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Abstract
Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic

species differing in ecological niches. Penicillium roqueforti is used as a starter culture for

blue-veined cheeses, being responsible for their flavor and color, but is also a common

spoilage organism in various foods. Different types of blue-veined cheeses are manufac-

tured and consumed worldwide, displaying specific organoleptic properties. These features

may be due to the different manufacturing methods and/or to the specific P. roqueforti
strains used. Substantial morphological diversity exists within P. roqueforti and, although
not taxonomically valid, several technological names have been used for strains on different

cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 indi-

vidual blue-veined cheeses and 21 other substrates was analyzed here to determine (i)

whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concor-

dance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population

structure assessed using microsatellite markers correspond to blue cheese types, and (iii)

whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence

analyses showed no evidence of cryptic species. The population structure analysis using

microsatellites revealed the existence of highly differentiated populations, corresponding to

blue cheese types and with contrasted morphologies. This suggests that the population

structure has been shaped by different cheese-making processes or that different popula-

tions were recruited for different cheese types. Cheese-making fungi thus constitute good

models for studying fungal diversification under recent selection.

Introduction
Fungi display huge diversity with a widely accepted estimation of 1.62 M species [1]. However,
as recognized by Hawksworth himself, this number is underestimated [2], mainly due to the
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inconspicuousness and simple morphologies of these organisms. Many unrecognized cryptic
species exist, often differing in their ecological niches, and are therefore important to delimit
[3]. Fungi used for cheese-making are particularly interesting to study under these aspects, as
they may have recently diversified and specialized under human selection [4].

Cheese-making is an ancient process that has led to more than 1000 varieties of cheese
known to date [5]. Earliest cheese-making evidence goes back to the sixth millennium BC, i.e.,
during the Neolithic era when organic residues preserved in pottery vessels were identified
[6,7]. If, at that time, milk coagulation via lactic acid production was probably accidental, the
use of rennet to coagulate milk was intentional. Cheese-making provided numerous advan-
tages, including milk stabilization and storage, ease of transport, improvement of milk digest-
ibility and was presumably a means to diversify the human diet [8]. Within the huge cheese
diversity, blue-veined cheeses are manufactured from different milks and consumed in numer-
ous countries. Each blue cheese type originates from a specific manufacturing process and ex-
hibits distinctive characteristics. The best-known blue cheeses worldwide are, in the order of
their first recorded date in the literature, Italian Gorgonzola (879), French Roquefort (1070),
English Stilton (1785) [8] and Danish Danablu (1870s) [9], but their production is thought to
be much older [10]. Specific cheese manufacturing recipes have often been secretly passed on
to succeeding generations within limited geographical regions, hence explaining the localized
production of certain varieties. Some blue cheeses have obtained a Protected Designation of
Origin (PDO) or Protected Geographical Indication (PGI) status. For example, Roquefort
cheese, the oldest cheese type with a Designation of Origin (1925), has the distinctive feature to
be ripened at least 3 months, including 2 weeks in natural cellars located in Roquefort-sur-
Soulzon. From an economic point of view, 18,812 tons of Roquefort cheese were produced in
2013 for a total of 56,847 tons of blue cheese, representing one third of France’s total blue
cheese production [11].

Various manufacturing methods exist, but all of them involve the use of the well-known
mold P. roqueforti, whose presence and growth largely contribute to the typical aspect and fla-
vor of blue cheeses. During cheese-making, P. roqueforti conidia may be directly added to milk,
sprayed on curd or naturally colonize cheese. P. roqueforti is not exclusively found in dairy en-
vironments but also occurs in natural environments (forest soil and wood), as well as in silage,
and is a common spoilage agent in refrigerated stored foods, meats or wheat products [12,13].
This is due to its ability to grow under harsh conditions such as low temperatures, low oxygen
levels, high carbon dioxide concentrations and/or its resistance to organic acids and weak acid
preservatives [14]. Taxonomically, P. roqueforti, genus Penicillium Link, subgenus Penicillium
and species roqueforti Thom [12], is currently recognized as a single species, although substan-
tial morphological differences have been reported among strains. This diversity has led to nu-
merous distinct “technological” species names such as P. glaucum, P. stilton, P. gorgonzolae or
P. aromaticum. The valid species name is currently P. roqueforti [15], but the great diversity in
morphology as well as in ecological niches raises the question of the existence of cryptic species.
Indeed, a previous study using 11 microsatellite markers identified genetically differentiated
populations [16], with reduced gene flow between genetic clusters despite recombination foot-
prints within populations, thus possibly constituting distinct species. Noteworthy, one of the
genetic clusters included all strains isolated from other environments than dairy as well as
some cheese strains, while all other clusters only encompassed cheese strains [16].

In the present study, a large P. roqueforti collection containing 164 isolates from various
cheeses worldwide, as well as from other substrates, was used in order to test whether cryptic
species can be detected within P. roqueforti using the gold standard of species criterion in
fungi, the Genealogical Concordance—Phylogenetic Species Recognition criterion (GC-
PSR) [3,17–19]. Distinct species are recognized by the congruence between multiple gene
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genealogies, because recombination leads to their incongruence. The GC-PSR criterion thus
only applies to sexual species. P. roqueforti has recently been shown to be able to undergo sex
and recombination footprints and indirect evidence of recent sex in populations have been ob-
served [16,20]. The GC-PSR criterion is however conservative: it will not distinguish recently
derived species in which coalescence of alleles is not achieved yet [17,21–23]. Therefore, more
rapidly evolving markers (microsatellites) were also developed, using the recently published ge-
nome sequence of P. roqueforti FM164 [4]. Furthermore, the morphological variability in our
P. roqueforti collection was assessed. The goal of this study was to assess whether different
cheese-making processes have used or generated different genotypes or cryptic species within
P. roqueforti.

