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Abstract

There is an increasing recognition of clinical overlap in patients presenting with epilepsy and 

autism spectrum disorder (ASD), and a great deal of new information is available regarding the 

genetic causes of both disorders. Several biological pathways appear to be involved in both 

disease processes, including gene transcription regulation, cellular growth, synaptic channel 

function, and maintenance of synaptic structure. We review several genetic disorders where ASD 

and epilepsy frequently co-occur, and we discuss the screening tools available to practicing 

neurologists and epileptologists to help determine which patients should be referred for formal 

ASD diagnostic evaluation. Finally, we make recommendations regarding the workflow of genetic 

diagnostic testing available for children with both ASD and epilepsy.
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Introduction

Autism spectrum disorders (ASDs) and epilepsies are both heterogeneous conditions that 

frequently coexist with other developmental disabilities including developmental delay, 

intellectual disability and behavioral impairments [1]. The co-occurrence of ASDs and 

epilepsies has long been recognized [2–5]. With the discovery of overlapping molecular 
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causes of both disorders, some have proposed shared etiologic mechanisms [6]. We are just 

beginning to understand how the two conditions are interconnected.

Identifying these relationships is complicated by the complexity of ASDs and epilepsies, 

evolving diagnostic criteria, [7] changing classification schemas, [8,9] and a culture among 

researchers within each disorder that may discourage investigation of shared mechanisms. 

This separation of inquiry of ASDs from epilepsies is seen at the level of National Institutes 

of Health, where proposals addressing ASD are traditionally reviewed by the National 

Institute of Mental Health or Child Health and Development while those addressing epilepsy 

are reviewed by the National Institute of Neurological Disorders and Stroke, and proposals 

addressing both may struggle to find a receptive study section. Still, a number of recent 

advances in our biological knowledge underline the value of screening for the coexistence of 

these common developmental disorders [10].

Biology

Knowledge of genomic copy number and single gene causes of both ASDs and epilepsy 

[11,12,13] allows us to identify the biologic processes perturbed in these developmental 

disorders. As will be explored here, processes with shared involvement in ASDs and 

epilepsies include gene transcriptional regulation, cellular growth and proliferation, and 

synapse development, stability, and function (Figure 1).

Case definitions of ASD

Autism spectrum disorders (ASDs) are characterized by two core features: (1) deficits in 

social behaviors and communication and (2) restricted interests and repetitive patterns of 

behavior [7]. The overall prevalence of ASD is estimated to be 14.7 per 1,000 (1 in 68) 

children, varying from 5.7 to 21.9 per 1,000 among the CDC-established Autism and 

Developmental Disabilities Monitoring (ADDM) network sites [14]. ASDs typically 

manifest before the age of 3 years and are persistent. The heterogeneous phenotypic profile 

of ASDs has made categorization difficult. The Diagnostic and Statistical Manual of Mental 

Disorders, 5th edition [7] substantially revised previous classification systems by merging 

formerly separate diagnostic entities (autistic disorder, Asperger’s disorder, pervasive 

developmental disorder not otherwise specified) into a single dimension, ASD. This 

approach may help identify subgroups based on quantity or quality of symptoms or patterns 

of abnormalities [15]. Additionally, Social Communication Disorder has been added as a 

new diagnostic category that describes patients with deficits in social communication 

without demonstrating repetitive behaviors or restricted interests [7].

Numerous primary genetic causes for ASD have been identified [16]. However, historical 

environmental associations such as fetal valproate and thalidomide exposure suggest 

multifactorial etiologies may play a role [17,18,19]. The prevalence of epilepsy among 

children with ASD and vice versa remains unclear. An approximate 16% co-occurrence of 

epilepsy and ASD was reported based on ADDM network data from 2002 [20]. Other 

reports estimate that approximately 20–25% children with ASD have epilepsy [21]. A recent 

population-based study found 44% of children with ASD received a subsequent diagnosis of 

epilepsy, and 54% of children with epilepsy received a subsequent diagnosis of ASD [22]. 
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Age of onset for epilepsy in ASD is bimodally distributed, with a peak in early childhood 

(age 2–5 years) and a larger peak in adolescence [23]. Intellectual disability (ID) is a risk 

factor for epilepsy in ASD: the rate of epilepsy is approximately three times greater in 

people who have both ASD and ID than in people who have ASD but not ID [24]. Older 

age, female sex, poor language abilities, and history of regression are most commonly 

reported as other possible risk factors but are not clinically predictive once adjusted for IQ 

[25].

