabeled with technetium-99m (99mTc(CO)3-His-
anxA1) using the IsoLink tricarbonyl labeling method (Covidien, Petten, The Netherlands) as
described previously for His-anxA5 [31]. Nuclear imaging, blood clearance and biodistribution
were performed using 12 weeks old LDLR-/- mice (Charles-River). Biodistributions and blood
clearances of IV and IP injected 100 MBq 99mTc(CO)3-His-anxA1 were determined. To
exclude any dietary effect on the biodistribution or blood clearance, mice were put on WTD 2
weeks prior to the experiment. Total body single photon emission tomography (SPECT) imag-
ing was performed 45 minutes post-injection as previously described [32].

Flow cytometry of blood and bone marrow cells
Single cell suspensions were prepared and stained with anti-CD3,-CD4,-CD8a,-CD11b,-
CD115,-Ly6C,-Ly6G,-B220,-NK1.1, or isotype control IgG. Antibodies conjugated to FITC,
PE, APC, Cy7, eFluo450, or PerCP (all BD Biosciences) were used and cells were analyzed
using a FACS-Canto II and FACSDiva Software (V6.1.3, BD Biosciences).

Anti-hr-anxA1 antibody formation
Blood was collected in 3.2% sodium citrate and plasma was collected by centrifugation. A
96-well plate was coated with 5 μg/ml hr-anxA1 in 0.1M carbonate buffer (pH 9.5) o/n and
blocked with 3% non-fat dry milk in phosphate buffered saline (PBS). Ten times diluted plasma
was added and incubated 1h at 37°C, rabbit-α-human anxA1 antibody was used as positive
control. HRP-labeled rat-α-mouse-IgG (Dako, P0161) was added and incubated 1h at 37°C.
Chromogenic substrate tetramethyl benzidine (TMB) was measured at 450nm.

Endogenous thrombin potential (ETP)
ETP was determined in plasma containing 3.3 μM corn trypsin inhibitor (CTI) using 7 pM of
tissue factor, 60 μM of phospholipids (20%PS/60%PC/20%PE), 420 μM fluorogenic substrate
and 8.2 mM Ca2+ [33].
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Immunohistochemistry
Immunohistochemistry was performed using antibodies against MAC-3 (BD Biosciences,
clone M3/84, 553322) for all macrophages, iNOS (Abcam, AB3523) for M1-polarized and Ym1
(kind gift from professor Christoph Binder, Vienna, Austria) and CD206 (ITK diagnostics,
141702) for M2-polarized macrophages.

Statistical analysis
All data is presented as mean ± SEM. Normality was tested using the Shapiro-Wilk normality
test with GraphPad Prism 5.0 software. Statistical significance between two groups was tested
by unpaired two tailed student’s t-test. A value of P<0.05 was considered statistically signifi-
cant. P-values are indicated in the tables and figures by asterisks as follows �P<0.05,
��P<0.005, ���P<0.001.

Results

Physical and biological characterization of hr-anxA1
The N-terminal tail mediates anti-inflammatory activities of anxA1 and contains protease-sen-
sitive sites [29]. We used the expression vector pQE30Xa that introduced a His-tag upstream of
the N-terminal tail, which was cleaved off after purification by FXa. In order to verify that our
procedure yielded full-length recombinant product, purified hr-anxA1 was subjected to struc-
tural analyses including MALDI TOF/TOF, silver stained SDS-PAGE andWestern blotting
(S1 Fig) and tryptic digestion. These analyses confirmed the production and purification of
full-length hr-anxA1 with a purity of>95%. Hr-anxA1 was stable for at least 1 year if stored in
HEPES/NaCl pH7.4 at 4°C. Biological functionality of the N-terminal tail and Ca2+-dependent
PS-binding of the C-terminal core were intact as assessed by the calcium flux induced in FPR-2
transfected HEK-293 cells and ellipsometry respectively (Fig 1A and 1B and S2 Fig). Further-
more, hr-anxA1 was internalized by Jurkat cells in the early phase of apoptosis in a PS-binding
and FPR-dependent manner. This was demonstrated with FPR-inhibitors cyclosporine H
(CsH) and WRW4 using flow cytometry (Fig 1C) and confocal microscopy (Fig 1D) and
underscored by absence of internalization if hr-anxA1 lacks its N-terminus (S3 Fig). AnxA5
internalization, which depends on PS-binding and trimerization [34,35], was affected by nei-
ther inhibitor (Fig 1C). Finally, hr-anxA1 significantly inhibited rolling and adhesion of poly-
morphonuclear cells (50% and 63%, respectively) over a monolayer of TNFα-activated
HUVECs (Fig 1E) while it had no effect on rolling and adhesion of THP-1 monocytes (Fig 1F
and 1G).