Materials and Methods

Penicillium roqueforti collection
A P. roqueforti collection was established by isolating strains from 120 individual blue-veined
cheeses (of either artisanal or commercial origin), collected from 18 different countries world-
wide (Argentina, Brazil, Canada, Czech Republic, Denmark, Finland, France, Germany, Ire-
land, Italy, Latvia, The Netherlands, New Zealand, Poland, Spain, Switzerland, United-
Kingdom and the USA). Information about the cheeses sampled is given in S1 Table. For each
cheese, six samples were plated in order to obtain six distinct isolates per cheese. The character-
ization of each isolate was performed using morphological and ß-tubulin partial gene sequence
as described below. For each sampled cheese, a single isolate representative of each morpholog-
ical type observed was eventually kept in the working collection. In total, 164 P. roqueforti iso-
lates were available for this study including 27 P. roqueforti isolates from 21 different non-
cheese substrates (silage, fruit, bread, meat, human sputum and cork) obtained from culture
collections. In addition, 14 strains belonging to other terverticillate Penicillium species were
used in order to assess relationships within the section Roquefortorum (S2 Table).

Morphological observations and statistical analyses
Macroscopic colony morphology (color obverse; texture; diameter and margin) of the 164 iso-
lates were observed on PDA medium (Potato Dextrose Agar, Difco, Becton Dickinson and
Company) after 7 days incubation at 25°C. Color obverses were assigned to each isolate using
theMunsell Soil Color Charts [24]. Three sub-cultures on Potato Dextrose Agar (PDA) (25°C)
and also on Czapek Yeast Extract Agar (CYA) (5°C, 25°C & 37°C), Glycerol Nitrate Agar
(G25N) (25°C) and Malt Extract Agar (MEA) (25°C) media for 7 days as described by Pitt
[25], were done for the most distinguishable morphological types. Regarding macroscopic
morphology, reproducibility was checked using three sub-cultures of a subset of 36 isolates.
Statistical tests on morphologies were performed using JMP version 7 [26]. Microscopic mor-
phology was also investigated by observing specimens sampled from the subcultures on
MEA medium.

DNA extraction, amplification and sequencing
Genomic DNA was extracted from fresh mycelium for each isolate after 5–7 days growth on
M2Lev (20 g.L

-1 malt extract, 3 g.L-1 yeast extract and 15 g.L-1 agar) using the FastDNA SPIN
Kit (MP Biomedicals, Illkirch, France) according to the manufacturer’s instructions. Stock so-
lutions (100 ng.μL-1) were prepared for PCR experiments and all DNA samples were conserved
at -20°C.
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Partial amplification of the β-tubulin gene, using the Bt2a and Bt2b primers [27], was per-
formed on all 164 isolates to ensure that they belonged to the P. roqueforti species [28]. In addi-
tion to partial β-tubulin gene sequences, ten other DNA fragments were sequenced for 24
selected isolates based on multiple criteria (geographical origin, morphotype and random am-
plified polymorphism DNA (RAPD) analysis), in order to detect the most polymorphic loci.
These regions corresponded to the rDNA ITS (including 5.8S rDNA gene) [29], partial 18S
[30,31] and 28S [32,33] nuclear ribosomal DNA genes, partial rpb1 gene encoding the largest
subunit of the RNA polymerase II (RPB1) [34], partial rpb2 gene encoding the second largest
subunit of RNA polymerase II (RPB2) [35], partial translation elongation factor 1 alpha gene
(EF-1α) [36], partialmcm7 gene encoding a mini-chromosome maintenance complex compo-
nent 7 (MCM7) protein required for DNA replication, initiation and cell proliferation [37],
partial tsr1 gene encoding for 20S pre-rRNA accumulation during ribosome biogenesis [38,39],
partial cct8 gene encoding a subunit of the cytolosic chaperonin Cct ring complex, related to
Tcp1p and required for the assembly of actin and tubulins in vivo [40,41] and partial calmodu-
lin gene [42]. After this preliminary study, five fragments were chosen as the most polymorphic
(ß-tub, cmd, cct8, tsr1 andmcm7) for further analyses. Information about the loci and primers
used are summarized in (Table 1).

The five chosen fragments were amplified by PCR from total DNA extracts of 145 P. roque-
forti isolates (the remaining 19 P. roqueforti isolates were obtained too late to be used for
GC-PSR) as well as 14 strains belonging to other Penicillium species in order to assess relation-
ships within the section Roquefortorum. Penicillium paneum isolate CBS 303.97 was used to
root the trees. The PCR mixture included molecular biology grade water, PCR buffer (1X),
200 mM dNTPs, 2 mMMgCl2, 0.2 mM of each primer, 0.5 U of GoTaq DNA polymerase (Pro-
mega, Madison, USA), and 100 ng of genomic DNA template. Amplifications were performed
using a peqSTAR 2X Gradient Thermocycler (PEQLAB Biotechnologie GMBH, Erlangen, Ger-
many) using the programs detailed in S3 Table.