Case definition of epilepsy and epilepsy classifications

Epilepsy is defined as the occurrence of more than two unprovoked seizures due to sudden, 

disorderly, and excessive neuronal discharge [26]. The classification of epilepsies has 

undergone a change in recent years, moving away from broad schema unrelated to 

underlying biology (the classical idiopathic, cryptogenic, symptomatic terms) [8, 27], with 

the recognition that all epilepsy is likely symptomatic of something. More recent efforts 

have focused on linking classification to the underlying genetic neurobiology, as these 

mechanisms are discovered [28]. It is likely that the classifications of epilepsy will undergo 

further revision as these mechanisms are further discerned.

Genetic syndromes in which ASD and epilepsy co-occur

Several conditions caused by genomic copy number variation or mutations in single genes 

have been associated with both ASD and epilepsy, many of which are summarized in Table 

1 and reviewed briefly below.

Genomic Disorders

Duplication of maternally inherited chromosome 15q11-q13 syndrome

Reciprocal duplications of the maternally inherited copy of chromosome 15q11-q13 region 

are the most frequently reported chromosomal aberration in individuals with ASDs (0.5 – 

3%) [29]. Deletions spanning this region represent the most common mechanism for Prader–

Willi and Angelman syndromes. Descriptions of the neurobehavioral phenotype associated 

with duplications of maternal 15q11q13 have emphasized the variability in presentation and 

frequent co-occurrence of intellectual disability [20].

Patients with duplications of maternal 15q11q13 had a high incidence of infantile spasms 

[31]. Lennox-Gastaut syndrome has been reported as well [32]. The location of several 

genes encoding GABA receptor subunits within the duplicated 15q11q13 region (GABRA5, 

GABRB3, GABRG3) has led to the hypothesis that dysregulation of inhibitory synapses 

mediates pathogenesis of the epilepsy and ASD phenotypes seen in this disorder [33].

Trisomy 21 (Down Syndrome)

Down Syndrome (DS) results from an extra copy of chromosome 21. DS is characterized by 

distinct facial dysmorphisms, intellectual disability and associated congenital anomalies. 

While individuals with DS were generally described as friendly and socially inclined [34], it 

has been estimated that 5–9% of people with DS meet criteria for ASD [35–38]. Diagnosing 
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ASD in children with DS remains a challenge due to comorbid intellectual disability. In a 

comparison between twenty children with trisomy 21 with and without ASD, those with 

ASD were found to have significantly more impaired language abilities, adaptive behavior 

and cognition [39]. Children with co-occurring DS and ASD may have an overall decrease 

in brain function as well as an increased risk for seizures [39].

The prevalence of epilepsy in patients with DS is approximately 8–13% [40,41]. Multiple 

seizure types have been reported in patients with DS, including progressive myoclonic 

epilepsy associated with dementia [42], infantile spasms [43], and Lennox-Gastaut 

syndrome with reflex seizures [44]. Reports of developmental outcome of children with a 

history of infantile spasms and DS has been mixed, with some reporting better than expected 

outcome [45] and others noting high prevalence of ASDs and less favorable outcome [46]. 

The reason for such variability in epilepsy and developmental outcome in children with 

trisomy 21 is unclear.

The effects of DS on brain development remain complicated and uncertain but there is an 

increased interest in the role of dual-specificity tyrosine phosphorylation-regulated kinase, 

DYRK1A, activity [47]. In mouse models, Dyrk1A has been shown to play important roles in 

cell cycle control [48] and synaptic plasticity [49]. Additionally, research whole exome 

sequencing has identified mutations in DYRK1A in several children with ASD and 

microcephaly [16].

Other copy number variants (CNV)

Certain pathogenic copy number variants are highly associated with ASD and epilepsy 

[12,13]. Most recent data support a model in which the severity of the neurodevelopmental 

disease increases with increasing genomic region affected [50]. Deletions of 15q11.2, 

16p11.2 and duplication of 16p13.11 have been detected with high frequency in individuals 

with ASD [51]. However, the penetrance of these regions of genomic variation varies and 

the characterization of the pathogenicity of these events is, at times, a challenge [11]. It is 

not uncommon for a deletion in one of these regions to be inherited from normal parents or 

to be present in an unaffected or mildly affected sibling. A possible mechanism for ASD/

epilepsy associated with these CNVs is a second mutation on the non-deleted allele [52].

Phelan-McDermid syndrome / SHANK3 deletion

Deletion of 22q13.3 containing the SHANK3 gene has been associated with early hypotonia, 

developmental and speech delay, autism-like behaviors, lymphedema, and dysmorphic 

features [53,54]. Other complications include gastroesophageal reflux, kidney problems, and 

skin rashes [54]. The prevalence of epilepsy in patients with 22q13.3 deletion is not known. 