Determination of in vivo administration route of hr-anxA1
In order to establish the preferred route of administration, biodistribution and blood clearance
were determined for IV and IP administered 99mTc(CO)3-His-anxA1. 99mTc(CO)3-His-anxA1
had radiochemical purity of approximately 90% and eluted as a single peak on RP-HPLC (S4A
Fig). IV administered 99mTc(CO)3-His-anxA1 was cleared by the kidneys, liver and lungs. IP
administered 99mTc(CO)3-His-anxA1 was gradually released into the blood circulation, peaked
at 50 min post injection and then gradually decreased through clearance by the kidneys and
liver (S4B–S4D Fig) with t1/2 of approximately 6 hours. About 0.5% of injected dose per gram
(ID/g) anxA1 remained in the circulation 24 hours post injection. On basis of pharmacokinet-
ics we decided to administer hr-anxA1 three times per week IP as treatment.
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Administration of hr-anxA1 does not alter baseline characteristics of
LDLR-/- mice
Treatment of LDLR-/- mice onWTD with hr-anxA1 had no effect on body weight, circulating
cholesterol and triglyceride levels and procoagulant activity of blood plasma (Table 1). 6 weeks
of IP administration of hr-anxA1 did not cause generation of anti-hr-anxA1 antibodies (data
not shown).

Hr-anxA1 has no significant effect on early plaque development
Pharmacological treatment with hr-anxA1 starting at start of WTD (Group I) was without sig-
nificant effect on plaque growth during 6 weeks of treatment (total plaque size 0.024±0.019
mm3 versus 0.016±0.010 mm3, control versus hr-anxA1, P = 0.21). Plaque growth was compa-
rable for hr-anxA1 treated and vehicle treated mice at different aortic sites (Fig 2A and 2B).
Both hr-anxA1 and vehicle treated mice developed intimal xanthoma (IX) and small foam cell
lesions (SL) (Fig 2C) with infiltrated macrophages in comparable proportion, indicating that
hr-anxA1 affects neither onset of IX formation nor their transition into SL in LDLR-/- mice

Fig 1. Physical and biological characterization of hr-anxA1. (A) Hr-anxA1 induced concentration dependent calcium flux in FPR2 transfected HEK-293
cells, 1 μM ionomycin is taken as reference value (100%). (B) Ellipsometry analysis shows calcium dependent binding of 1 µg/ml purified annexin to a 20/80
mol% PS/PC bilayer. (C) Internalization of fluorescent annexin by apoptotic Jurkat cells in presence and absence of inhibitors of FPR1 (cyclosporin H, 1 μM)
and FPR2/3 (WRW, 10 μM) as analyzed by flow cytometry. Mean fluorescence intensity (MFI) is normalized to MFI of annexin internalization on ice. (D) Hr-
anxA1 internalization (green) as visualized by fluorescent confocal laser scanning microscopy (CLSM). Nuclei are stained with DAPI (blue) and PS-
expression is stained with anxA5-AF568 (red). PS negative cells (indicated with white arrow) did not internalize hr-anxA1. (E) Pretreatment of PMN with 10
nM hr-anxA1 inhibited both rolling and adhesion of PMN on a TNF-α activated HUVECmonolayer. (F) One frame out of 32 is shown of a flow chamber model
with rolling and adhering fluorescent THP-1 monocytes, flowing over TNF-α activated HUVECmonolayer. Rolling and adhering THP-1 monocytes are
indicated by white and red arrows respectively. (G) Pretreatment of THP-1 cells with 10 nM hr-anxA1 has effect on neither rolling nor adhesion of THP-1 cells.
All values are represented as mean ± SEM of 3 independent experiments.

doi:10.1371/journal.pone.0130484.g001
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under atherogenic pressure. 70% to 80% of the endothelium of the aortic arch was activated as
evidenced by ICAM-1 expression. Pharmacological treatment with hr-anxA1 had no signifi-
cant effect on ICAM-1 expression (Fig 2D and 2E).