Further genomic regions with high levels of DNA polymorphism were searched for by com-
paring the genome sequences of four P. roqueforti strains (unpublished data, courtesy of the
ANR FoodMicrobiome Project), as well as the FM164 genome sequence [4]. Three genomic re-
gions (ca. 1000 bp, Proq845, Proq235, Proq631) located on three different scaffolds were select-
ed using DnaSP version 5.10.01 [45]. Proq845 included a putative partial gene sequence region
encoding a hypothetical protein. Proq235 was composed of two putative gene regions including
conserved domains for a peptidase M24 enzyme and an endonuclease/exonuclease/phospha-
tase. Proq631 was found within a putative gene encoding a cytochrome P450 conserved do-
main. For each genomic region, primers were designed using Primer3web version 4.0.0 [46,47]
(http://primer3.ut.ee/). Information about the primers used is shown in Table 1. Thirty isolates
were used to amplify by PCR the Proq845, Proq235 and Proq631 loci using the same PCR mix-
ture as described above. These 30 isolates included: (i) isolates representative of the diversity
according to five gene sequences (ß-tub, cmd, cct8, tsr1 andmcm7) and microsatellite markers,
as well as (ii) isolates belonging to each of the six observed clusters in the previous study [16].
The PCR program used is detailed in S3 Table.

PCR products were sequenced using both their forward and reverse primers at the ‘Plate-
forme Biogenouest’ (Roscoff, France) using the dye-terminator technology. Sequence assembly
was carried out with Bionumerics version 6.6 (Applied Maths, Belgium) and contigs were man-
ually edited using Mesquite version 2.75 [48]. Sequences corresponding to the eight loci chosen
for multilocus analysis (ß-tub, cmd, cct8, tsr1,mcm7, Proq845, Proq235 and Proq631) were de-
posited in GenBank (see accession numbers in S4 Table. Sequence alignments were deposited
in TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S16359).
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Phylogenetic analysis
The nucleotide sequences for the eight selected loci (ß-tub, cmd, cct8, tsr1 andmcm7, Proq845,
Proq235 and Proq631) were aligned using MAFFT online version 7 (G-INS-I strategy) [49]
(http://mafft.cbrc.jp/alignment/server/).

For both Maximum Likelihood (ML) and Bayesian analyses, Jmodeltest version 2.1.4
[50,51] was used to determine the best-fit model of evolution for each dataset, namely: TIM2ef
model for β-tub, TrN+G model for cct8, TIM1ef+G model for cmd the, K80 model formcm7,
TrN model for tsr1, TrN model for Proq235 locus, TPM3+I model for Proq631 locus and TIM1
model for Proq845 locus.

Maximum parsimony (MP), ML and Bayesian analyses were performed excluding redun-
dant sequences shared by several isolates, using PAUP version 4.0b10 [52] for MP and ML and
MrBayes version 3.2.2 [53,54] for Bayesian analyses. Branch supports for all MP analyses were
estimated by performing 1000 bootstrap replicates with a heuristic search consisting of 100
stepwise random addition replicates and tree bisection-reconnection (TBR) branch-swapping
for each bootstrap replicate. Because P. paneum has been previously shown to form a phyloge-
netically close, well-supported clade, distinct from P. roqueforti [28], sequences obtained from
P. paneum CBS 303.97 were used to root the ß-tub, cmd, cct8, tsr1 andmcm7 phylogenies.

ML analyses were performed with 100 stepwise random addition replicates and TBR
branch-swapping using the best-fit model. Constant characters were included and ambiguously
aligned characters were excluded from all analyses. Bayesian analyses employing a Markov
Chain Monte Carlo (MCMC) method were performed using MrBayes version 3.2.2 [53,54] on
constant characters. Four MCMC chains were run simultaneously for 10,000,000 generations
with trees saved every 100th generation resulting in 100,000 total trees. The first 25,000 trees,
which extended well beyond the burn-in phase of each analysis, were discarded. Posterior
probabilities were determined from a consensus tree generated with the remaining 75,000
trees. MCMC convergence of our analyses was checked by using the Cumulative, Slide, and
Compare analyses as implemented in AWTY [55].

Table 1. Information about loci and primers used in the present study for Genealogical Concordance—Phylogenetic Species Recognition
(GC-PSR) analysis.

Locus Primer Sequence (5’– 3’) Tm (°C) Fragment size (bp) Reference

β-tubulin Bt2a GGTAACCAAATCGGTGCTGCTTTC 70.0 440–50 [27]

Bt2b ACCCTCAGTGTAGTGACCCTTGGC 70.3

cmd Cmd5 CCGAGTACAAGGAGGCCTTC 64.9 510–520 [42]

Cmd6 CCGATAGAGGTCATAACGTGG 63.2

CF4 TTTYTGCATCATRAGYTGGAC 57.0 720–730 [36]

CF1D CAGGTCTCCGAGTACAAG 55.6

mcm7 Mcm7-709for ACIMGIGTITCVGAYGTHAARCC 70.2 610–620 [43]

Mcm7-1348rev GAYTTDGCIACICCIGGRTCWCCCAT 69.1

tsr1 Tsr1-F1526 GARTAYCCBCARTCNGAIATGT 55.1 810–820 [44]

