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Abstract

Experimental studies on the interactions of the positive strand RNA virus hepatitis C virus (HCV) 

with the host have contributed to several discoveries in the field of antiviral innate immunity. 

These include revealing the antiviral sensing pathways that lead to the induction of type I 

interferon (IFN) during HCV infection and also the importance of type III IFNs in the antiviral 

immune response to HCV. These studies on HCV/host interactions have contributed to our overall 

understanding of viral sensing and viral evasion of the antiviral intracellular innate immune 

response. In this review, I will highlight how these studies of HCV/host interactions have led to 

new insights into antiviral innate immunity. Overall, I hope to emphasize that studying antiviral 

immunity in the context of virus infection is necessary to fully understand antiviral immunity and 

how it controls the outcome of viral infection.
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Introduction

HCV is a positive sense, single-stranded (ss) RNA virus of the genus Hepacivirus and 

family Flaviviridae. HCV infects and replicates in hepatocytes within the human liver. HCV 

infection can result in liver disease, including fibrosis and cirrhosis, can cause hepatocellular 

carcinoma, and is the leading indicator for liver transplantation (1). There is no vaccine for 

HCV; however, recently developed, direct acting antiviral drugs (DAAs) are showing high 

efficacy towards HCV, although they are incredibly cost-prohibitive (2). HCV isolates have 

been classified into 7 different genetic groups, referred to as genotypes, based on their 

sequences and display sequence diversity of greater than 30% (3, 4). The previous standard 
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of care for hepatitis C was treatment with pegylated IFN-α plus ribavirin and resulted in 

cure rates of only 40–50% for the most difficult to treat HCV genotypes (1 and 4) (5). 

However, the newest standards of care for HCV involve treatment with these newly 

developed DAAs, sometimes in IFN-free combinations, leading to cure rates of up to 95% in 

the controlled settings of clinical trials (2). It is currently unknown if these high cure rates 

will be maintained following widespread usage of these DAAs. Further, how antiviral 

resistance will be managed under widespread usage is unknown and needs to be carefully 

considered.

HCV infection is sensed as foreign or non-self by the host through the antiviral innate 

immune response. This immune response is triggered shortly after infection in a cell-

intrinsic manner by host proteins called pattern recognition receptors (PRRs) that detect 

specific pathogen-associated molecular patterns (PAMPs) in the virus to activate 

downstream signaling cascades that drive immunity, including expression of antiviral genes 

and various cytokines, such as the type I and III interferons and IL-1β. HCV is sensed by 

multiple PRRs, including members of the RIG-I (retinoic acid-inducible gene I)-like 

receptors (RLRs), the toll-like receptors (TLRs), and the nucleotide oligomerization domain-

like receptors (NLRs) (6). While the subsequent downstream antiviral response can be 

directly antiviral to limit virus replication and spread, it can also provide signals to the 

adaptive immune response for full induction of immunity to virus infection. As many 

viruses, including HCV, have developed effective countermeasures to inactivate this 

antiviral response, it is clear that the innate immune response plays an important role in 

determining the outcome of virus infection (7).

The HCV RNA genome is 9.6 kilobases in length and encodes for a single polyprotein that 

is processed by host and viral proteases into the 10 structural and non-structural proteins of 

the virus (Figure 1). HCV was discovered in 1989 using modern molecular biology 

approaches and was found to be the causative agent of non-A non-B hepatitis, first described 

over ten years earlier (8). Since the initial discovery of HCV, many aspects of the viral life 

cycle have now been revealed; some of which are now targets for DAAs (9). The initial 

studies to define the virology of HCV took time to develop because HCV is very difficult to 

grow in cell culture. For example, it took 10 years after the discovery of HCV to be able to 

study replicating HCV RNA in a cell culture system (10), and a fully infectious clone of 

HCV to be used in cell culture was only developed within the last 10 years (11, 12). Current 

systems for studying HCV have expanded from studying the virus in Huh7 human hepatoma 

cell lines to using primary human hepatocytes, mice with a chimeric human liver, or mice 

engineered with various human factors that promote HCV infection (13, 14). Utilization of 

these systems, including emerging non-chimpanzee animal models for HCV infection (13), 

will expand our knowledge of the full complement of HCV-host interactions that dictate the 

outcome of infection.

