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Abstract

A large quantity of high throughput screening (HTS) data for antimalarial activity has become 

available in recent years. This includes both phenotypic and target-based activity. Realising the 

maximum value of these data remains a challenge. In this respect, methods that allow such data to 

be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro 

antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically 

available sources, has been used to develop Bayesian models for inhibitors of β-haematin 

formation and in vitro antimalarial activity. These models were used to screen two in silico 

compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs 

available on PubChem were ranked from highest to lowest Bayesian score based on a training set 

of β-haematin inhibiting compounds active against P. falciparum that did not include any of the 

clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-

haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro 

antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the 

subset where activity data are available in PubChem. In the second, a library of about 5,000 

commercially available compounds (AldrichCPR) was virtually screened for ability to inhibit β-

haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was 

purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for 

inhibition of β-haematin formation was found to be 25% and a third of these were active against P. 

falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random 

screening, respectively.
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1. Introduction

The increasing popularity of high throughput screening (HTS) as a starting point for drug 

discovery has led to a surge in the availability of activity data. This is also true in 

antimalarial research, where the urgent need for novel treatments has been exacerbated by 

recent reports of resistance to the currently recommended drug, artemisinin.1,2 High 

mortality rates associated with resistance to previously successful drugs such as chloroquine 

(CQ) and sulfadoxine-pyrimethamine have decreased since artemisinin-based combination 

therapies were adopted.3 However, this treatment may now also be threatened.

The primary goal of HTS is the identification of validated hits that have potential to become 

chemical leads in drug discovery programmes. Determining which of these compounds has 

the appropriate chemical characteristics as well as pharmacodynamic and pharmacokinetic 

properties is a resource and time-intensive task.4 Large quantities of data from HTS projects, 

including the negative data (non-hits), are underutilised as a result of this. One way to make 

use of all the screening results is by analysing the data in parallel by employing in silico data 

mining algorithms. These machine learning techniques not only help with data 

interpretation, but can also be used for predicting the activities of new compounds.5

In recent literature, Bayesian classifiers based on Bayes' theorem have been used to build in 

silico activity models for efficient identification of new actives.6,7 Since 2004, this method 

has been applied for modelling kinase inhibitors,8,9,10 Escherichia coli dihydrofolate 

reductase inhibitors,11 G protein-coupled receptor (GPCR) ligands,12 oestrogen receptor 

inhibitors as well as metalloproteinase, nitric oxide synthase and other non-kinase enzyme 

inhibitors.10,13 These are key targets for diseases such as cancer and Alzheimer's.14 In 

addition, Ekins et al.15,16 have employed public whole-cell Mycobacterium tuberculosis 

(Mtb) HTS data to demonstrate a 10-fold enrichment on typical hit rates when compounds 

are prioritized using Bayesian models.

Currently, there is no literature demonstrating Bayesian probability applied to antimalarial 

activity prediction. This is despite the availability of published Plasmodium falciparum 

activity datasets, including whole-cell screens from GlaxoSmithKline (GSK, the TCAMS 

library) and the St Jude Children's Research Hospital.17,18 The green-fluorescence based 

assay used in these screens is phenotypic, not target specific and as a result, the active 

compounds cover a range of chemical and physical properties, depending on the mechanism 

of action of that molecule. Ekins et al. used Mtb whole-cell data for model generation. 

Currently, their studies appear to be the only available references to Bayesian modelling of 

multimodal distributions.15,16 Other studies apply Bayesian probabilities to specific targets. 

The extent to which inhibitors of different antimalarial targets differ in chemical space is not 

fully understood, however it is reasonable to hypothesise that Bayesian models may perform 

better using compounds acting on a single target in the training set. Another reason for the 

lack of published models is the absence of available inactive or negative data. The exception 

to this is the St Jude's set where the structures and bioactivities for the entire library of 

309,474 compounds have been disclosed.
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The quinoline-based compounds (particularly CQ) have been shown to inhibit P. falciparum 

growth by interrupting the parasite's haemozoin (Hz) formation pathway, resulting in 

increased cytotoxic free haem within the parasite cell.19,20 Resistance to CQ is not directly 

related to the production of Hz from free haem. Rather, gene mutations encoding the PfCRT 

protein in the parasite's acidic digestive vacuole (DV) membrane allow for a structure-

specific efflux from the site of therapeutic action.21 As a result, the Hz formation pathway 

continues to be an attractive drug target. Carter et al.22 demonstrated the ability of cheap 

neutral detergents such as Nonidet-P40 (NP-40) to mimic neutral lipids present in the DV 

that are believed to act as nucleation points for haem crystallisation. This enables synthetic 