Some have reported a benign course of generalized tonic-clonic or myoclonic seizures with 

typical EEG features [55]. A larger series found seizures to be three times more common 

when the de novo deletion occurred on the maternally rather than paternally inherited 

chromosome 22 [54].

SHANK3 encodes a scaffolding protein found in the postsynaptic density, that regulates the 

expression of metabotropic glutamate receptor 5 (mGluR5) [56]. Shank3 also plays a role in 
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the regulation of AMPA receptors recycling and synaptic long-term potentiation [57], and 

interacts with the voltage-gated potassium channel Kvβ2 within the postsynaptic density 

[58]. Mice deficient in Shank3 display autistic behavior and have abnormalities in striatal 

synapses and corticostriatal circuits [59,60]. Deletions of SHANK1 [61] and mutations in 

SHANK2 have also been reported in patients with ASD [62].

Single gene disorders

Fragile X syndrome

Fragile X syndrome (FRX) is the most common inherited form of intellectual disability with 

an estimated prevalence of 1 in 4000 males [63]. FRX occurs when a triplet repeat (CGG) 

expansion leads to inactivation of the FMR1 gene resulting in loss of FMRP expression. 

FMRP is an RNA-binding protein, localizing to dendritic ribosomes and likely plays a role 

in synaptic remodeling, required for normal learning and memory [64]. Physical features 

include prominent ears, long face, macrocephaly and macroorchidism. The cognitive profile 

includes hyperactivity, anxiety, tactile defensiveness, gaze avoidance and socialization 

difficulties [65]. FRX has been considered the principle monogenic disorder associated with 

ASD [63,65]. Reciprocal social interaction and adaptive socialization (as measured by ADI-

R) were identified as the core autistic behaviors among a study cohort of FRX individuals, 

irrespective of intellectual disability [63].

Epilepsy is reported in approximately 10–20% of FRX individuals [64]. Seizure patterns in 

FRX typically resemble benign focal epilepsy of childhood (BFEC). In a review of 13 

individuals with FRX and seizures, 10 were reported to have abnormal EEGs and 6 of these 

EEG studies showed centrotemporal spikes typical of BFEC [64]. Additionally, 23% 

individuals with FRX without clinical seizures demonstrated centrotemporal spikes on EEG 

[64]. It has been proposed that a voltage-gated inward current, ImGluR(V), mediates 

epileptogenesis by activation of the mGluR5 receptor [66]. The induction of ImGluR(V) may 

lead to global neuronal changes, rather than synapse-specific events [66]. The activation of 

mGluR5 across multiple synapses in the setting of poor FMRP translational control leads to 

heightened electrical excitability [66].

Pathogenic expansion and hypermethylation of a CGG triplet repeat in the 5’ untranslated 

region of FMR1 results in transcriptional silencing [67,68]. The gene product, FMRP, is an 

RNA-binding protein [69], and its loss of function in several animal models is associated 

with a host of downstream effects on neurons. These include dysregulation of NeuroD1 

expression in the rat [70], disrupted trans-synaptic signaling in Drosophila [71] and 

reduction of neuronal long-term potentiation and enhanced long-term depression in 

zebrafish [72]. In the FRX mouse model, dysregulation of excitatory synaptic formation 

[73], reduction in expression of specific GABA receptor subunits [74], and N-methyl-D-

aspartate (NMDA) receptors [75] have been reported.

Tuberous sclerosis complex

Tuberous sclerosis complex (TSC) is a multisystem disorder characterized by hamartomas 

of the brain, heart, lungs, kidneys and skin and results from mutations in TSC1 and TSC2 

[76]. Their protein products, hamartin and tuberin respectively, bind together and form a 
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protein complex involved in the regulation of the mammalian target of rapamycin (mTOR). 

The loss of TSC function results in increased Rheb activity and subsequent hyperactivity in 

mTOR, ultimately leading to disinhibition of protein synthesis and cell growth [77]. 

Neurologic manifestations of TSC include epilepsy [78], intellectual disability [79] and 

ASD [80], as well as the specific brain malformations and cortical tubers [81], 

subependymal nodules and subependymal giant cell astrocytomas [82], and increasing 

recognition for a role in focal cortical dysplasias [83–85].

Epilepsy occurs in more than 80–90% of patients with TSC [85,86]. Seizure type varies but 

is often progressive and refractory to pharmacologic treatment. Infantile spasms occur in 

approximately 20–38% of TSC patients [78] and are generally associated with a poorer 

prognosis [87]. Patients with intractable epilepsy are often treated with resection, especially 

if a single tuber is thought to be the epileptogenic focus [88]. There is increasing interest in 

the use of compounds to disrupt the mTOR pathway in epileptogenesis [89] and suggested 

mTOR inhibitors as antiepileptogenic therapy [90,91].

