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Evidence now points to the haeme oxygenase (HO) pathway as a possible actor in modulating risk for cardiovascular disease (CVD). In particular,
the HO pathwaymay represent a keyendogenous modulatorof oxidative, inflammatory, and cytotoxic stress while also exhibiting vasoregulatory
properties. In this review, we summarize the accumulating experimental and emerging clinical data indicating how activity of the HO pathway and
its products may play a role in mechanisms underlying the development of CVD. We also identify gaps in the literature to date and suggest future
directions for investigation. Because HO pathway activity can be influenced not only by genetic traits and environmental stimuli but also by a
variety of existing pharmacologic interventions, the pathway could serve as a prime target for reducing the overall burden of CVD. Further
work is needed to determine the role of HO pathway products as possible prognostic markers of risk for clinical CVD events and the extent
to which therapeutic augmentation or inhibition of HO pathway activity could serve to modify CVD risk.
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Introduction
Considerable evidence now points to the haeme oxygenase (HO)
pathway as a possible central actor in modulating risk for cardiovas-
cular disease (CVD). The ameliorative properties of the HO pathway
were first shown in an animal model of haeme protein-induced
kidney injury,1 with subsequent work demonstrating that HO induc-
tion protects endothelial cells (ECs) in vitro.2 Intriguing early data in
humans included the autopsy report of hyperlipidaemia, fatty
streaks, and fibrous plaques in the aorta of an HO-1 deficient
6-year-old boy.3 Supporting the concept that intact HO pathway
activity is upregulated in response to vascular stress, another study
found that HO-1 expression in adults with atherosclerosis was
higher in association with worse lesion type and grade of stenosis.4

Research to date now suggests that the HO pathway may represent
one of the most important endogenous modulators of oxidative, in-
flammatory, and cytotoxic stress while also exhibiting vasoregulatory
properties. Herein, we review the accumulating experimental and
emerging clinical data indicating how activity of the HO pathway
and its products may play a key role in mechanisms underlying the de-
velopment of CVD.

Haeme metabolism and the haeme
oxygenase pathway
Haeme forms the prosthetic moiety within haemoproteins [i.e.
haemoglobin, myoglobin, cytochrome c, cytochrome P450, catalase,
myeloperoxidase, nitric oxide synthase (NOS), and guanylate
cyclase] and is involved in numerous biological processes including
oxygen transport, cellular respiration, oxidative biotransformations,
host defence, and regulation of vascular tone. While haeme is essen-
tial for life, free haeme within cells (i.e. cytosolic ‘uncommitted’
haeme that is not a part of haeme proteins) can be pro-inflammatory
and cytotoxic, particularly in ECs,5 via generation of reactive oxygen
species (ROS) and lipid peroxidation. Efficient degradation of excess
haeme is needed to avert such toxicity and, thus, intracellular levels
of free haeme are tightly regulated by the HO family of proteins.6

The HO proteins catalyse the oxidative degradation of haeme,
producing equimolar amounts of carbon monoxide (CO), iron
(Fe2+), and biliverdin-IXa (Figure 1). Biliverdin-IXa is converted
to bilirubin-IXa by cytosolic biliverdin reductase, and bilirubin-IXa

is a potent endogenous antioxidant7 with recently recognized
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anti-inflammatory properties.8 Iron induces expression of ferritin,
which sequesters ironand alsoexerts antioxidant2 and anti-apoptotic9

effects. Of the three direct products of haeme metabolism, however,
COhasbeenmostextensively studied.Carbonmonoxide isadiatomic
gas with numerous biological functions including protection against
oxidative injury,10–12 inflammation,13 and cell death.12,14,15 Further-
more, CO has been shown to inhibit cellular proliferation,16 suppress
matrix production,17 and increase fibrinolysis.18 Notably, CO shares
many similarities with nitric oxide (NO), such as the ability to inhibit
smooth muscle cell (SMC) proliferation19 and platelet aggregation,20

aswell asmodulate vascular tone by increasing cyclic guanosinemono-
phosphate (cGMP) levels.6,21

Regulation of haeme oxygenase
expression
The HO-1 and HO-2 isoforms are encoded by the HMOX1 and
HMOX2 genes, respectively. HO-2 is constitutivelyexpressed in mul-
tiple tissues, including the vasculature, but its expression is not gen-
erally inducible.22,23 HO-1 is also ubiquitous and expressed most
strongly in tissues involved in haemoglobin metabolism. Importantly,
in other tissues such as the vascular endothelium and SMC, HO-1 is
expressed at low levels basally, but is induced in response to diverse
stimuli (Figure 2) such as haeme, endotoxin, ROS, NO, cytokines,
growth factors, hypoxia, andhyperoxia.23 Inparticular,HO-1expres-
sion in the vasculature is upregulated in response to oxidized lipids
and phospholipids,24 vascular injury,25 and laminar flow.26