Hz, known as β-haematin (βH), to be produced efficiently and reliably in an extracellular 

environment from commercially available haematin under physiological conditions of 

temperature and pH. This assay is especially robust when combined with the use of pyridine 

to produce a colorimetric ferrichrome for quantitative measurement.23 Furthermore, 

quinoline compounds were shown to inhibit βH formation in a dose dependent manner, 

resulting in the development of a cost-effective assay for βH inhibitors.7

Since 2010, an NP-40 based detergent mediated pyridine ferrichrome assay has been applied 

in HTS efforts to discover new antimalarial scaffolds. A pilot screen on 38,400 compounds 

in the Vanderbilt University (VU) compound library confirmed the robustness of the assay 

with favourable Z′ and drift values.24 From the 161 novel βH inhibitors found, 48 inhibited 

parasite growth by ≥90% at 23 μM. Subsequently, Sandlin et al. screened the 144,330 

remaining compounds in the library using the same procedure.25 This identified a further 

530 βH inhibiting compounds (>80% inhibition at 19.3 μM) of which 171 showed whole 

cell activities (IC50 = 0.11 − 17.8 μM). The NP-40 assay has also been employed to test 

∼200 bioactive compounds synthesised by the group of Inokuchi and co-workers at 

Okayama University (OU) in Japan. These compounds are neocryptolepine and 

isocryptolepine derivatives with long amine side chains for which the data is already 

publically available.26,27,28,29,30

In this study, a virtual screening approach for discovering βH formation and P. falciparum 

growth inhibitors has been validated by employing combined HTS data, including published 

data and as yet unpublished βH screening data for the 13,533 active TCAMS compounds 

(which will be disclosed in a later publication) as training sets. Two models were created, 

the first which uses VU, TCAMS, OU as well as in-house University of Cape Town (UCT) 

data as a training set to predict βH activity and the second which includes the biologically 

inactive St Jude's compounds in the training set for modelling P. falciparum bioactivity. It is 

important to note that only known βH inhibitors were used as actives in the training set for 

in vitro antimalarial activity. Although the detergent based assay for βH formation does not 

give definitive proof of the mechanism of whole-cell therapeutic action, it was hypothesized 

that most of the bioactive molecules used in generating the model would be Hz inhibitors, 

allowing for a single-target training set. For this reason, the St. Jude's actives were excluded 

since their targets are, for the most part, unknown. Finally, the generated Bayesian models 

were employed to predict the βH inhibitory and antimalarial activity of 1510 U.S. Food and 

Drug Administration (FDA) approved drugs as well as purchasable compounds from Sigma-
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Aldrich's drug-like molecule library (AldrichCPR). A selection of 34 of these compounds 

were purchased and tested for both βH inhibition and in vitro parasite growth inhibition.

2. Results and Discussion

2.1 Optimisation of Bayesian models

Model for predicting inhibition of βH formation—It is generally accepted that 

Bayesian models perform more effectively when the training data covers sufficient chemical 

space and if meaningful molecular features can be generated.7 This was tested by creating 

models based only on the VU data with increasing numbers of negative data points. A group 

of 339 randomly selected VU compounds was excluded from the training set to be used as a 

test set and the models were used to predict whether they were active or inactive. Finally, all 

the βH data from TCAMS, OU and UCT were also added to the training set (Table 1). As 

expected, the Receiver Operating Characteristic (ROC) score increased with increasing 

numbers of compounds in the training set. The VU test set predictions also improved from 

78% to 83% correct as VU inactives were added, however the percentage dropped to 77 

when compounds from different libraries (covering wider chemical space) were 

incorporated into the training set. See Supplementary Data Table S1 and Figure S1 for 

further details on cross-validation of the model.