Hr-anxA1 attenuates progression into advanced plaques
Hr-anxA1 treatment of mice with established plaques (Group P) caused a significant inhibition
of total plaque growth (0.131±0.080 mm3 versus 0.065±0.031 mm3, control versus hr-anxA1,
-50%, P = 0.005), which was most pronounced in the arch and subclavian artery (Fig 3A and
3B). Individual plaque progression was further scored (see S1 and S2 Tables). This classifica-
tion showed that hr-anxA1 treated mice predominantly developed early IX and SL, while the
control treated mice had already IL and AL development (Fig 3C). Interestingly, aortic endo-
thelium lost ICAM-1 expression (Fig 3D and 3E) in control mice receiving a WTD during 12
weeks as compared to control mice fed a WTD during 6 weeks (Fig 2D and 2E). Hr-anxA1
treatment further reduced endothelial ICAM-1 expression in Group P mice (Fig 3D and 3E),
indicating a positive pharmacological effect of hr-anxA1 on resolution of inflammation. Hr-
anxA1 treatment did not change the macrophage and smooth muscle cell content relative to
lesion size as compared to the vehicle treated lesions (Fig 3F–3I). Blood analysis revealed signif-
icant increase in proportion of granulocytes of circulating leukocytes, while bone marrow
showed no differences in leukocyte composition between control and hr-anxA1 treated mice
(Table 2).

Hr-anxA1 does not affect macrophage polarization in atherosclerotic
plaque
Recently we demonstrated that endogenous anxA1 contributes to resolution of chronic inflam-
mation in a mouse model of nonalcoholic steatohepatitis (NASH) through stimulation of IL-
10 production and down-modulation of M1 polarization [36]. Therefore we studied whether
hr-anxA1 could influence polarization of macrophages in developed atherosclerotic plaques
(P). Quantification of M1 polarization marker iNOS (Fig 4A and 4B) showed no differences
between control and anxA1 treated plaques. Staining was diffuse throughout the entire lesion,
whereas the non-immune immunoglobulin staining was negative. We did not detect any
marker of M2 polarization in the atherosclerotic lesions of both groups using antibodies against
Ym1 (Fig 4C and 4D). This indicates that the lesions are predominantly occupied by M1 mac-
rophages. Treatment of bone marrow-derived macrophages (BMDM) with hr-anxA1 in vitro
did not affect IL-12, TNFα and NO release as compared to control (S6A and S6B Fig). IL-10
remained below detection limit in hr-anxA1 treated and untreated BMDM

Table 1. Baseline characteristics of control and hr-anxA1 treatedmice.

Group I Group P

Ctrl hr-anxA1 Ctrl hr-anxA1

Age (wks) 18 ±0.5 18 ±0.5 24 ±0.5 24 ±0.5

Weight (g) 26.2 ±1.9 25.8 ±1.6 29.2 ±2.4 27.9 ±1.5

Cholesterol (mM) 25.2 ±2.9 24.6 ±3.9 28.3 ±2.7 26.9 ±2.9

Triglycerides (mM) 3.3 ±0.6 3.2 ±0.8 3.3 ±0.6 3.6 ±0.5

Coagulation

ETP (nM.min-1) 1376 ±104.0 1312 ±46.3 1342 ±78.1 1325 ±59.8

Peak height (nM) 185.3 ±6.7 190.8 ±11.0 180.1 ±7.3 188.6 ±8.9

doi:10.1371/journal.pone.0130484.t001
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Discussion
AnxA1 has anti-inflammatory and pro-resolving properties causing dampening of inflamma-
tion in several animal models of acute and chronic inflammation [36–38]. Recently it was dem-
onstrated that the anxA1-FPR2 axis suppresses atherogenesis in the apoE-/- mouse model
[24]. In vivo administration of anxA1’s N-terminal peptide Ac2-26 inhibited myeloid interac-
tion with endothelium in an FPR2-dependent manner during short-term experiments [24].
Long-term treatment with Ac2-26 peptide coupled to collagen IV-targeting nanoparticles
reduced inflammation of advanced plaques of LDLR-/- mice in an FPR2-dependent manner
[39]. We hypothesized that full length anxA1 reduces atherogenesis if administered to LDLR-/-

mice on WTD. Therefore we produced recombinant human anxA1 (hr-anxA1) and thor-
oughly inspected integrity and functional properties of the N-terminal tail and C-terminal