While we now know many of the important features of both the innate and adaptive immune 

response to HCV (15), many of these features were unknown when HCV/host interactions 

were first being studied. These early studies of HCV and antiviral innate immunity were 

limited by the viral tools and the knowledge of innate immunity available at the time. Even 

today, we still do not have a full understanding of the complex interactions that govern HCV 
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interactions with the host innate immune response in the infected liver. This review will 

feature several key discoveries on antiviral innate immunity in the context of HCV to further 

illustrate how virology research can elucidate fundamental aspects of host cell biology and 

antiviral immunity (16).

Early studies on antiviral immunity to HCV focus on PKR

The first hepatitis C therapies utilized the well-known antiviral cytokine IFN-α, which along 

with IFN-β is a member of the type I IFN family. In cell culture, type I IFN effectively limits 

HCV replication, however as a therapy in patients, type I IFN-based therapies have varying 

levels of effectiveness (5). Type I IFN signals through the IFN receptor (IFNAR1 and 

IFNAR2) to drive JAK/STAT signaling that activates the expression of hundreds of IFN-

stimulated genes (ISGs) whose encoded proteins limit virus replication and spread. The 

antiviral mechanisms of action for many of these ISGs, including how they might be 

antiviral towards HCV, have not yet been fully described (17–19). The first work 

demonstrating that HCV induces an innate immune response came from HCV-infection 

studies in chimpanzees, which found elevated ISGs in the infected chimpanzee livers (20). 

Not long after that, the first studies suggesting that HCV might have a way to evade some 

aspects of this host innate immune system were published. These studies evaluating IFN 

treatment outcomes in Japanese patients infected with a genotype 1b virus found that 

sequence heterogeneity within the viral NS5A protein at the interferon sensitivity-

determining region (ISDR) could predict IFN treatment outcomes (21, 22). While today we 

know that the NS5A protein plays diverse roles in the viral life cycle, including regulating 

HCV assembly versus replication (23), these studies on the NS5A ISDR were the first to 

reveal a virologic function for the NS5A protein. While it’s not entirely clear how the 

sequence variation at the ISDR in NS5A contributes to IFN-based therapy responses 

amongst the different HCV genotypes or in human populations of different ancestries (24), 

these studies set the stage for the subsequent work that identified the mechanisms of how 

HCV antagonizes the antiviral response.

To identify how HCV antagonized the antiviral innate immune response, studies focused on 

the antiviral effector proteins that had been characterized to date, including the Mx proteins, 

2′-5′ oligoadenylate synthestase, RNAseL, and the double-stranded (ds) RNA-activated 

protein kinase R (PKR). At the time, PKR was the most extensively studied of these 

antiviral effector proteins. The antiviral activity of PKR is activated by dsRNA, which 

stimulates its dimerization, autophosphorylation, and phosphorylation of eIF2α, resulting in 

a global block to cellular translation (25). We now know that PKR-sensing of dsRNA also 

activates a kinase-independent function of PKR that induces the antiviral IFN response (26). 

Even in the late 1990s, viral antagonizers of PKR had been described (27). Therefore, 

because genetic variation within the HCV NS5A protein predicted the IFN-sensitivity of 

HCV, it seemed likely that HCV also encoded a viral antagonizer of PKR. The most 

probable candidate was the HCV NS5A protein. Indeed, the NS5A protein did interact with 

PKR to disrupt its dimerization and ability to catalyze eIF2α phosphorylation (28, 29). 