ASD is estimated to be present in 20–60% of individuals with TSC and is about equally 

common in males and females in this population [92]. Intellectual disability, infantile 

spasms and presence of temporal lobe lesions were initially reported as risk factors for ASD 

in individuals with TSC but have not been consistently supported [93, 94].

PTEN

PTEN is a tumor suppressor gene that encodes a phosphatase affecting G1 cell cycle arrest 

and inhibiting the PI3K/AKT/mTOR pathway [95]. Germline mutations of PTEN are 

associated with four known hamartoma syndromes: Cowden syndrome, Bannayan-Riley-

Ruvalcaba syndrome (BRRS), Proteus syndrome and Proteus-like conditions [96]. Somatic 

mutations are reported in varying malignancies, most notably breast, thyroid, and 

endometrial cancers [96]. Macrocephaly and ASD have been reported in children with 

germline PTEN mutations [97,98]. PTEN-related ASD is therefore emerging as one of a 

group of megalencephaly disorders associated with dysregulation of the PI3K-AKT-mTOR 

pathway [99].

Seizures have been reported in patients with PTEN mutations [100,101], including a number 

with focal cortical dysplasia [102–104]. Pten knockout mice are known to have seizures 

[105] that can be suppressed with the mTOR pathway inhibitor rapamycin [106]. Epilepsy 

appears to be a part of the phentoype for many of the megalencephaly disorders associated 

with dysregulation of the PI3K-AKT-mTOR pathway [107,108], but the exact roles of 

mutations in specific genes in this pathway related to seizures and ASDs remains to be 

clarified.

MECP2-related disorder (formerly Rett syndrome)

MECP2-related disorder predominantly affects females and is characterized by intellectual 

disability, postnatal microcephaly, loss of spoken language and stereotypic hand 

movements. Onset of symptoms and regression typically occur at 6 to 18 months of age after 

a period of apparently normal development [109]. Individuals with MECP2-related disorder 
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demonstrate autistic symptoms [110,111] as well as distinct features that include respiratory 

rhythm abnormalities, gait impairment, and cardiac complications [112,113].

Among individuals with MECP2 deficiency, 50–90% are reported to have seizures [114–

116]. Seizure type is variable, age of onset is rarely before 2 years of age [116] and severity 

of seizures appears to decline after adolescence [115]. Specific MECP2 mutations (p.T158M 

and p.R106W) were more highly associated with epilepsy [116].

MECP2 is primarily a transcriptional activator during brain development [117]. The 

consequences of mutations in MECP2 include abnormal downstream regulation of multiple 

gene targets, and loss of MECP2 function reduces GABAergic transmission [118] and 

impaired glutamatergic drive in specific populations of inhibitory interneurons [119]. There 

is evidence from mouse models that restoration of gene function reversed some of the 

neurodevelopmental deficits even after symptoms had emerged [120].

CDKL5-related disorder

CDKL5-related disorder is an X-linked condition characterized by early onset of epilepsy, 

usually infantile spasms, and severe neurodevelopmental outcome with postnatal 

microcephaly, absent spoken language, and hand stereotypies that are reminiscent of 

MECP2-related disorder [121]. Although girls with CDKL5 mutations share some ASD 

features (abnormal social interactions, repetitive movements, and absent speech), the 

concomitant developmental disability and the epilepsy phenotype [122,123] are much 

greater than that typically seen in children with classical forms of ASD.

While CDKL5-related disorder was first described in 2004 [124], and its function as a 

serine-threonine kinase is well characterized, the developmental role of the protein was not 

known until recently. CDKL5 interacts with NGL-1 and PSD95 (key candidates in ASD 

pathogenesis in their own right), in glutamatergic post-synapses [125], during dendrite spine 

development [126], including an important role stabilizing the post-synaptic membrane 

[118].

FOXG1-related disorders

Children with duplications of FOXG1 on chromosome 14q12 frequently present with 

infantile spasms [127–129]. Patients commonly respond to adrenocorticotropin therapy with 

remission of the epileptic spasms and normalization of the EEG [130,131], but have long-

term developmental disability that includes autistic features [132]. In contrast, children with 

deletions of 14q12 that include FOXG1 or intragenic loss-of-function mutations have a 

disorder of postnatal microcephaly, hypoplasia of the anterior corpus callosum, severe 

language and motor impairment, and a choreiform movement disorder [133–134]. The mean 

age of epilepsy onset for children with deletions/loss-of-function mutations of FOXG1 is 22 

months, compared to epilepsy onset at 7 months in children with duplications [132].