Fig 2. Hr-anxA1 has no significant effect on early plaque development. 12 weeks old mice were fedWTD during 6 weeks. Hr-anxA1 treatment started at
start of WTD. (A) Representative H&E staining of aortic arches after 6 weeks of treatment. (B) Treatment with hr-anxA1 did not affect plaque burden in the
arch and subclavian (SA) brachiocephalic (BCA) and left common carotid artery (CA). (C) Individual plaque stability and progression was scored on following
parameters: neutrophil and macrophage content, apoptosis and necrosis, cap thickness and calcification status (see S1 and S2 Tables). Hr-anxA1 treatment
had no effect on early plaque stability and progression. (D, E) Hr-anxA1 treatment had no effect on endothelial ICAM-1 expression of IX and SL lesions. IX:
intimal xanthoma; SL: small lesion; IL: intermediate lesion; AL: advanced lesion. All values are represented as mean ±SEM, n = 12 animals per group. Panel
A: 40x magnification, scale bar represents 500μm. Panel D: 200x magnification, scale bar represents 100μm.

doi:10.1371/journal.pone.0130484.g002

Exogenous Annexin A1 Reduces Atherogenesis

PLOS ONE | DOI:10.1371/journal.pone.0130484 June 19, 2015 8 / 15



core. Both are essential to the anti-inflammatory properties of anxA1, since this requires both
interaction with FPR2 and binding to PS, respectively [22]. Hr-anxA1 possessed both func-
tional properties with sufficient shelf-stability to perform series of in vivo experiments. Sec-
ondly, pharmacokinetics and biodistribution of hr-anxA1 were determined to select the
preferred route of administration. Intravenous administered hr-anxA1 was cleared rapidly
from circulation with t1/2 of<10 min. This rapid pharmacokinetic is comparable with half-life
reported for anxA5, another member of the annexin family [40]. Biodistribution showed accu-
mulation of hr-anxA1 in kidneys but also in liver and lungs. Currently we have no explanation
for the latter phenomenon but this could indicate clearance via the reticula-endothelial system.
Pharmacokinetics and biodistribution of intraperitoneally administered hr-anxA1 revealed
release of hr-anxA1 into circulation during a longer period of time with a peak at 50 min post

Fig 3. Hr-anxA1 attenuates progression into advanced plaques. (A) 12 weeks old mice were fed WTD 12 weeks. During the last 6 weeks mice were
treated with hr-anxA1 or vehicle (ctrl). (A) Representative H&E staining of aortic arches. (B) Treatment with hr-anxA1 significantly reduced total plaque
burden in the inner arch (arch) and subclavian artery (SA) but not in the brachiocephalic (BCA) and left common carotid artery (CA). (C) Individual plaque
progression was scored on following parameters: neutrophil and macrophage content, apoptosis and necrosis, cap thickness and calcification status (see S1
and S2 Tables). (D, E) Endothelial ICAM-1 expression was reduced in early plaque development (IX/SL) after anxA1 treatment. (F, G) Macrophage and (H, I)
smooth muscle cell content were comparable between anxA1 and vehicle treated controls. IX: intimal xanthoma; SL: small lesion; IL: intermediate lesion; AL:
advanced lesion. All values are represented as mean ±SEM, n = 12 animals per group. Panel A: 40x magnification, scale bar represents 500μm; Panel D,F:
100x magnification, scale bar represents 200 μm; Panel H: 200x magnification, scale bar represents 100 μm.

doi:10.1371/journal.pone.0130484.g003
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Table 2. Flow cytometry analysis of blood and bonemarrow.

Ctrl (n = 7) hr-anxA1 (n = 6) P

Blood (% of viable)

B-cells 46.9 ±9.5 33.8 ±15.8 n.s

NK-cells 4.1 ±0.4 4.0 ±0.3 n.s.

Granulocytes 18.2 ±7.1 35.0 ±18.8 0.039

Monocytes 9.9 ±4.5 10.6 ±2.5 n.s.