Tsr1-R2434 ASAGYTGVARDGCCTTRAACCA 55.0

cct8 Cct8-F94 CGCAACAAGATYGTBATYAACCA 49.5 1300–1310 [44]

Cct8-R1595 RTCMACRCCNGTIGTCCAGTA 54.2

Proq845 Proq845for AACTTGCTTACCACTCGGCG 66.3 980–990 This study

Proq845rev CTCGTTGGCAATACTGCTGG 65.6

Proq235 Proq235for CAACAACCTCGGGTGCTTTG 67.7 940–950 This study

Proq235rev TTGTGTGTCAAGACCCGGAC 66.2

Proq631 Proq631for GGGGATGTCAGGTGGGTTTT 67.0 1060–1070 This study

Proq631rev GGGCTCAAAGATGCGAAACG 68.9

doi:10.1371/journal.pone.0129849.t001

Penicillium roquefortiGenetic Diversity

PLOS ONE | DOI:10.1371/journal.pone.0129849 June 19, 2015 5 / 21

http://mafft.cbrc.jp/alignment/server/


Incongruence Length Difference tests were performed (ILD, [56] as implemented in PAUP
version 4.0b10 (hompart option)).

Phylogenetic trees were visualized and edited with FigTree version 1.4.1 (http://tree.bio.ed.
ac.uk/software/figtree/). A cluster network consensus tree was obtained using Dendroscope
version 3.2.10 [57,58] from the three Bayesian trees generated for Proq845, Proq235 and
Proq631 loci in order to visualize incongruences among these trees.

Microsatellite markers development and analyses
Microsatellite motifs were searched within the P. roqueforti FM164 strain genome sequence [4]
using SciRoKo version 3.4 [59] using the “Perfect (Total length)” search mode. Based on rec-
ommendations by Sweet et al. [60], search parameters included a minimum repeat number of
microsatellite motifs of 3 (trinucleotide) and a minimum total length of 24 per microsatellite.
For each detected microsatellite region (n = 24), flanking sequences were extracted with SciR-
oKo version 3.4, primers were designed with QDD 2.1 [61] from PIPE3 (Table 2) and tested on
8 isolates (F15-3, F20-1, F33-1, F41-4, F51, F53, F61-6 and CBS 221.30T) selected on the basis
of their morphotypes and/or geographical origin. Microsatellite regions were amplified by PCR
on the 164 isolates of the working collection using the same PCR mixture as described above.
The PCR program used is detailed in S3 Table. Each PCR product was sequenced as previously
described. For population analyses, four markers were selected (Proq16, Proq17, Proq01_3,
Proq02_2). The microsatellite markers were designed independently and concomitantly from
those used in the study by Ropars et al. [16] which explains why they do not overlap and why
they were not used here.

Population analyses
Linkage disequilibria among the four markers were computed using Genepop on the Web ver-
sion 4.2 [62,63] (http://genepop.curtin.edu.au/). For inferring population structure, individual-
based Bayesian clustering methods implemented in STRUCTURE version 2.3.4 were used [64].
Ten independent analyses were carried out for each number of clusters from K = 2 to K = 10,
using admixture models, 500,000 MCMC iterations after a burn-in time of 50,000 steps. Out-
puts were processed using CLUMPP version 1.1.2 [65] to identify clustering solutions in repli-
cated runs of each K. Graphical displays of population structure were performed using
DISTRUCT version 1.1 [66]. The Evanno method [67] was implemented using STRUCTURE
HARVESTER on the web ([68], http://taylor0.biology.ucla.edu/structureHarvester/) in order
to detect the K value corresponding to the strongest structure. The extent of population subdi-
vision was evaluated by calculating FST indexes for all pairs of populations and by performing a
hierarchical analysis of molecular variance (AMOVA) [69] using Genodive 2.0b25 [70]. A
Principal Component Analysis (PCA) and Factorial Correspondence Analyses (FCA) were
performed using R [71].

Results

Morphology
A high level of macroscopic morphological diversity was observed (Fig 1). On PDA (the most
discriminative medium), colony color varied from light to dark greenish gray including gray-
ish, pale, pale yellowish and olive green whereas colony texture varied from velvety to fascicu-
late including weakly floccose (S5 Table). While margins were mainly regular (S5 Table), their
size varied considerably, with some isolates exhibiting a very thin margin whereas others had a
thick margin representing up to one third of colony diameter (Fig 1). The recorded
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Table 2. Primers used in the present study for microsatellite markers amplification and sequencing.

Locus Primer Sequence (5’– 3’) Tm(°C)