Subsequently, it was also shown that the HCV E2 protein also inhibited PKR activation by 

acting as a pseudosubstrate through its encoded PKR-eIF2α phosphorylation homology 

domain (30).
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The fact that HCV encodes at least two strategies to restrict PKR function would seem to 

suggest that preventing the inhibition of translation by PKR would be required for effective 

HCV replication. However, PKR activation does not actually directly regulate HCV 

translation because translation of the HCV polyprotein is unaffected by eIF2α 

phosphorylation (31–34). This is because its HCV translation is directed by an internal 

ribosome entry site (IRES) within its 5′ untranslated region (UTR) that can use eIF2A for 

translation initiation instead of eIF2α (35). While HCV RNA translation is unaffected by 

PKR activation and eIF2α phosphorylation, we know that during HCV infection the 

translation of ISGs and/or IFN is suppressed by PKR activation and the subsequent eIF2α 

phosphorylation (31, 32). Therefore, in the context of an activated IFN system, PKR 

activation by HCV may allow HCV to evade the antiviral function of ISGs and therefore be 

a positive regulator of HCV replication. Based on these findings, there appears to be an 

unexplained role for NS5A and E2 inhibition of PKR function during HCV infection. As 

HCV encodes these two PKR-antagonizers, PKR suppression must have some beneficial 

role in the virus life cycle. It is possible that at early times after infection, before a potent 

IFN signaling response has been activated, PKR inhibition by HCV proteins could relieve 

the translational suppression of critical host factors required to promote viral replication. 

However, we know that at later times after infection when the IFN signaling response is 

activated, PKR is no longer repressed by the E2 and NS5A proteins perhaps because they 

are involved in other aspects of the viral life cycle, such as viral assembly. Therefore, at 

these later times after infection, PKR would be activated and could contribute to the 

translational suppression of ISGs. More recent work has suggested that PKR, through a 

kinase-independent mechanism, is also involved in the induction of the signaling cascade 

that induces type I IFN (26). Therefore, it remains possible that the mechanism for HCV 

NS5A and/or E2 evasion of PKR has more to do with bypassing this innate immune 

signaling rather than circumventing the translational suppression function of PKR. Even 

though PKR was the first antiviral protein studied in the context of HCV, it seems that we 

still have much more to learn about the role of PKR during HCV infection.

During the initial studies on HCV and PKR, the virologic tools to study if the dsRNA 

generated during HCV replication was specifically activating PKR and the antiviral immune 

response had not yet been developed, and so it was unknown if HCV dsRNA was an actual 

PAMP that activated antiviral immunity. The ability to study HCV replication and how it 

impacted antiviral immunity finally became possible following the groundbreaking work of 

the Bartenschlager and Rice labs in developing the HCV subgenomic RNA replicon systems 

((10, 36) and reviewed in (14)). These studies utilizing these HCV RNA replicons did not 

immediately find the dsRNA sensor/PRR for HCV, but rather found that replicating HCV 

RNA actually inhibited IRF-1 and IRF-3-dependent signaling induced by transfected 

dsRNA (37, 38). IRF-1 and IRF-3 are transcription factors that contribute to the induction of 

IFN-β, although IRF-1 is not essential for this induction (39). The HCV block to IRF-I 

activation was directed by NS5A inhibition of the PKR/IRF-1 signaling axis (37). On the 

other hand, the HCV-mediated block to IRF-3 activation, which is a seminal finding in the 

study of HCV/host interactions that regulated innate immunity, was directed by the actions 

of the HCV NS3/4A serine protease (40). The multifunctional HCV NS3/4A protease is a 

protein complex between NS3, which contains a serine protease domain and an 
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NTPase/RNA helicase domain, and its 54-amino acid cofactor NS4A, the membrane 

targeting subunit of the protease complex (41). NS3/4A is essential for HCV replication, 

viral polyprotein processing, and even viral assembly (42). NS3/4A blocked IRF-3 

activation by preventing both the phosphorylation and its downstream signaling to IFN-β 

(40). Importantly, it was found that the protease activity of NS3 was responsible for the 

block in IRF-3 signaling because protease inactivation by mutation or treatment with an 

NS3-specific protease inhibitor relieved the block to virus-induced antiviral signaling 

through IRF-3 (40). This data suggested very clearly that NS3/4A was cleaving a host factor 

to prevent signal transduction to IRF-3 signaling, but the identity of this host factor 

remained unknown for several more years. Indeed, at this time the PRRs that initiated this 

signaling had yet to be described, and the virus-activated kinases that phosphorylated IRF-3 

(now known as TBK1 and IKK-ε) were just being revealed (43, 44). Nonetheless, these 

early studies on HCV-innate immune interactions regulated by NS3/4A paved the way for 

the discovery of the PRRs RIG-I and MDA5, as well as their signaling adaptor protein 

MAVS, which was eventually found to be the proteolytic target of NS3/4A.