Ly6Clow (% of mono) 22.1 ±4.2 18.5 ±10 n.s

Ly6Cmedium (% of mono) 10.7 ±2.0 9.7 ±1.8 n.s

Ly6Chigh (% of mono) 67.2 ±5.6 71.8 ±8.3 n.s

T-Cells 14.2 ±1.8 12.1 ±4.9 n.s

CD4+ (% of T-cell) 41.9 ±1.6 45.3 ±6.4 n.s

CD8+ (% of T-cell) 58.1 ±1.6 54.7 ± 6.4 n.s

Bone marrow (% of viable)

B-cells 17.8 ± 1.4 19.6 ±5.2 n.s

NK-cells 1.1 ±0.2 1.0 ±0.2 n.s

Granulocytes 36.7 ±2.0 30.2 ±9.1 n.s

Monocytes 14.8 ±1.5 14.3 ±2.0 n.s

Ly6Clow (% of mono) 10.6 ±2.5 9.9 ±2.8 n.s

Ly6Cmedium (% of mono) 51.1 ±6.2 46.2 ±9.4 n.s

Ly6Chigh (% of mono) 38.2 ±7.8 43.8 ±10.6 n.s

T-cells 0.5 ±0.2 0.7 ± 0.3 n.s

Undefined 25.6 ±1.8 30.1 ±5.0 n.s

doi:10.1371/journal.pone.0130484.t002

Fig 4. Hr-anxA1 does not affect macrophage polarization in atherosclerotic plaque. (A) Representative staining for M1 macrophage specific marker
iNOS. Black arrows indicate fully commited M1macrophages, white arrows indicate iNOS negative macrophages. (B) Quantification of iNOS-staining
indicates no difference between control and anxA1 treated animals. (C) Representative staining of M2 specific marker Ym1. Both control and hr-anxA1
treated mice were negative for Ym1. (D) Staining of Ym1 positive cells in the spleen indicating functionality of anti-Ym1 antibody. All values are represented
as mean ±SEM, n = 12 animals per group. Panel A: 200x magnification, scale bar represents 100μm; panel D: 40x and 400x magnification, scale bar
represent 500μm and 50μm respectively.

doi:10.1371/journal.pone.0130484.g004
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administration. Here, clearance from circulation occurred predominantly by kidneys. Based on
pharmacokinetics and biodistribution we decided to administer hr-anxA1 by IP injection with
a dosing regime of 3 times per week 1mg/kg. The dosing regime was extrapolated from pub-
lished results (38) and should be optimized by future studies.

AnxA1 suppresses and resolves inflammation predominantly through targeting neutrophils
[12]. Evidence is accumulating that neutrophils play important roles in atherogenesis and con-
tribute to initiation, progression and destabilization of atherosclerotic plaques [41–44]. Our
experiments showed that treatment with hr-anxA1 was without significant effect on initiation
of plaque formation but inhibited significantly plaque progression. This was most pronounced
in the inner curvature of the arch and in the subclavian artery. Currently we have no explana-
tion for the lack of a significant effect of hr-anxA1 on the early stage of atherogenesis but this
could be related to the model of the LDLR-/- mouse on WTD.

The N-terminal peptide of anxA1 (Ac2-26) lowers expression of ICAM-1 by atherosclerotic
lesional cells [39] and reduces affinity of neutrophils and monocytes for ICAM-1 and VCAM-1
when they are activated by CCL5 [45]. ICAM-1 is a strong regulator of neutrophil adhesion and
transmigration [46]. We show that full-length anxA1 reduces endothelial ICAM-1 expression in
a similar manner. In addition, anxA1 can inhibit adhesion of neutrophils to endothelial cells
directly [19,47] and diminish their transmigration across the endothelium [48] by engaging via
its N-terminal tail with the FPR2/AXLR [14]. Concordant with a previous report [48] we
observed that hr-anxA1 induced a relative increase of circulating granulocytes, which is an indi-
cation for hr-anxA1 induced neutrophil demargination and inactivation. A similar effect has
been reported for treatment with glucocorticoids [49], of which anxA1 is considered to be a
down-stream effector [12]. Interestingly, our in vivo results show that although hr-anxA1 treat-
ment did not affect intimal xanthoma and small lesion formation it afforded substantial inhibi-
tory effects on progression of small lesions towards advanced lesions. Recent observations
showed that hyper-activation and life prolongation of neutrophils through knocking out CXCR4
affect progression rather than initiation of atherosclerosis [42]. Taken together our findings dem-
onstrate that pharmacological treatment with full length anxA1 suppresses atherogenesis in the
LDLR-/- mouse model. The neutrophil has been reported as an effector of anxA1’s anti-inflam-
matory actions. However, hr-anxA1may dampen the inflammatory process of atherosclerosis by
acting on the plaque macrophage. We reported recently that anxA1 can polarize liver macro-
phages towards the anti-inflammatory M2 phenotype [50]. Macrophage polarization is an
important contributor to atherogenesis [51,52]. M2 polarized macrophages diminish plaque
inflammation and inhibit plaque progression [53]. However, we found no evidence of macro-
phage skewing in the atherosclerotic lesions of our mice. We cannot exclude that hr-anxA1 mod-
ulates macrophage function in other ways. For example hr-anxA1 may enhance efferocytosis by
macrophages. Apoptosis and efferocytosis determine rate of plaque progression and plaque phe-
notype [54,55]. Hr-anxA1 can act as a bridging molecule between the apoptotic cell and the mac-
rophage and, thereby, it stimulates efferocytosis [22,56,57] and reduces release of the pro-
inflammatory IL-6 and TNF-α [58]. In our experiments we observed that atherosclerotic plaques
treated with hr-anxA1 had smaller necrotic cores, suggestive of enhanced efferocytosis.