Proq01 Proq01_Fwd AAGCGTCGCAGATCTAATGC 64.3

Proq01_Rev GACAGACCCTCGATGTTTGC 64.7

Proq01_2 Proq01_2_Fwd ACTGTGAAACGAGCCTCCTG 64.4

Proq01_2_Rev ACACCATTGCCATCCATACC 64.4

Proq01_3 Proq01_3_Fwd TGTGTACTCCACAGCGGCTA 64.5

Proq01_3_Rev TTGTCTTTCGGGTGTCCAAT 64.3

Proq02 Proq02_Fwd GCCGAAGAAGGAGCTGATCT 64.8

Proq02_Rev GAGGACGGAACGATTCTCAA 64.1

Proq02_2 Proq02_2_Fwd CCACTGTTAGAATCGCTGGG 64.5

Proq02_2_Rev CGTGAACGTGGAGTTGACTG 64.5

Proq03 Proq03_Fwd AACCAGTCGATCTGTTCCCA 64.5

Proq03_Rev ATTTGCAATATGCTGGGTCG 64.6

Proq03_2 Proq03_2_Fwd TAGAACACAAGGCATTGGCA 64.2

Proq03_2_Rev TCCAAATGAAGCGGGAAGTA 64.3

Proq03_3 Proq03_3_Fwd GGGACTTCCTTGGCGTATCT 64.2

Proq03_3_Rev ATGGATGATTCTACGCCTCG 63.9

Proq04 Proq04_Fwd TGAAGGTTATTGAAGAAAGACCG 63.0

Proq04_Rev CAAATCTCGCCCACCAAAC 65.4

Proq04_2 Proq04_2_Fwd CGTTGGATAACCACTACGCA 63.5

Proq04_2_Rev CGATCGAATCCCATTTCACT 63.7

Proq04_3 Proq04_3_Fwd ATGGTGGGTGCAGGGATT 65.4

Proq04_3_Rev CACCGTCAGCACTACCATTG 64.2

Proq05 Proq05_Fwd TCCCTGCCGTCTGATAGTTC 64.2

Proq05_Rev AAGGTGCTGTGGACTGGTTC 64.2

Proq07 Proq07_Fwd AAAGTCTGGATGTGAGGGCA 64.7

Proq07_Rev GATCTCTTGGTTGGAATGCG 64.5

Proq07_2 Proq07_2_Fwd CCATGAACTGCCTTACGCTT 64.0

Proq07_2_Rev ATCGCGGTTGCTCTATTTGA 64.5

Proq07_3 Proq07_3_Fwd CCATGAACTGCCTTACGCTT 64.0

Proq07_3_Rev ATCGCGGTTGCTCTATTTGA 64.5

Proq09 Proq09_Fwd TCCGTTCAGGAACTGTCGAT 64.7

Proq09_Rev TCCATGGCAGTTGCTTCTTT 64.6

Proq10 Proq10_Fwd GCCTTGAGTTGTAACCAATCCTTT 65.1

Proq10_Rev TCCTAGATGTTCCCGATTGGT 64.4

Proq10_2 Proq10_2_Fwd GCCTCCCAGTTCATGACAAC 64.6

Proq10_2_Rev CTGCCGAAACTGCTTGCTAT 64.3

Proq11 Proq11_Fwd ACACCCAATCACTACGACGG 64.8

Proq11_Rev TGAAGTGAGGACCTTTGGGA 64.6

Proq14 Proq14_Fwd TCTTCGCATAGGGAGTTGGA 64.6

Proq14_Rev TGGTAGAATACCGTTCCCGA 64.1

Proq16 Proq16_Fwd TTGAGGATTTCCGGAGACAA 64.5

Proq16_Rev ATGCGCAATAAGACCCAAGA 64.4

Proq17 Proq17_Fwd TATCGTCCGCACTAAGGGAA 64.3

Proq17_Rev TGCTTCATTTCCGAAGGTGT 64.5

Proq17_2 Proq17_2_Fwd GATCGGAAACCCAGGAATTT 63.8

Proq17_2_Rev GGGCCATATCCCATTCTTGA 65.7

Proq18 Proq18_Fwd TCAGCACAATCAGTTCACGC 65.2

Proq18_Rev TCAGCATTTGCTGCTGTTGT 64.7

doi:10.1371/journal.pone.0129849.t002
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Fig 1. Penicillium roqueforti. (Column A to I respectively correspond to PTX.PR.26.1 (A), F75-6 (B), UBOCC-A-109090 (C), UBOCC-A-111170 (D), MUCL
18048 (E), FM164 (F), F61-6 (G), UBOCC-A-110052 (H), F84 (I) isolates grown respectively for 7 days at 25°C on Czapek Yeast Extract Agar (CYA) (lines 1
& 2: obverse & reverse), Glycerol Nitrate Agar (G25N) (lines 3 & 4: obverse & reverse), Malt Extract Agar (MEA) (lines 5 & 6: obverse & reverse), Potato
Dextrose Agar (PDA) (line 7), Yeast Extract Sucrose agar (YES) (lines 8 & 9: obverse & reverse) and Creatine sucrose agar (CREA) (line 10) media.

doi:10.1371/journal.pone.0129849.g001
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macroscopic morphological traits were reproducible: the correlations between the first diame-
ter measure and the two replicate measures were indeed highly significant (S5 Table; r = 0.88,
P< 0.001 for second replicate and r = 0.84, P< 0.001 for third replicate) and the same colors,
texture and margins were recorded on the different subcultures of the same isolate. Microscop-
ic morphological variations were also observed on MEA medium: conidiophore roughness was
more or less pronounced and penicilli were more or less appressed depending on the specimen
observed. However, these differences were subtle and were therefore not recorded. No substan-
tial spore size variation was noticed among isolates. Noteworthy, only rudimentary penicilli
were observed for isolate MUCL 18048.