Model for predicting parasite activity—An advantage of using Bayesian models over 

multiple linear correlations, typical in QSAR analysis and prediction, is that the precise IC50 

becomes less important. The data are divided into an active and inactive set at some 

appropriate user-defined IC50 cut-off and the model built on the frequency of occurrence of 

particular molecular features. Conversely, traditional QSAR uses the measured IC50 value to 

build a mathematical model, where fairly small differences in experimental procedures can 

lead to significant effects on the fitted coefficients. This was an important consideration in 

electing to build a Bayesian model to predict parasite activity, since data were sourced and 

compared from different compound sets and tested in different laboratories with non-

standardised assay procedures. However, this did not appear to disadvantage the models, 

because for most of the samples, their assignment to the active or inactive set was not 

dependent on a precise IC50 value, since they lay either well below, or well above the cut-

off value. Initially, a 2 μM cut-off with only the βH inhibiting TCAMS and VU compounds 

was used in the training set, where the latter compounds inhibited parasite growth by ≥90% 

at 23 μM. Then a selection of unpublished in-house UCT compounds were added as well as 

the VU <90% set in order to increase the numbers of inactive compounds. Finally, the 

inactive compound set from the St Jude's screen was incorporated for ROC optimisation. A 

test set consisting of 156 molecules from the TCAMS and VU screening data was used for 

basic validation of the models with excellent prediction statistics for the 2 μM cut-off model 

(Table 2).

When an additional model was developed with a 0.5 μM cut-off using the same training sets, 

the test set prediction percentage dropped considerably when the St Jude's inactives were 

incorporated in the training set (Table 2). In this case, it was found that 95% of the test set 

compounds with IC50 values <2 μM were classified as active and 88% of compounds with 

IC50 values >2 μM were classified as inactive. This caused many false positive values based 
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on an activity cut-off of 0.5 μM. This was probably as a result of the paucity of active 

compounds in the training set (only 352 actives out of 42194 compounds, 0.8% of the 

training set) below the 0.5 μM cut-off. Interestingly, this model predicted 92% of the 

compounds correctly if active test compounds were reclassified as those with IC50 values <2 

μM.

Comparison of Molecular Descriptors for βH and Parasite Activity—The 

calculated descriptors which were used to build the models were compared in order to find 

the optimal ranges for best activity. In Table 3, the values represent the ranges for each 

feature which were most favourable amongst the active training set molecules. For the 

majority of features ranges are similar for the two models, suggesting that having a higher 

logP, molecular weight (MW), number of hydrogen bond donors (#HBD), number of 

hydrogen bond acceptors (#HBA), number of rotatable bonds (#R) and number of aromatic 

rings (#AR) would improve both activities. However, the βH model requires a lower #RB 

for optimal inhibition, whilst the parasite model requires a much larger #RB. This could be 

interpreted as a molecule needing to be planar for efficient haem interaction and requiring 

lipophilic saturated side chains to cross membranes for parasite activity. In addition, the βH 

model favours a FPSA of 0.29-0.33 whereas the parasite model prefers a lower range of 

0.13-0.17. This analysis demonstrates the balance between these two features which needs to 

be achieved for a βH inhibiting antimalarial. However, both features had a low priority when 

calculating the Bayesian score, since they were ranked at or near the bottom of the 

probability weightings for both models. On the other hand, the features which agree between 

the models are more important in terms of calculating a probability for βH and parasite 

activity, suggesting that by optimising these features for βH activity, the likelihood of 

creating a βH inhibiting antimalarial is also improved.

In addition to the molecular descriptors in Table 3, a large number of extended-connectivity 

fingerprints of depth 6 (ECFP_6) were used to create the model. These were invariably the 

highest ranking descriptors. The good ECFP_6 features for βH inhibition were 2-aryl 

benzimidazoles, indoles and quinolin-4(1H)-ones, while bad features included 2-

thiolimidazoles and a variety of non-aromatic rings and heteroalkyl chains (Table 4). This 

result was consistent with the other feature observations which revealed greater #AR and 

fewer #RB for βH inhibition activity. Similarly, for parasite activity, fingerprints such as 

imidazoles, benzimidazoles and indoles dominated the good features. Interestingly, almost 

all the bad ECFP_6 features for parasite activity contained sulfur, either in an alkyl chain, as 

a sulfonamide or within a five-membered heteroaromatic ring. A selection of the dominant 

fingerprints is shown in Table 4 and in Supplementary Data Figure S2.

2.2 Chemical space analysis

Spitzmüller et al.31 predicted the target space for the St Jude's and TCAMS whole-cell hit 

compounds and found over 200 P. falciparum hit proteins for 20,000 compounds. However, 

until recently, data for βH inhibitors has been largely unavailable. Analysis of the principle 

components of the TCAMS compounds used in the training set (Figure 1) demonstrates a 

distinct difference in the chemical space between those that inhibit βH formation by at least 

60 % (red) at 19 μM and those with <40% inhibition (blue). The βH inhibitors are shifted in 
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space such that they have a greater first and third principle component relative to the non-βH 

inhibitors. This shift corresponds to a lower #RB and larger FPSA, #AR, #R, #HBD, #HBA 

and MW. There were no significant differences in logP (Supplementary Table S2). 