FOXG1 is a brain-specific transcriptional repressor protein that regulates dorsal-ventral 

patterning [135] and neurogenesis [136]. Overexpression of FOXG1 in the developing 

forebrain is associated with thickening of the neuroepithelium [137], and more recent 

evidence supports a role for class switching in neuroprogenitor cells [138]. However, the 
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mechanisms by which changes in copy number in this gene leads to epilepsy and the 

associated developmental disabilities are not known.

MEF2C-related disorder

Patients with loss-of-function mutations and deletions of MEF2C on chromosome 5q14.3 

were first described with severe intellectual disability, epilepsy, and stereotypic movements 

[139]. Further characterization of the phenotype includes children with autistic features 

[140,141] with some overlap noted with features found in MECP2-related disorder. In most 

patients head size and brain morphology are normal.

The epilepsy found in individuals with MEF2C-related disorder can be variable, with 20% 

presenting with infantile spasms, 33% with infant-onset myoclonic epilepsy, 24% with 

childhood-onset generalized epilepsy, and 23% having no epilepsy [142]. The reason for this 

observed clinical variability in epilepsy type and severity is unclear, but appears to be 

independent of mutational class, although subjects with partial MEF2C deletions were less 

likely to have epilepsy [142].

Mef2c plays several roles during brain development, and is a marker of cortical lamination 

driven by Tbr1 [143]. Mef2c expression is also diminished in Arx and Dlx1/2 deficient mice 

[144] indicating a complex role during both dorsal glutamatergic and ventral GABAergic 

development [142]. Finally, Mef2c recognizes a binding site called the synaptic activity-

response element (SARE) that activates a series of genes important for synaptic 

development and function [145].

CASK-related disorders

Mutations affecting CASK were first described in primarily female patients with severe 

microcephaly and pontocerebellar hypoplasia [146]. Males affected with intellectual 

disability and oculomotor abnormalities were later described [147]. Absent spoken language 

and autistic behaviors are described, particularly in girls on the milder spectrum of 

microcephaly [148].

CASK encodes a calcium/calmodulin-dependent serine protein kinase expressed in the brain 

[149]. CASK has a role in synapse formation, synapse function and cortical development. 

The core clinical features in females with CASK mutations includes a distinct malformation 

phenotype involving postnatal microcephaly and pontine and cerebellar hypoplasia, 

developmental delay, growth retardation, eye abnormalities and a pattern of facial 

dysmorphisms [148]. Hypomorphic CASK alleles in male patients appear to cause a milder 

phenotype, presumably due to a smaller disruption of protein structure and function [150]. 

However, CASK abnormalities have been reported in male patients with Ohtahara syndrome 

and severe phenotypic features consistent with previously reported CASK mutations [151]. 

Nearly all female patients have moderate or severe impairment in intellectual development. 

Language is generally impaired or absent as well. Behaviors such as hand stereotypies and 

self-biting are commonly seen. Data are unavailable on ASD prevalence in this population. 

ASD diagnosis is likely confounded by the severity of impairment and intellectual disability. 
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Epilepsy is reported in more than half of female patients with variable age of onset and 

seizure type [150].

CASK is an example of a gene that plays multiple roles during brain development. Through 

interactions in the nucleus with the early cortical patterning proteins RELN and TBR1, 

CASK plays a role in neuronal migration [149]. CASK additionally plays an important role 

in post-synaptic structural support [149, 150].

SCN2A-related disorders

Deletion of chromosome 2q24.2q24.3 containing SCN2A was first reported in a child with 

autistic features and intellectual disability [152]. Then, nonsense mutations in SCN2A were 

discovered in two children with ASD using whole exome sequencing [153]. At the same 

time, several children were identified with a spectrum of severe early life epilepsies 

including Ohtahara syndrome [154–156] malignant migrating partial seizures of infancy 

[157], and infantile spasms [158–159] with mutations in SCN2A. Other children with 

SCN2A mutations have been reported with benign neonatal-infantile epilepsy [160] and 

generalized epilepsy with febrile seizures plus, and is an infrequent cause of Dravet 

syndrome [161]. While genotype phenotype correlations have been challenging in SCN2A-

related epilepsies, there is emerging evidence that missense mutations resulting in more 

chemically dissimilar amino acid substitutions correlate with worse disease, and that 

truncating mutations are associated with the most severe phenotypes [162].