Antiviral innate immune sensing of HCV by RIG-I and MDA5

While PKR was the first described PRR for HCV (and for viruses in general), studies of 

PKR-deficient mice revealed that PKR-independent antiviral sensing mechanisms existed 

(45, 46). Soon after these observations, the PRRs that sensed extracellular dsRNA (TLR3)

(47) and viral ssRNA (TLR7/8)(48–50) were discovered. However, there still existed an 

unidentified antiviral PRR, as type I IFN was still induced in response to virus infection in 

mice and cell lines lacking these TLRs or PKR (51–55). In 2004, Dr. Takashi Fujita and 

colleagues published their findings on the identification of RIG-I, which is one of the PRRs 

for intracellular dsRNA (56). RIG-I contains a caspase activation and recruitment domain 

(CARD) and a DexD/H box RNA helicase that binds to cytoplasmic dsRNA to drive 

signaling to NF-κB and IRF-3 (reviewed in (57)). A database search of GenBank for other 

proteins containing CARD motifs led to the discovery of MDA5, another IFN-inducible 

CARD-containing helicase protein that senses viral dsRNA. The presence of the CARD in 

RIG-I and MDA5 suggested that these PRRs may propagate their signals through interaction 

with another CARD-containing protein, as CARD-CARD interactions between proteins 

were known to regulate apoptotic and innate immune signaling (58). Indeed, the discovery 

of MAVS, a CARD-containing protein found to interact with both RIG-I and MDA5 to 

drive antiviral signaling through IRF-3 to IFN-β, proved this hypothesis to be correct (59–

62). Importantly for HCV research, MAVS was the sought-after proteolytic target of 

NS3/4A, and it was found to be cleaved both in human hepatoma Huh7 cell lines and in 

livers of HCV-infected patients (60, 63–66).

The PRRs RIG-I and MDA5 are now known to differentially recognize distinct PAMPs 

within RNA viruses (67, 68). In particular, we now know that RIG-I is activated by short 

dsRNA containing either a 5′ triphosphate motif or a 5′ diphosphate motif (69, 70), while 

MDA5 senses long dsRNA or even higher order RNA structures that could be viral 

replication intermediates (71–73). In fact, both RIG-I and MDA5 have now been shown to 

be important for the innate immune response to HCV (74, 75). The studies that identified 
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RIG-I and MDA5 as sensors of HCV have led to the discovery of several key properties of 

antiviral innate immune sensing by these PRRs, described below.

HCV replicates poorly in cell culture, and efficient replication requires cell culture adaptive 

mutations in the viral RNA (36, 76). Therefore, to study HCV replication it was necessary to 

identify cell lines highly permissive for HCV replication. To identify these HCV-permissive 

cell lines, cell lines stably replicating HCV RNA were cured of the replicating HCV RNA 

using IFN, after which the ability of these IFN-cured cell lines to support HCV replication 

was tested (77). One particular Huh7 cell line, called Huh7.5, supported very high levels of 

HCV replication (77). This Huh7.5 cell line was unable to make certain ISGs in response to 

Sendai virus, which is a paramyxovirus that is normally a potent inducer of type I IFN (74). 