Furthermore, 1029 assembly fragments were present in the TCAMS actives and only 50 

were found to be common between the two sets, resulting in a low similarity score 

(Tanimoto distance) of 0.0486. This agrees with the Bayesian model comparison method 

where a large Bayesian distance of 72.3 was found (see Supplementary Figure S3), 

indicating that a training set consisting of only βH inhibitors may be more specific towards 

predicting Hz inhibiting antimalarials than one incorporating all 13,533 TCAMS actives. 

The VU βH hits which were incorporated into the training set cover a more confined 

chemical space, shifted relative to the TCAMS compounds by lower PC1 (Figure 1b). This 

indicates a lower MW and #AR or #R based on feature weighting for PC1 (Supplementary 

Table S2b). The OU compounds are largely scattered between the TCAMS and VU 

chemical space with several molecules possessing high MW, larger #R and #RB (long 

amine side chains) shifted into the higher PC1 range. The analysis demonstrates the 

relatively large chemical space covered in the training set by βH inhibitors from the different 

libraries.

With the chemical space of the training set identified, the validation sets were plotted in the 

same principle component space in order to determine how closely related the libraries are 

(Figure 2). As expected, the purchasable AldrichCPR drug-like compounds are contained 

within the space of the FDA approved drugs which are themselves more dispersed relative 

to the other sets. The VU compounds lie closest to the known drugs and the TCAMS and 

OU compounds with the largest PC1 are furthest in space from the validation sets. This 

diversity is important for training set verification as it demonstrates the degree of model 

versatility for predicting test sets which differ from the training sets.

2.3 FDA approved compounds for model validation

For the purposes of validation, the optimised Bayesian model was applied to known drugs. 

Although βH inhibition is mostly unknown for FDA approved compounds, in vitro 

antimalarial activity is often available through PubChem (https://

pubchem.ncbi.nlm.nih.gov/), even if they are not clinical antimalarials. The parasite 

bioactivity was predicted (using the 2 μM cut-off model) for 1510 molecules and ranked by 

likelihood of being bioactive from highest to lowest Bayesian score (selected portions 

shown in Supplementary Table S3). In the sorted list, all six of the known βH inhibiting 

drugs that are clinical antimalarials (as well as quinidine barbiturate and 

hydroxychloroquine) were found in the top 2.1% of the 1510 compounds. The clinical 

antimalarials were amodiaquine, quinine, quinidine, chloroquine, quinacrine and 

halofantrine. Mefloquine was also found within the top 4%. Additionally, of the 24 

compounds that are not clinical antimalarials in the top 2.1%, nine have reported in vitro 

antimalarial activity in PubChem, ten have not been tested on P. falciparum and only three 

are reported inactive below 10 μM (Figure 3). Thus, among the 14 compounds for which 

antimalarial activity has been reported, this represents a hit rate of 81%. On the other hand, 

in the bottom 2.1%, 24 are reported as inactive (below 10 μM), seven have not been 

determined and only two compounds are reported as having in vitro antimalarial activity (in 
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one case with contradicting evidence), representing a hit rate of 8% among those tested. 

However, finding active compounds in the bottom set does not negate the model since the 

active training set compounds were specifically βH inhibiting antimalarials. Thus, for 

example, the clinical antimalarials that are known to have a different mechanism of 

therapeutic action were also predicted at least 23 Bayesian score units lower than the βH 

inhibiting ones. These included the antifolates proguanil, pyrimethamine and sulfadoxine;32 

primaquine which causes redox cycling33, the apicoplast inhibitor, doxycycline;34 and 

atovaquone, which disrupts the mitochondrial electron transport chain.35 This demonstrates 

the power of the model for specifically prioritising antimalarials that inhibit βH and are 

therefore likely to be Hz inhibitors. The 0.5 μM cut-off model was also tested and performed 

even better, finding the βH inhibiting antimalarials within top 1.8% of sorted compounds. 