SCN2A encodes the voltage-gated sodium channel Na(v)1.2 predominantly expressed in 

excitatory neurons, and it is unclear how loss-of-function mutations can result in 

hyperexcitability [163–164]. Less clear is the mechanism by which ASD symptoms result.

Epilepsy syndromes with ASD as frequent neurodevelopmental sequelae

Evidence suggests children with ASD who have epilepsy may have seizures that do not 

fulfill criteria for specific named electroclinical syndromes [165]. However, several specific 

epilepsy syndromes appear to be risk factors for later diagnosis of ASD. These include 

infantile spasms and Lennox-Gastaut syndrome. More recently, overlap has been observed 

clinically with continuous slow waves during sleep (CSWS) and Landau-Kleffner syndrome 

and ASD [166].

Infantile spasms

Infantile spasms are a form of epilepsy associated with an EEG pattern of hypsarrythmia and 

characterized by epileptic spasms that occur before 2 years of age [167]. Infantile spasms are 

genetically heterogeneous and are associated with abnormalities in several brain 

developmental pathways [168]. The prevalence of ASD among children with a history of 

infantile spasms has not been reported consistently, but an association between the two is 

clearest in tuberous sclerosis [169] and duplications of FOXG1 [132].

Lennox-Gastaut syndrome

Lennox-Gastaut syndrome (LGS) is a childhood-onset epilepsy phenotype characterized by 

electroclinical features of diffuse slow spike waves and generalized paroxysmal fast activity 
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in sleep. Little literature exists on the prevalence of ASD or the behavioral spectrum in LGS, 

although ASD has been reported [170–172] and LGS has occurred in patients with 

duplications of maternal 15q11q13 [32,173].

Landau-Kleffner syndrome / Continuous Spikes and Slow Waves during Slow Sleep

Landau-Kleffner syndrome (LKS) is an epilepsy-aphasia syndrome of unknown etiology 

characterized by language regression and characteristic continuous spike and waves during 

slow wave sleep on EEG [174–175]. As LKS became increasingly recognized, several 

children who had been diagnosed with ASD were noted to have a predominant language 

deficit [176]. Stereotypies and withdrawal are also common in LKS, but it is not clear that 

these children also have deficits in social reciprocity [177]. The association may be more 

related to severe receptive language deficit [175]. Studies have detected copy number 

variants in LKS patients that have also been associated with ASD [178], and most recently 

mutations in GRIN2A have been identified in patients with epilepsy-aphasia phenotypes 

[179–181].

ASD Screening and Diagnosis

Due to the association between seizures and ASD, it is important for epileptologists to 

recognize when and how to screen for ASD and appropriately refer for diagnostic 

evaluation. Although ASD persists across the lifespan, timely detection and intervention can 

alleviate symptoms [182]. We have described several syndromes in which epilepsy and ASD 

co-occur at a rate that warrants direct referral for an evaluation of ASD and other 

developmental disorders. Other situations warrant ASD screening in children with or 

without the genomic syndromes reviewed here. The American Academy of Pediatrics 

(AAP) recommends ASD screening for all 18- and 24-month old children who either have a 

sibling with ASD and a caregiver who expresses concerns about ASD symptoms, or who 

have concerns expressed by multiple caregivers and providers [183]. Screening also should 

occur if the child has no babbling at 12 months, no single words by 16 months, no 

spontaneous phrases by 24 months, or loss of social or language skills at any age [184]. 

Signs that may call for screening of older children and youth include disinterest in back-and-

forth interactions with peers; problems with “reading” common social cues or interpreting 

nonliteral speech (e.g., sarcasm or metaphors); lack of understanding of the perspective of 

others; inability to engage in social chat or conversations, or highly rigid, perseverative, or 

repetitive patterns of behavior [183]. Screening usually involves administering a brief rating 

scale to the parent. For toddlers, the best-established screening instrument currently is the 

Modified Checklist for Autism in Toddlers – Revised with Follow-up (M-CHAT-R/F) [185–

186]. The M-CHAT-R/F contains a 20-item, yes/no rating scale and a brief follow-up 

interview if three or more items on the rating scale indicate that the child is at risk for ASD. 