Phylogenetic reconstruction
Out of the eleven tested DNA fragments, six were not kept for further analyses (18S, 28S, ITS,
EF-1α, rpb1, rpb2) due to their lack of genetic variability on the 24 selected isolates. The five
fragments chosen for further sequencing (β-tub, cmd, cct8, tsr1 andmcm7) were successfully
amplified by PCR from total DNA extracts of 143 to 145 P. roqueforti isolates, depending on
the fragments, as well as of 14 strains belonging to other Penicillium species. Overall, the partial
β-tub locus (443 bp), cct8 locus (1224 bp), cmd locus (465 bp),mcm7 locus (565 bp) and tsr1
locus (809 bp) were used to construct five gene genealogies (Fig 2; Table 3).

Due to the weak phylogenetic signal of the first five genes (Table 4), three more polymor-
phic DNA fragments (Proq235, 930 bp; Proq631, 1029 bp; Proq845, 988 bp) were identified by
comparing five P. roqueforti strains genome sequences and sequenced on the 30 isolates chosen
for further phylogenetic reconstructions (S1 Fig; Table 3).

Because the ILD tests indicated significant incongruence between the studied gene trees in
both datasets (β-tub, cmd, cct8, tsr1,mcm7 on the one hand and Proq235, Proq631, Proq845 on
the other hand) (P< 0.05), no phylogenetic analyses were performed using
concatenated datasets.

Species delimitation
Considering the five individual gene trees for ßtub, cct8, cmd,mcm7 and tsr1, isolates identified
as P. paneum, P. carneum and P. roqueforti were systematically assigned to three distinct clades
regardless of the method used (ML, MP or Bayesian inference). In contrast, P. psychrosexualis
isolate CBS 128137HT appeared as a sister clade of P. roqueforti in the cct8 tree, as a sister clade
of P. carneum in the ßtub tree and basal to P. carneum and P. roqueforti according to the cmd
tree and even within the P. roqueforti clade in the case of themcm7 and tsr1 trees. In each of
the five gene genealogies, multiple subclades appeared within the P. roqueforti clade. Some of
these subclades were well supported (e.g., in the ßtub and tsr1 trees) but not others (e.g., in the
cmd tree). When considering the well-supported subclades, they did not consistently include
the same isolates across the different gene trees. For example, the FM164 and CBS 498.73 iso-
lates were nested in the same subclade in the ßtub genealogy while placed in two different sub-
clades in the tsr1 genealogy.

Regarding the individual gene trees obtained for the Proq235, Proq631 and Proq845 variable
regions using only P. roqueforti isolates (n = 30), all subclades were well supported but again
conflicts were observed between the different gene genealogies with regards to P. roqueforti
subclades relationships and content. Incongruences among the nodes between the different
gene genealogies in P. roqueforti were observed, as illustrated on the cluster network consensus
tree (Fig 3), indicating relatively recent recombination among these groups. No cryptic species
could therefore be recognized according to the GC-PSR method.
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Penicillium roqueforti genetic diversity and population structure
Preliminary tests were performed for the 24 identified microsatellite primer pairs on eight se-
lected isolates. The number of alleles (na) detected varied from 1 to 4 and Polymorphism Infor-
mation Content (PIC) values ranged from 0 to 0.72. The four most polymorphic microsatellite
markers (na � 3; PIC� 0.56) were used to genotype the whole collection of P. roqueforti iso-
lates (n = 164) and allowed to detect 28 haplotypes. Interestingly, only 13 haplotypes were de-
tected among the 140 blue-cheese isolates whereas 15 haplotypes were identified among the
other isolates (n = 24).

Significant linkage disequilibrium was detected between 5 locus pairs (out of 6) when the
dataset was considered as a single population. This may result from aWahlund effect if differ-
entiated populations exist in the sample. The P. roqueforti population structure was further in-
vestigated with the STRUCTURE program. It yielded well-defined clusters at K values up to 3
(Fig 4), indicating the existence of three genetically differentiated populations. For K

Fig 2. Rooted Bayesian trees based on analysis of the separated sequence data (β-tub, cmd, cct8,mcm7, tsr1). Posterior probabilities followed by
bootstrap values of Maximum Likelihood and Maximum Parsimony analyses are indicated next to nodes. The tree was rooted with Penicillium paneum
isolate CBS 303.97.

doi:10.1371/journal.pone.0129849.g002
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values� 4, each new cluster included only admixed genotypes indicating a lack of further sup-
ported structure (S2 Fig). The deltaK value confirmed that this split (K = 3) was the strongest
structure in the data set (Fig 5). Due to the lack of polymorphism in two clusters, linkage dis-
equilibrium could only be assessed in one of the clusters (population 2), being non-significant.
The existence of three genetically differentiated populations was further confirmed by fixation
index FST values, systematically greater than 0.633 (population 2 vs 3: 0.633; population 1 vs 2:
0.7240; population 1 vs 3: 0.8194). Moreover, the AMOVA analysis indicated that most of the
genetic variance (> 72%) was located at the among-population level.