Besides primaquine which went from rank #317 using the 2 μM model to #767 with the 0.5 

μM model, only minor changes to the ranking of the other compounds was observed. The 

βH model was also applied to the FDA compounds. Amodiaquine, quinacrine and 

halofantrine were predicted correctly to be βH inhibitors while quinidine, quinine and 

chloroquine were falsely predicted negative. The reason for this is most likely the presence 

of the quinuclidine or alkyl amino side chains, absent in amodiaquine, which are predicted 

to be unfavourable for βH inhibitory activity, possibly because they add too many rotatable 

bonds (Table 3). Although quinacrine and halofantrine contain alkyl side chains, they also 

have an extra aromatic ring which contributes favourably to the βH inhibition score. This 

reveals a shortcoming of the βH model for recognising inhibitors that contain these 

functional groups.

2.4 Prioritization of a commercial library

In order to test how the models would perform if used to prioritise compounds for HTS, 

4,998 purchasable compounds were virtually screened (Figure 4). After calculating the 

Bayesian score using the βH model and selecting only those predicted active, about 900 

compounds remained. The top 650 were chosen to screen using the whole-cell parasite 

model (2 μM cut-off) which predicted 178 compounds to be active. Compounds were then 

selected for purchase (Supplementary Table S4) according to the criteria specified in the 

methods section. By applying the βH model and only selecting predicted actives from this 

dataset, the bio-active and bio-inactive subsets were nested within the βH active subset 

(Table 5). This allowed for the most efficient and cost-effective way of validating the model.

All of the ten purchased compounds predicted to be inactive against βH formation below 

100 μM were indeed found to be inactive, even up to 500 μM. Of the 24 predicted βH 

inhibiting compounds, six showed IC50 values below 100 μM and two between 200-500 μM. 

This gave a hit rate for βH activity of 25%, a >25-fold enrichment over random screening 

for βH inhibitors at a cut-off of 100 μM (based on the hit-rate in the VU screen).25 Of these 

six compounds, five were also predicted to be bioactive (P23, P27, P29, P33 and P34). Two 

were found to have whole-cell IC50 values below 2 μM in the CQ-sensitive NF54 strain of 

P. falciparum (P27: 82 nM and P34: 79 nM). Interestingly, both of these compounds were 

quinolines bearing structural similarities to known antimalarials quinine/quinidine (QN/QD) 

and chloroquine respectively, despite the drug molecules being absent from the training set. 

The QN/QD derivative (P27) was represented in the ZINC database and sold by Sigma-
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Aldrich as an analogue lacking both the 9-hydroxy and 6-methoxy groups. However, Roepe 

and co-workers have previously shown the importance of the hydroxyl moiety for β-

haematin and parasite activity in QN.36 This was consistent with crystal structures reported 

by de Villiers et al.37 which demonstrated coordination of the QN and QD hydroxyl oxygen 

atoms to the Fe(III) centre of haem, an interaction deemed critical for inhibition of Hz 

formation. In light of this previous research, which seemed to contradict our finding, nuclear 

magnetic resonance (NMR) and mass spectrometry (MS) experiments were carried out in 

order to confirm the structure of P27. As anticipated, the spectra confirmed that the major 

structure of the QN/QD derivative (>90%) did indeed possess the hydroxyl moiety after all, 

revealing that P27 is either cinchonine (CN) or cinchonidine (CD). Furthermore, there was 

evidence of an impurity (<10%) containing the quinoline methoxy group, possibly 

corresponding to QN or QD (See Supplementary Figure S4 for spectra). This finding 

reemphasises the importance of proving the composition of hit compounds obtained from 

HTS, particularly those in milligram quantities for which structural and purity information is 

often not supplied by the distributor. Additional identity proof was evident from the parasite 

activity (NF54) for P27 of 82 nM found in this study which corresponds closely to the 

activity of CN against the Dd2 strain.36 We retrospectively calculated the Bayesian 

probability score for the actual structure of P27 with the hydroxyl group in place (Table 5) 

which showed that CN/CD was in fact more likely to be active both against βH formation 

(Bayesian score of -0.91 vs -3.58) and parasite growth (19.19 vs 5.74) than the 9-dehydroxy 

derivative.

As expected, none of the other compounds were potent parasite growth inhibitors, either 

because they were predicted bio-inactive or because they were false positives for βH 

inhibition activity. Since two of the 14 testable bioactive compounds were actually active, 

the hit rate was 14%, a 140-fold enrichment over random screening for compounds targeting 

Hz inhibition (based on the hit rate from the VU screen for β-haematin inhibiting 

antimalarials).25 However, in a HTS protocol for discovery of βH actives, only this subset 

would have been tested against the parasite, resulting in a 33% hit rate.