We conclude that progression of atherosclerosis can be attenuated pharmacologically with
hr-anxA1 in a murine model of atherosclerosis. These findings may open novel avenues to
treat the chronic inflammatory disease atherosclerosis.

Supporting Information
S1 Fig. Production and purification of hr-anxA1. (A) MALDI-TOF/TOF analysis shows a
molecular weight of 38.5kDa for purified hr-anxA1, which is in concordance with the
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theoretical molecular weight of full-length anxA1. Bis-protonated hr-anxA1 and hr-anxA1
dimers are represented on the spectrum as peaks of 19.2kDa and 77.2kDa respectively. (B) Rep-
resentative image of 50ng purified hr-anxA1 (1) and His-anxA1 (2) on silver-stained
SDS-PAGE for total protein and (C)Western blotting with an α-anxA1-antibody (n� 5 purifi-
cations) M = broad range protein marker.
(TIF)

S2 Fig. Ellipsometry analysis of phospholipid binding properties. (A) Ca2+-dependent bind-
ing curves of 1 µg/ml hr-anxA1 and 1 µg/ml anxA5 binding to 5/95, (B) 10/90 and (C) 20/80
mol% PS/PC bilayer as measured by ellipsometry.
(TIF)

S3 Fig. MALDI-TOF/TOF analysis of truncated hr-anxA1.Mass spectrometry analysis of
truncated hr-anxA1 shows a molecular weight of 35.8kDa, which means truncation occurred
between Thr23 en Val24.
(TIF)

S4 Fig. Determination of in vivo administration route of hr-anxA1. (A) HPLC analysis of
radio-labeled His-anxA1 (99mTc(CO)3-His-anxA1) shows a radiochemical purity of>95% and
specific retention time of approximately 18 minutes. (B) SPECT image 45 minutes after intra-
peritoneal (IP) and intravenous (IV) injection of 99mTc(CO)3-His-anxA1. White arrows indi-
cate site of injection, red arrows indicate kidneys and green arrows indicate lungs. Rapid renal
clearance and uptake in the lungs was observed in the IV injected mice, whereas IP injection
mice show peritoneal localization. (C) Time courses of blood levels of 99mTc(CO)3-His-anxA1
were determined by γ-counting. (D) Biodistribution was determined by weighing and γ-count-
ing of organs dissected 3 and (E) 24 hours post-injection. All values are represented as
mean ± SEM, n = 6 animals per group.
(TIF)

S5 Fig. Correlation of 2 and 3 dimensional plaque sizes. Plaque volumes were determined
and correlated with plaque areas of the section having the largest plaque area.
(TIF)

S6 Fig. Bone marrow derived macrophage response to anxA1. Bone marrow derived mono-
cytes were differentiated to macrophages and stimulated with 1 or 10 μg/ml anxA1. (A) Release
of IL-12 and TNF-α and (B) nitric oxide were measured and showed no differences between
control and anxA1 addition. All values are represented as mean ± SEM (n = 4 animals).
(TIF)

S1 Table. Quantification of plaque progression.
(DOCX)

S2 Table. Definition of plaque progression score.
(DOCX)
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