PCA results were also in agreement with the existence of three genetic clusters; the analysis,
including all 164 isolates genotyped with four microsatellites, confirmed the differentiation of
the three populations, as they did not overlap (Fig 6, with 65.69% and 20.89% of the variance
explained by axes 1 and 2, respectively) except for the UBOCC-A-101449 isolate belonging to
population 3 and clustering within population 1. Interestingly, the FCA analysis indicated a
strong contrast between the three populations in terms of cheese isolate origin (Fig 7). Indeed,
strains isolated from a given Protected Designation of Origin (PDO) or Protected Geographical
Indication (PGI) cheese type were systematically associated to the same population. For exam-
ple, most isolates sampled from Roquefort (16 out of 17), from Bleu d’Auvergne (5 out of 7)
and all isolates from Bleu des Causses (3 out of 3) were assigned to population 2, while most
isolates from Gorgonzola (6 out of 7) and Bleu du Vercors-Sassenage (1 out of 1) were assigned
to population 3 and all isolates from Blue Stilton (4 out of 4), Cabrales (2 out of 2), Fourme

Table 3. Information regarding individual MaximumParsimony trees (β-tub, cct8, cmd,mcm7, tsr1, Proq235, Proq845 and Proq631 loci).

β-tub cct8 cmd mcm7 tsr1 Proq235 Proq845 Proq631

No of isolates analyzed 158 157 159 157 159 30 30 30

Alignable characters 443 1224 465 565 809 930 988 1029

Variable characters 45 52 42 36 49 50 16 15

Informative charactersa 27 30 22 21 31 50 16 14

Tree length 47 55 49 36 50 50 19 16

Consistency index (CI)b 0.979 0.945 0.898 1 0.980 1 0.789 1

Retention index (RI)c 0.979 0.932 0.918 1 0.983 1 0.867 1

a An informative character is a character for which there are at least two different states in the set of sequences, and each of these states occurs in at

least two of the sequences.
b The CI is the sum over all characters of the per-character CI defined as ms-1, where m is the minimum possible number of character changes (steps) on

any tree, and s is the actual number of steps on the current tree. This index varies from one (no homoplasy) and down towards zero (a lot of homoplasy).
c The RI is the sum over all characters of the per-character RI defined as (g-s)/(g-m), where m and s are as for the per-character CI, while g is the maximal

number of steps for the character on any cladogram. The RI measures the amount of synapomorphy on the tree, and varies from 0 to 1.

doi:10.1371/journal.pone.0129849.t003

Table 4. Genetic information regarding β-tub, cct8, cmd,mcm7 and tsr1 sequence alignments of Penicillium roqueforti isolates.

β-tub cct8 cmd mcm7 tsr1

No of isolates analyzed 144 143 145 143 145

Alignable characters 443 1224 465 565 809

Variable characters 3 6 4 4 10

Informative charactersa 2 4 3 0 4

a An informative character is a character for which there are at least two different states in the set of sequences, and each of these states occurs in at

least two of the sequences.

doi:10.1371/journal.pone.0129849.t004
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d’Ambert (5 out of 5) and Danish Blue (2 out of 2) were assigned to population 1 (Fig 7, with
53.13% and 46.87% of the variance explained by the 1 and 2 axes, respectively). Noteworthy, a
large majority of the non-blue-cheese isolates (21 out of 24) were found in population 2.

Colony diameters were significantly different between all pairs of populations (Student t-
tests, P< 0.001 between populations 2 and 3 and 1 and 3, P = 0.01 between populations 1 and
2). Chi2 tests showed that the colony margin and color obverse were significantly different be-
tween populations (Chi2 = 5.4; d.f. = 1; P = 0.02 and Chi2 = 125.3; d.f. = 21; P< 0.0001, respec-
tively), and the colony texture marginally significantly different (Chi2 = 7.3; d.f. = 3; P = 0.06).

In particular, population 3 was almost exclusively composed of isolates with both a velvety
to weakly floccose texture and a light greenish gray (5GY—8/1) to pale green (5G_/2–6/2)

Fig 3. Cluster network consensus of the three bayesian trees (Proq235, Proq845 and Proq631) using Dendroscope. Hardwire network shows
incongruences between clades.

doi:10.1371/journal.pone.0129849.g003

Fig 4. Population structure of Penicillium roqueforti. The structure has been inferred by STRUCTURE for K = 3 (see S2 Fig for the barplots
corresponding to other K values).

doi:10.1371/journal.pone.0129849.g004
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color (20 out of 21). This texture/color combination was not observed in other populations. In
addition, population 3 isolates grew much slower than other population isolates (mean diame-
ter of 51.9 ± 4.8 mm vs 63.7 ± 9.7 mm in population 2 and 66.6 ± 3.6 mm in population 1; S3
Fig).

Discussion
In this study, we analyzed a large collection of P. roqueforti isolates, mainly sampled from dif-
ferent blue cheese types collected worldwide. Substantial morphological diversity was observed.
In this context, in order to address whether P. roqueforti encompassed different species, eleven
loci among the most commonly used for the GC-PSR species delimitation criterion [17,72–77]
were tested for polymorphism. The five most polymorphic genes (ßtub, cct8, cmd,mcm7 and
tsr1) were sequenced in most of the collection. The weak phylogenetic signal of these genes,
however, prevented obtaining strong support for nodes within P. roqueforti, therefore limiting
their utility for applying this method. Nevertheless, incongruence among the different sup-
ported nodes indicated that the GC-PSR criterion does not support the existence of cryptic

Fig 5. Detection of the uppermost level of structure assuming nulls as missing data. Delta K estimated following the Evanno method using Structure
Harvester on the web.

doi:10.1371/journal.pone.0129849.g005
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species in P. roqueforti. Three additional, more polymorphic fragments were sequenced on a
subset of the collection and the supported nodes again appeared incongruent between the gene
genealogies. Overall, our results therefore did not show evidence in favor of the existence of dif-
ferent species within P. roqueforti. However, the GC-PSR criterion would not detect recently
derived species, especially if differentiated at human time scales, as this method requires that
DNA fragments had time to coalesce [17,21–23].