To identify the missing innate immune factor, a genetic complementation assay to identify 

cDNA products that could restore antiviral activation of IRF-3 was performed. This assay 

identified RIG-I as being one of the factors deficient in Huh7.5 cells, and found that Huh7.5 

cells contained a single amino acid change in the CARD of RIG-I (T55I) that acts as a 

dominant negative of RIG-I signaling (74). This study identified RIG-I as a protein that 

controls innate immunity and permissiveness to HCV infection. The PAMPs that activate 

RIG-I have now been well-described (reviewed in (78–80)). Studies in HCV contributed to 

this understanding of the RIG-I PAMPs, as the poly U/UC region at the 3′UTR region of the 

HCV genome was found to be the HCV PAMP sensed by RIG-I, revealing that RIG-I can 

bind to RNA in a sequence-specific manner (81, 82). Taken together, HCV studies of innate 

immunity contributed to the discovery of RIG-I as an antiviral sensor and identified that 

RIG-I activation by PAMP RNA occurs in an RNA sequence-specific manner.

While RIG-I is essential for the antiviral innate immune response to HCV, a role for MDA5 

had been largely over-looked. This was in part because it was known that transfection of in 

vitro transcribed HCV RNA induced signaling to IFN-β in an MDA5-independent manner 

(81). However, there were several hints suggesting a role for MDA5 in the antiviral response 

to HCV. The first hint came from the finding that HCV replication was enhanced in the 

presence of the paramyxovirus V protein, which inhibits MDA5, but not RIG-I function 

(83–85). In addition, MDA5 gene polymorphisms were found to be associated with 

spontaneous resolution of HCV infection (86). Now, studies using individual knockdowns of 

RIG-I and MDA5 have convincingly revealed a role for MDA5 (and confirmed the role of 

RIG-I) in sensing HCV to activate as antiviral innate immune response (75). Therefore 

HCV, similar to West Nile virus, is sensed by both MDA5 and RIG-I (87). In the future, it 

will be important to define the HCV PAMPs sensed by these PRRs during infection and how 

sensing by both of these PRRs contributes to the resolution of HCV infection. In addition to 

RIG-I and MDA5, other PRRs have now been identified that sense HCV infection, either 

directly in the infected cells or in other cells within the liver (88–90). Future studies will 

undoubtedly provide insights into how these PRRs activate innate immunity to HCV and 

contribute to the inflammatory responses found in the infected liver.
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Studies on HCV evasion of antiviral immunity reveal key features of the 

anti-HCV innate immune response

While HCV infection is sensed by multiple PRRs that drive induction of the antiviral 

response and inflammation, HCV has evolved several mechanisms to block these antiviral 

responses. It is quite likely that this innate immune regulation by HCV contributes to its 

remarkable success as a viral pathogen by either promoting a cellular state conducive to 

viral replication or by dysregulating priming of a successful adaptive immune response to 

HCV (15). HCV has several mechanisms to block antiviral immunity, and this section will 

focus on the mechanisms by which the HCV NS3/4A protease blocks innate immunity and 

how this has impacted our understanding of antiviral immunity to HCV (Figure 2). A full 

review of HCV evasion of innate immunity, including how it inhibits IFN signaling, can be 

found elsewhere (91–94).

The discovery that the HCV NS3/4A protease cleaves the host protein MAVS to block 

innate immunity strongly supported the finding of several groups that MAVS is a key 

antiviral signaling adaptor molecule, especially during HCV infection (59–66). Further 

studies on NS3/4A have revealed that it cleaves several additional host proteins, highlighting 

the prominent role of NS3/4A in HCV pathogenesis (42, 95, 96). Importantly, three of these 

proteins (Riplet, MAVS, and TRIF) targeted by NS3/4A are known innate immune signaling 

proteins, further supporting the idea that HCV evasion of antiviral immunity is necessary to 

establish successful infection.

Studies on the molecular mechanisms of how NS3/4A regulates innate immunity have 

revealed critical aspects of the antiviral response to HCV. NS3/4A cleavage of MAVS 

during infection inhibits antiviral signaling because this cleavage occurs proximal to the 

transmembrane domain of MAVS, releasing it from intracellular membranes. The resulting 

cytoplasmic MAVS is unable to transduce RIG-I/MDA5 signals (reviewed in (42, 94)). 