The parasite model built on βH inhibitors successfully identified the Hz inhibiting FDA 

approved antimalarials without first filtering out those predicted to be inactive against βH 

formation. The same approach was retrospectively applied to the AldrichCPR compounds to 

compare the procedures for prioritisation. At a cut-off of 0.5 μM (which performed best 

when predicting the FDA compounds), there were few differences in the prioritised 

compounds that would have been purchased for bioactivity (aside from small changes in the 

order of their probability scores). In fact, an additional derivative of quinidine (a 6-

ethoxyquinoline with a quinuclidine ethyl instead of a 6-methoxyquinoline with a 

quinuclidine vinyl group) appeared in the top three predicted bioactives which had 

previously been filtered out as a non-βH inhibitor. Overall, 13 of the 14 molecules purchased 

were also predicted active when filtering only for bioactivity.

3. Conclusions

Although HTS has become a vital tool for drug discovery, it remains an expensive, time 

consuming and extremely specialised process. The implementation of machine learning 
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approaches such as Bayesian modelling is able to prioritise compounds for HTS resulting in 

improved hit rates using fewer test compounds. This is especially important for combating 

neglected tropical diseases such as malaria, where resources and capacities for research are 

limited. Creating in silico models from data contributed by previous HTS efforts is not only 

useful for future HTS prioritisation, but is an effective way to make use of the all the 

available data, including inactives, from previous screens. The results of this work have 

shown that Bayesian models can be applied to antimalarial compounds which are βH 

inhibitors with impressive enrichment rates relative to random screening. The validation sets 

strongly suggest that the chemical space of the active compounds in the parasite model is 

specific for Hz inhibiting antimalarials. This finding also raises the intriguing possibility that 

models trained from compounds with other known targets may be able to be similarly used 

in antimalarial drug discovery. When combined with in silico techniques for prioritising 

ADMET properties, this approach may have a role in the future identification of novel 

antimalarials.

4. Experimental and computational methods

4.1 Training set data

GSK (TCAMS) and St Jude's whole-cell screening data were downloaded from the 

ChEMBL database (www.ebi.ac.uk/chemblntd). The βH activity data were sourced from 

previous HTS collaborations between Vanderbilt University (VU), the University of Cape 

Town (UCT) and Okayama University (OU), most of which are publically 

available.25,26,27,28,29,30

4.2 Comparing the chemical space of libraries

Principle component analysis (PCA) was carried out in Discovery Studio38 using the 

following descriptors: logP, MW, #RB, #R, #AR, #HBA and #HBD. The assembly method 

for comparing libraries decomposed the molecules into unique occurrences of ring, bridge or 

chain assemblies.39 The libraries were then compared using Tanimoto similarity of the 

assemblies. The βH hits (taken at >60% inhibition at 19 μM) were compared to the non-hits 

(<40%) using two Bayesian classification models and a Bayesian distance based on the 

Bayesian scores of each sample in the set (see Supplementary Data Figure S3).

4.3 Building Bayesian models

All data were modelled using Discovery Studio's38 built-in Bayesian categorization, based 

on Bayes' theorem (eq. 1):

(1)

where p(h|d) is the probability that a molecular feature (d) contributes to activity (h) in a test 

molecule, p(d|h) is the prior probability of the feature being present in an active compound 

in the training set, p(h) is the probability of any compound in the training set being active 

and p(d) is the probability of the feature being present in any molecule in the training set.
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Input structure data files (SDFs) containing structural and activity data were imported into 

Discovery Studio and the sample data marked as active or inactive based on a user-defined 

IC50 cut-off. In the case of the βH inhibiting model, the samples were represented at pH 5 to 

match the conditions of the acidic DV. Default input descriptors from which the program 

can learn to distinguish active from inactive compounds were chosen. These 2D parameters 

were calculated by the program during the simulation: logP, MW, #RB, #R, #AR, #HBA, 

#HBD and ECFP_6. The model allocated each feature a probability score, weighted by a 

Laplacian-corrected estimator based on the frequency of occurrence of that feature in the 

active and inactive sets. In order to predict the likelihood of activity for a test compound, 

weights for the different features were summed to give a probability estimate.