The use of four microsatellite markers revealed genetic diversity in the collection, with 28
haplotypes detected. Despite the low number of isolates sampled from other substrates than
cheeses, they displayed higher genetic diversity than cheese isolates. This indicates that blue-
cheese making does not exploit the entire P. roqueforti diversity but instead relies on a limited
pool of strains.

Population structure analyses based on the four microsatellite markers confirmed the exis-
tence of highly differentiated populations. Using a higher number of microsatellite markers
(n = 11), Ropars et al. [16] identified up to six highly differentiated populations within a collec-
tion of 114 P. roqueforti isolates. As the present work and the study by Ropars et al. [16] shared
53 isolates, a comparison can be performed between the clusters identified in the two studies.
The population 2 of the present study corresponded to the cluster B described by Ropars et al.
[16], that was further subdivided into three populations. Our populations 1 and 3 corre-
sponded to the cluster A detected by Ropars et al. [16], that was also further subdivided into

Fig 6. Principal Correspondence Analysis performed using R from 164 isolates. Blue, yellow and orange dots correspond respectively to isolates of
populations 1, 2 and 3 as defined on Fig 4.

doi:10.1371/journal.pone.0129849.g006
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three populations. As in this previous study [16], we found that one cluster included almost all
non-blue-cheese isolates.

Importantly, we revealed in this study that the clustering of cheese isolates mainly corre-
sponded to different cheese types. This might suggest that the different cheese-making process-
es domesticated their own P. roqueforti population from a common pool, leading to their
genetic differentiation. Noteworthy, a phenotypic differentiation could also be observed. In
particular, population 3, which included mainly isolates from Gorgonzola-type cheeses, dis-
played colony morphologies which were absent from other populations and grew much slower.
A strong selection for some desired phenotypic traits may indeed differentiate populations
through selective sweeps [78,79], especially in organisms like fungi with infrequent sex events
compared to cycles of asexual reproduction.

However, this interpretation seems difficult to reconcile with the high diversity within clus-
ters and the strong divergence between populations, given the human time-scale for

Fig 7. Factorial Correspondence Analysis individual factor map. (Protected Designation of Origin/Protected Geographical Indication cheeses &
populations as obtained by STRUCTURE). Red numbers (1, 2 & 3) refer to the corresponding populations as defined on Fig 4.

doi:10.1371/journal.pone.0129849.g007
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domestication. According to historians, blue-cheese was rarely mentioned before the fifteenth
century and was thought to have already been made in France since the chalcolithic [10]. Dif-
ferent blue-cheese technologies may have coexisted for at least 1000 years (e.g., Gorgonzola
was first described in the literature in 879 whereas Roquefort was first cited in 1070) [8]. These
dates seem too recent to account for the observed genetic differentiation at neutral markers by
mere genetic drift, and selective sweeps would have drastically reduced genetic diversity
[80,81].

Alternatively, it may be that different cheese producers domesticated distinct, already differ-
entiated, P. roqueforti populations, with contrasted metabolic features and morphological
traits. The reason for the lack of non-cheese isolates in the cheese clusters may be that these
have been domesticated from unsampled ecological niches. In fact, P. roqueforti is difficult to
isolate from natural habitats (i.e., other than human-made environments); all the strains avail-
able in public collections have been found by chance, without searching specifically for them,
and usually from human-associated habitats (fruits, wood for wine casks, silage). Like yeasts
for a long time [82], the fact that the wild ecological reservoirs for P. roqueforti have not been
identified probably leads to under-sampling. The genetic structure in P. roqueforti reminds
that of the yeast Saccharomyces cerevisiae in which differentiation has been found according to
different food processes (bread, beer, wine or sake) [83–85]. Two scenarios have been pro-
posed, either the domestication of different genetic groups with further selection for improved
fermentation properties, or differentiation arising from human activities. Again as in S. cerevi-
siae [86], domestication footprints have been found in P. roqueforti and P. camemberti cheese
fungi genomes, in the form of horizontal gene transfers carrying genes putatively involved in
competition against other micro-organisms in cheeses [4]. Multiple genome sequence compar-
isons of wild strains vs cheese strains originating from the different populations detected in the
present study would allow addressing the question of whether cheese strain genomes display
footprints of adaptation that have led to metabolic specialization. Such footprints have been
found for instance in Aspergillus oryzae [87], where an atoxigenic lineage of the pathogen As-
pergillus flavus gradually evolved into a “cell factory” for enzymes and metabolites involved in
the saccharification process. Evidence of genomic adaptation have also been reported in several
other domesticated fungi [88].

In conclusion, while morphological differences were observed in P. roqueforti, they are not
linked with the existence of different species as suggested by the GC-PSR analysis, although
this method has some limitations. Interestingly, at the intraspecific level, the use of microsatel-
lites revealed the existence of highly differentiated populations, corresponding to blue cheese
types. This suggests that different populations, either ecotypes or allopatric populations, were
recruited for different cheese types. Further physiological and metabolic studies are also needed
to test for a link between P. roqueforti diversity and structure described in the present study
and putative functional diversity.
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