Confocal imaging studies have revealed that the multifunctional NS3/4A has several 

different subcellular localizations, including at the mitochondria, peroxisomes, ER, and 

mitochondrial-associated ER membranes (MAM) (42, 97, 98). Indeed, we now know that 

MAVS is also localized to some of these same organelles as NS3/4A. While early studies 

showed that MAVS was localized to mitochondria (61), in more recent years, we and others 

have shown that MAVS is not exclusively mitochondrial, but that it is also localized on the 

MAM and on peroxisomes (98, 99). Quite unexpectedly, in an analysis of the localization of 

MAVS in isolated subcellular fractions during HCV replication, we found that MAM-

localized MAVS was cleaved by NS3/4A, while the mitochondrial-MAVS remained 

uncleaved during HCV replication (98). While we were unable to determine specifically if 

NS3/4A targets MAVS localized to peroxisomes, the fact that our confocal imaging analyses 

revealed that a portion of NS3/4A could be localized to peroxisomes (98), strongly suggests 

that NS3/4A could also cleave peroxisomal-localized MAVS. This possible cleavage of 

MAVS at peroxisomes could abrogate peroxisomal-MAVS signaling, recently suggested to 

induce type III IFNs (100). Further studies to understand why NS3/4A does not target 

MAVS on the mitochondria are required, and it could be that HCV uses other strategies 
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independent of NS3/4A to down regulate MAVS signaling of innate immunity from the 

mitochondria, such as the induction of mitochondrial fission and mitophagy (101).

Why does NS3/4A specifically target the MAM-localized MAVS? Our previous work 

revealed that MAM/mitochondrial interactions regulate signaling to IFN-β (98). Therefore, it 

could be that NS3/4A-cleavage of the MAM-localized MAVS blocks antiviral signaling by 

also regulating membrane interactions between these organelles. MAVS oligomerization, 

which occurs through the CARD motifs, is also blocked by NS3/4A (102–104). Therefore, 

we hypothesize that NS3/4A cleavage of MAVS prevents interactions between the CARDs 

of the MAM-associated MAVS and the mitochondrial-associated MAVS to inhibit antiviral 

signaling during HCV infection. By studying how the HCV NS3/4A protease targets 

MAVS, we have learned about new subcellular localizations and signaling functions for 

MAVS and also about membrane/organelle interactions that regulate the antiviral response 

to RNA viruses.

Following the discovery that NS3/4A blocked IRF-3 activation of innate immunity, it was 

also shown that NS3/4A cleaves TRIF (105), the TLR3 adaptor protein that directs dsRNA-

induced IRF-3-signaling to IFN-β (106). This cleavage of TRIF prevents polyI:C signaling 

of the TLR3 pathway, both in vitro and during infection (105, 107). The fact that HCV has a 

mechanism to cleave TRIF and prevents its signaling, strongly suggests that regulation of 

TRIF must be important for successful HCV infection. This cleavage of TRIF by NS3/4A 

could prevent TLR3 activation and the resulting inflammation observed during HCV 

infection (88) or it could alleviate TLR3-independent TRIF signaling of innate immunity 

(108).

Riplet, another protein in the RIG-I/MAVS signaling pathway is also cleaved by NS3/4A 

during HCV infection (96). Riplet is an E3 ubiquitin ligase that mediates K63-linked 

polyubiquitination of the repressor domain of RIG-I to activate RIG-I (109). Riplet contains 

a canonical NS3/4A serine protease cleavage site, and mutational inactivation of this site 

prevents its cleavage by NS3/4A (96). This cleavage of Riplet by NS3/4A functionally 

blocks the Riplet-mediated ubiquitination of RIG-I, inhibiting full RIG-I activation and 

downstream signaling. As HCV replication is increased following Riplet depletion, Riplet 

plays an essential function in the antiviral response to HCV (96). Riplet is also inactivated 

during influenza virus infection, suggesting that Riplet may be a potent antiviral signaling 

factor to a number of RNA viruses (110). It is not clear why HCV needs to encode a strategy 

to target Riplet when it already targets MAVS (downstream of Riplet in the antiviral 

signaling cascade). Understanding the mechanisms that regulate this differential targeting of 

Riplet and MAVS by NS3/4A will be an important area of future research.