Internal validation of the generated models was determined by the ROC score, based on the 

area under the plot of true positive rate vs false positive rate (ROC curve). These rates were 

calculated by leaving each molecule out of the training set one at a time (leave-one-out cross 

validation), or by leaving one fifth of the training set out (5-fold cross validation) and 

predicting their activities with those remaining. A score of 1 represents a perfect prediction 

with no false positives while 0.5 represents no enrichment. The ROC score was optimised 

by combining several datasets and generating models with different IC50 cut-offs for activity 

input. Training sets excluded several compounds for use as external test sets.

4.4 Model validation using external datasets

The DrugBank database (http://www.drugbank.ca/) contains 1510 FDA approved small 

molecule drugs.40,41 These compounds were used as a test set to measure the accuracy of the 

Bayesian models since many have reported antimalarial activity data in PubChem (https://

pubchem.ncbi.nlm.nih.gov/). In addition to this validation method, the ZINC database 

(http://zinc.docking.org/), a free collection of commercially available compounds for virtual 

screening was employed.42 Purchasable samples from the AldrichCPR catalogue in ZINC 

were filtered through the models, listed according to predicted activity probabilities and 

where similar structures occurred; only one analogue was selected. Compounds were also 

excluded if they were currently unavailable or if they were expensive. Three sets of 

compounds were then purchased from Sigma-Aldrich; ten molecules predicted to be inactive 

for βH inhibition, ten with high probability of being βH inhibitors and fourteen predicted to 

be both βH inhibitors and biologically active. These compounds were then tested for βH 

inhibition using the NP-40 method described previously43 and against the NF54 strain of P. 

falciparum.44,45,46

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Plot of the three principle components for the TCAMS βH inhibitors (red-larger PC1 and 

PC3) vs non-βH inhibitors (blue). (b) The VU (cyan) and OU (lime green) βH inhibitors 

relative to the TCAMS βH inhibitors (red) and non-βH inhibitors (blue).
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Figure 2. 
Validation sets including the FDA approved (light blue) and 1000 randomly selected 

molecules from the AldrichCPR drug-like compounds (dark blue) in relation to the TCAMS 

(red), OU (gold) and VU (green) βH inhibitors from the training set.
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Figure 3. 
Graphical representation of the 2.1% of 1510 FDA approved drugs with highest and lowest 

Bayesian scores for activity against P. falciparum based on training sets of β-haematin 

inhibiting compounds using activity data against the parasite. Active compounds consist of 

clinical antimalarials as well as other drugs with proven activity against P. falciparum 

reported in PubChem.
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Figure 4. 
Flow chart of the strategy used to purchase and screen a small commercial library.
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Table 1

Optimisation of βH model using a cut-off of 100 μM, with increasing numbers of inactive compounds from 

the VU set. The test set contained 339 VU samples.

Total βH actives in training set Total βH inactives in training set ROC score for model (leave-
one-out) VU test set correctly predicted

1,000 1,000 0.876 78%

1,000 6,000 0.901 80%

1,000 31,000 0.901 83%

1,000a 51,000a 0.905 83%

2,113b 64,118b 0.915 77%

a
These compounds were prepared at pH 5 in the calculation.

b
This set incorporated VU, TCAMS, OU and UCT data at pH 5.
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Table 3

Optimal feature ranges for the two activity models with the probability score rank for each feature. The word 

in brackets refers to the range values relative to the less favourable ranges. Those in italics exhibit contrary 

preferences.

Feature Rank in βH model Preferable value/range in βH model Rank in parasite model Preferable value/range in parasite 
model

#HBD 2 3-7 (More) 4 3-8 (More)

#AR 3 4-7 (More) 2 5-8 (More)

MW 4 460-719 (Larger) 5 459-911 (Larger)

logP 5 5-11 (Larger) 7 4-11 (Larger)

#R 6 5 (More) 3 5-8 (More)

#HBA 7 6 (More) 9 7-13 (More)

#RB 8 0-2 (Fewer) 6 9-20 (More)

FPSA 9 0.29-0.33 (Larger) 8 0.13-0.17 (Smaller)
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Table 4

Examples of some of the most important extended-connectivity fingerprints of depth 6 (ECFP_6) for (a) the 

βH inhibition model (cut-off of 100 μM) and (b) the parasite growth inhibition model (cut-off of 2 μM). See 

Supplementary Data Figure S2 for more fingerprints.

(a) βH inhibition model (b) Parasite growth inhibition model

Good ECFP_6 Bad ECFP_6 Good ECFP_6 Bad ECFP_6
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