For children age 4 years and older, the most extensively validated screening instrument is 

the Social Communication Questionnaire, SCQ, which is a 40-item, yes/no rating scale 

[187]. If children at risk for ASD have a negative screen, the AAP recommends counseling 

parents on how to recognize ASD symptoms and scheduling a follow-up evaluation [183]. If 

children have a positive screen, they should be referred for a comprehensive diagnostic 

evaluation.
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The diagnostic evaluation for ASD ideally includes a clinical evaluation by a specialist 

(child neurologist, developmental behavioral pediatrician, child psychiatrist, clinical 

psychologist) who has expertise in ASD, a review of findings from developmental tests, a 

detailed medical and developmental history, referrals for additional testing as indicated by 

the assessment (e.g., genotyping for children with intellectual disability or dysmorphic 

features), and administration of a standardized diagnostic instrument. The most commonly 

used diagnostic instrument in clinical practice is the Autism Diagnostic Observation 

Schedule – Second Edition (ADOS-2) [188]. The ADOS-2 is a series of structured and semi-

structured tasks, approximately 30–60 minutes in duration, involving social and 

communicative interaction between the examiner and the patient. Behaviors are assigned to 

predetermined observational categories that are subsequently used to produce a quantitative 

score [187]. The Autism Diagnostic Interview – Revised (ADI-R) is a companion 

standardized, 2–3 hour interview for caregivers of individuals with ASD that provides a 

diagnostic algorism for autism based on ICD-10 and DSM-IV [188,189]. The ADOS-2 and 

ADI-R are widely regarded as the best-established tools for diagnosing ASD [190]. Table 2 

summarizes the commonly used screening and diagnostic tools for ASD.

The diagnosis of ASD is difficult in the context of intellectual disability. Although these 

standardized diagnostic tools are available to assist in making an ASD diagnosis, they need 

to be used as part of a broader evaluation by a clinician with expertise in ASD. The 

sensitivity of the ADOS-2 is high (.91-.97), but specificity is lower (.50–.94), particularly 

for children with ID or minimal verbal skills [191]. ID is common in many of the syndromes 

reviewed in this article, and there is considerable phenotypic overlap between ASD and ID, 

making differential diagnosis difficult [192]. In the absence of identified risk factors for 

ASD, it may be most efficient to begin by conducting a general developmental screen before 

administering a screen for ASD. Many children with epilepsy will not meet criteria for an 

ASD diagnosis but are likely to have other developmental concerns. For example, one study 

of children with epilepsy found a high percentage of positive screens for ASD using the 

SCQ (15%), M-CHAT (58%) and the ASQ (82%). Positive screening results were 

associated with ASD diagnosis in only 8% of patients with a positive M-CHAT and 57% of 

children with a positive SCQ, but a much higher percentage (20% of all children with 

positive screens) warranted referral for other services such as psychiatric, psychological, or 

educational services [193]. The frequency of referrals for services confirms the importance 

of developmental screening, but the high rate of false positive screens for ASD suggests that 

routine screening for ASD in all children with epilepsy may not be optimal [194].

Conclusion

The co-occurrence of ASD and epilepsy is well recognized but the mechanisms behind this 

association remain unclear [2–5]. Many of the reported series have small numbers of 

patients and have inconsistent and varying conclusions [25,195,196]. Low IQ is a well-

established risk factor for ASD in children with epilepsy [25]. Developments in our ability 

to detect pathogenic genomic variations and single gene associations with ASDs and 

epilepsies have led to a better understanding of their shared biological processes and 

mechanisms. These pathways include, but are not limited to, gene transcriptional regulation, 

cellular growth, and synapse development, stability, and function.
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ASD and epilepsies are often co-morbid with varying degrees of developmental delay, 

learning disability, intellectual disability and behavior problems that confound the diagnosis 

of ASD and will likely remain a persistent clinical challenge. It is important to recognize the 

key features of ASD (deficits in social behaviors and communication, restricted interests and 

repetitive patterns of behavior), when to screen and when to refer for more diagnostic 

evaluation. The evaluation of children with epilepsy who are at risk for ASD involves 

coordinated genetic and behavioral testing strategies, illustrated in Figure 2. The clinical 

genetic testing strategy for both epilepsies and ASD are similar and involve sequential use 

of chromosomal microarray (CMA), followed by targeted next-generation sequencing gene 

panels, and if those are normal, whole exome sequencing.

CMA has emerged as a powerful genetic tool in many patient populations, including 

individuals with ASDs with a reported overall diagnostic yield of 10% [197,198,199]. 

Certain selection factors such as dysmorphic features, intellectual disability and family 

history of ASD can increase diagnostic yield [200–203]. Children with ASD with abnormal 

features on physical exam are 10 times more likely to have a diagnosable genetic condition 

than those with normal phenotypic appearance [201]. Other clinical considerations include 

family history, micro- and macrocephaly, abnormal finger digit ratios and cognitive 

impairment [202]. CMA has demonstrated the highest diagnostic yield (66.7%) in patients 

with intellectual disability, ASD and dysmorphic features, supporting its use as the first-tier 

diagnostic genetic test in this subgroup [199,203].