Genome-wide association studies (GWAS) reveal the importance of type III 

IFNs during HCV infection

It has long been known that hepatitis C patients have varying ability to naturally resolve 

infection and to respond to IFN-based therapies for HCV (1). Some of these differences can 

be attributed to the HCV genotype present in the infection. Patients infected with HCV 

genotypes 2 and 3 have the highest response rates to IFN-based therapies, while those 
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infected with genotypes 1 and 4 have the lowest response rates (111). However, a large part 

of the variation in natural and treatment-induced clearance has been attributed to human 

genetic variation. Ground-breaking GWAS have identified single nucleotide polymorphisms 

(SNPs) in and around the gene encoding IFNL3 that predict both natural and treatment-

induced clearance of HCV (112–116). IFNL3 is a member of the type III IFNs, also known 

as the IFN-λs, which consist of 4 antiviral cytokines (IFNL 1–4). The type III IFNs signal 

through their receptor (IL10R2 and IFNLR1) (117) to the JAK/STAT pathway to induce 

transcriptional activation of ISGs (reviewed in (118)). The type III IFNs appear to drive a 

more prolonged antiviral response than type I IFN (118, 119). Importantly, the type III IFNs 

have potent antiviral activity towards HCV (120). Prior to the GWAS that identified SNPs 

near IFNL3, not much was known about the role of the type III IFNs in antiviral immunity. 

However, the results of the GWAS strongly implicate type III IFNs as having very important 

antiviral roles to HCV. These findings propelled the study of the role of type III IFNs in the 

antiviral response, especially during HCV infection.

While it was initially debated if a SNP in the IFNL3 locus affected IFNL3 protein 

expression, multiple studies have now found that the unfavorable haplotype at the IFNL3 

locus results in decreased IFNL3 expression (115, 116, 121–125). Further demonstrating 

that the protective allele affects the antiviral response, studies in HCV-infected primary 

human hepatocytes isolated from different donors have found that those that have the 

protective IFNL3 allele have an increased ISG response that limits HCV infection (126). In 

addition to having an obvious role in the innate antiviral response, the type III IFNs have 

also been recently implicated in contributing to the adaptive immune response (125). A full 

description of the mechanisms underlying how genetic variation at the IFNL3 locus impacts 

HCV clearance is beyond the scope of this article, but I will point out that several candidate 

functional SNPs have been identified that may regulate IFNL function, either of IFNL3 or 

the newly described IFNL4 (127–131).

The pioneering HCV GWAS highlight a role for the type III IFNs in the antiviral response 

during HCV infection. While we know a great deal about how type I IFNs are activated and 

regulated during HCV infection, we know comparatively little about the type III IFNs. We 

do know that type III IFN is the predominant IFN made during acute HCV infection in 

hepatocytes (132–134). Additionally, these studies and others have revealed that the Huh7 

liver hepatoma cell lines that support HCV replication in cell culture do not actually make 

much of a type III IFN response following HCV infection (133). A recently described 

HepG2 cell line does secrete type III IFNs in response to HCV infection, and these type III 

IFNs limit HCV replication in cell culture (75). Therefore, these studies have revealed that 

the Huh7-based cell lines that we have used for the last 15 years to study HCV/innate 

immune interactions actually lack some part of the innate immune response that drives type 

III IFN induction in response to HCV! It is therefore not that surprising that the HCV field is 

only now beginning to understand how type III IFNs are induced during HCV infection.

The most relevant cell types that drive expression of the type III IFNs during infection are 

unknown, and how innate immune sensing of HCV drives type III IFN induction is only 

beginning to be elucidated. While overexpression of the HCV PAMP (the poly U/UC region 

in the 3′ UTR of HCV) can induce expression of the type III IFNs in plasmacytoid dendritic 
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cells (135), it is unknown if this PAMP also induces the type III IFNs in primary human 

hepatocytes during infection. It appears that the signal transduction cascade that activates 

type III IFNs in response to HCV in hepatocytes is dependent on both of the PRRs RIG-I 

and MDA5 (75); and also the signaling adaptor protein MAVS (136). Further, there is 

evidence that HCV may suppress the long-term induction of the type III IFNs, although this 

doesn’t appear to be as efficient as the ability of the HCV to suppress type I IFN induction 

in the infected cell (75). Because it has been proposed that MAVS signaling from 

peroxisomes induces the type III IFNs during virus infection (100), and as we know that 

some NS3/4A protein is localized to peroxisomes (98), it is possible that NS3/4A could 

cleave MAVS from peroxisomes to block MAVS signaling to the type III IFNs. 

Alternatively, HCV induction of host miRNAs (miR-208b and miR-499a-5p) that target the 

3′ UTR of IFNL3 mRNA could prevent full expression of IFNL3 protein during infection 

(127). Thus, through this strategy HCV could encode a second mechanism to prevent full 

induction of the type III IFNs. However, this mechanism of IFN-regulation by HCV may be 

variable depending on the host genetic background, as a SNP (rs4803217) exists within the 

miRNA targeting site in the 3′ UTR of IFNL3 that would prevent targeting by the HCV-

induced miRNAs (127). Regardless, the fact that HCV seems to have more than one strategy 

to block type III IFN induction and/or expression supports the idea that viral evasion of the 

type III IFNs is critical for HCV infection (126, 132).

Summary

Studies of HCV/host interactions during the antiviral innate immune response have led to 

important discoveries and insights into the field of innate immunity. They have revealed 

complex roles for PKR in the antiviral response, including a kinase-independent signaling 

function for PKR. They have contributed to the discovery of RIG-I and provided a more 

detailed understanding into nature of the RIG-I-activating PAMP RNA. They have solidified 

the roles of MAVS, TRIF, and Riplet in the innate immune response to HCV, as all three of 

these proteins are targeted for inactivation by the HCV NS3/4A protease. Studies into the 

molecular mechanisms of how NS3/4A regulates antiviral signaling have identified new 

subcellular localizations and signaling functions for MAVS that are leading to a greater 

understanding of the cell biological organization of the antiviral innate immune response. 

Finally, HCV/host interaction studies at both the cellular and genetic levels have implicated 

the type III IFNs as playing a major role in the antiviral response to HCV. I would argue that 

some of these discoveries would not have been possible, would have been delayed, or their 

importance would not have been fully realized without HCV research. There are more 

hidden facets of innate immune signaling that have yet to be discovered, and experimental 

studies using HCV (and other viruses!) will inform us of the most important aspects of the 

antiviral innate immune response. If a virus targets it, it must be important! Therefore, it is 

clear that not only is the field of virology alive and well (16), the field of hepatitis C 

virology must not be abandoned. Continued research into this fascinating, rapidly evolving 

RNA virus will undoubtedly lead to more discoveries in innate immunity and also in basic 

cell biology that will have broad scientific implications.
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Figure 1. The HCV proteins
The HCV polyprotein is processed into the structural and nonstructural proteins of the virus, 

as shown here. The HCV proteins that have been implicated in antiviral innate immune 

evasion, including core, E2, NS3-NS4A, NS4B, and NS5A, are highlighted in blue.
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Figure 2. The HCV NS3/4A protein regulates the antiviral innate immune response to HCV
Following HCV infection of hepatocytes, viral pathogen-associated molecular patterns 

(PAMPs) present in the HCV RNA released into the cytosol are sensed by pattern-

recognition receptors, including RIG-I, MDA5, and TLR3 (shown in blue) that signal 

through the adaptor proteins MAVS and TRIF, respectively, to induce the transcriptional 

antiviral response (shown in green). Full activation of RIG-I is regulated in part by Riplet, 

which mediates K63-linked ubiquitination of the repressor domain of RIG-I. The HCV 

NS3/4A protein blocks this antiviral signaling through cleavage of the host proteins MAVS, 

Riplet, and TRIF (shown in red).
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