Genetic testing for single gene disorders such as Fragile X should be routinely performed for 

males with ASD. MECP2 sequencing should be performed for all females with ASD and 

MECP2 duplication testing should be performed in males with a suggestive phenotype. 

PTEN testing is recommended in individuals with significant macrocephaly (> 2.5 SD above 

mean). More recently, the availability of next-generation sequencing panels means that in 

many cases multiple genes can be evaluated simultaneously with one test, at reduced cost 

overall. The estimated yield of diagnostic whole exome sequencing in the clinical setting is 

at least 25% [204], and should be considered if CMA and more targeted gene panel 

sequencing are normal. Advances in this area have led to identification and discovery of 

many new de novo mutations in ASD [16,153,205]. Continued research focused on children 

with epilepsy and ASD will likely yield further knowledge with insight into new therapies.
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Highlights

• ASD and epilepsies commonly co-occur.

• A number of new genetic discoveries suggest shared biology for both disorders.

• Several screening and diagnostic tools are available to clinicians.
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Figure 1. 
Overview of biological pathways common to autism and epilepsy. At least four biological 

pathways important in neuronal development and function are implicated by involvement of 

several genes in autism and epilepsy pathogenesis. These pathways include transcriptional 

regulation (FOXG1, MECP2, MEF2C), cellular growth (PTEN, TSC1, TSC2), synaptic 

channels (SCN2A), and synaptic structure (CASK, CDKL5, FMR1, SHANK3).
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Figure 2. 
Suggested workflow for evaluation of epilepsy patients who may be at risk for autism. A 

patient with epilepsy should be screened for impairment in language, social development, 

and/or behavior. If warranted, the patient should be referred to a trained expert in autism 

diagnosis. If a diagnosis of autism is confirmed, or if significant other developmental 

concerns exist (i.e. intellectual disability), genetic evaluation is appropriate. The clinical 

genetic evaluation for autism and epilepsy may have overlap, and may be tailored by 

recognition of conditions detailed in this paper where autism and epilepsy overlap. Current 

clinical genetic evaluation includes sequentially chromosomal microarray (CMA), autism 

and epilepsy next-generation sequencing gene panels, and if necessary, whole exome 

sequencing (WES).
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Table 1

Single gene and genomic copy number regions commonly associated with autism and epilepsy

Gene or genomic 
region

Associated syndrome Key features

15q11-q13 Chromosome 15q11–13 
duplication syndrome

Autism, intellectual disability, ataxia, seizures, developmental delays, and 
behavioral problems

*Deletion of this region is associated with Angelman/Prader- Willi Syndromes

Chromosome 21 Down Syndrome Distinct facial dysmorphisms, intellectual disability, congenital anomalies and 
medical comorbidities.

22q13.3 SHANK3 Phelan-McDermid syndrome Neonatal hypotonia, global developmental delay, absent to severely delayed 
speech and autistic behavior and minor dysmorphic features

FMR1 Fragile X Syndrome Moderate to severe intellectual disability, macroorchidism, and distinct facial 
features (long face, large ears, and prominent jaw).

TSC1/2 Tuberous sclerosis Multisystem disorder characterized by hamartomas (brain, heart, lungs, kidneys 
and skin).

PTEN PTEN-related disorders Hamartoma syndromes and malignancies (breast, thyroid, endometrial). 
Macrocephaly and ASD has been reported in children with PTEN mutations.

MECP2 MECP2-related disorder Severe neurodevelopmental disorder characterized by arrest of development 
between 6 and 18 months of age, regression of skills, loss of speech, stereotypic 

hand movements, microcephaly, seizures, and intellectual disability.

CDKL5 CDKL5-related disorder X-linked dominant condition characterized by early onset of seizures, severe 
global developmental delay and postnatal microcephaly. Other features include 
subtle dysmorphic facial features, sleep disturbances, gastrointestinal problems, 

stereotypic hand movements and intellectual disability.

FOXG1 FOXGI-related disorders Severe neurodevelopmental disorder with features of classic Rett syndrome but 
earlier onset in the first months of life

MEF2C MEF2C-related disorder Severe neurodevelopmental disorder characterized by intellectual disability, 
epilepsy and stereotypic movements.

CASK CASK-related disorders Characterized by a distinct malformation phenotype in females involving 
postnatal microcephaly and pontine and cerebellar hypoplasia, developmental 

delay, growth retardation and eye abnormalities.

SCN2A SCN2A-related disorders Autosomal dominant seizure disorder characterized by infantile onset of 
refractory seizures.
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