Although regulation of HO-1 expression is predominantly at the
transcriptional level, extracellular stimuli activate kinase signalling
cascades that regulate transcription factor binding to the HO-1 pro-
moter. All three mitogen-activated protein kinase (MAPK) pathways
(i.e. extracellular signal-regulated kinases 1/2, c-Jun-N-terminal
kinase, and p38 MAPK) have been implicated in regulating HO-1 ex-
pression.23 In vascular EC, the selective COX-2 inhibitor, celecoxib,
has been shown to induce HO-1 expression via PI3K activation and

translocation of nuclear factor erythroid 2-related factor 2
(Nrf2).27 Additionally, HO-1 is induced in EC by TNF-a and IL-1a
in a PKC-dependent fashion via activation of arachidonic acid.28

One of the main regulators of HO-1 transcription is Nrf2, an
oxidant responsive transcription factor. Nuclear factor erythroid
2-related factor 2 transactivates the HO-1 promoter, while the
haeme-binding protein Bach1 represses HO-1 transcription.29

Both Nrf2 and Bach1 have been shown to play key roles in cardiome-
tabolic disease by regulating HO-1 expression.30– 37 Defective Nrf2
signalling has been implicated in the pathophysiology of dia-
betes35,38,39 and coronary artery disease (CAD).37,40,41 Additionally,
Nrf2 has been shown to protect against glucose-induced apoptosis in
cardiomyocytes.36 Deficiency of Bach1 is also protective in animal
models of atherosclerosis,31 myocardial ischaemia-reperfusion
injury,34 and vascular injury (Figure 3).30

Haeme oxygenase gene expression
in humans
Variation in the HO-1 gene has been related to cardiovascular risk in
humans. The most extensively studied HO-1 gene variant in humans

Figure 1 Overview of haeme metabolism and the central role of haeme-oxygenase activity.

Figure 2 Several stimuli have been shown to induce HO-1 activ-
ity and, in turn, upregulated HO-1 expression may provide cardio-
vascular protection.
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is the dinucleotide repeat polymorphism, [GT]n.6,42 This variant is the
most frequent dinucleotide repeat scattered throughout human and
animal genomes, and many repeat regions are length polymorphic.
With respect to the HO-1 promoter region, length of the (GT)
repeat region in the HO-1 promoter has been related inversely to
HO-1 expression.43 Importantly, this finding appears associated with
CVD risk in humans. In the presence of pre-existing risk factors such
as hypertension, metabolic syndrome, and diabetes, a larger number
of (GT) repeats is generally related to increased risk of CVD
(Table 1). Conversely, under similar circumstances, a smaller number
of (GT) repeats has generally been related to less CVD (Table 1). Inter-
estingly, these promoter polymorphisms have not been associated
with CVD risk in the general population, supporting the concept
that oxidative and metabolic stress may be required to induce HO-1
expression.

Although not as thoroughly investigated as the [GT]n polymorph-
ism, there is at least one SNP in the proximal HO-1 promoter,
T(-413)A, that has been associated with susceptibility to CVD.6,44,45

The AA genotype of the T(-413)A polymorphism has been correlated
with a lower incidence of CAD,44,45 although the recent meta-analysis
called this association into question given inconsistencies in the
Hardy–Weinberg equilibrium in some studies.46

Haeme oxygenase and mechanisms
related to cardiovascular disease
Multiple experimental studies have demonstrated a role for HO-1
and its products in the setting of hypertension, diabetes, vascular
injury, atherosclerosis, and ischaemia reperfusion.25,30,47–65 There
are numerous mechanisms by which HO-1 activity may impact car-
diovascular risk including a variety of antioxidant, anti-inflammatory,
anti-apoptotic, anti-proliferative, anti-thrombotic, and vasoregula-
tory effects.

Antioxidant protection
HO-1 has well-described antioxidant cytoprotective effects in many
cell types and disease models.6,10–12 In atherosclerotic lesions,
HO-1 is upregulated in EC and SMC with particularly high expression

in macrophages and foam cells, where oxidized phospholipids
co-localize with HO-1.58 Inhibition of HO-1 enhances atherosclerosis
and increases plasma lipid hydroperoxide levels in LDL-receptor
knockout mice, suggesting that HO-1 may protect against lipid perox-
idation in atherosclerosis.58 In turn, HO-1 overexpression in cardio-
myocytes appears to protect against reperfusion injury as well as
attenuate cardiac inflammation and oxidative damage to cardiomyo-
cytes.63 Additionally, HO-1 expression correlates with plaque destabil-
izing factors such as matrix metalloproteinase-9, and overexpression of
HO-1 has been shown to prevent progression of atherosclerotic
lesions to vulnerable plaques.66

Products of the HO pathway can also exert antioxidant properties.
Carbon monoxide can bind to haeme proteins (e.g. NADPH oxidase
and cytochrome c oxidase) to inhibit electron transport and ROS
generation. Conversely, CO can alsobind and inhibit the catalytic func-
tion of other haeme proteins, which may lead to pro-oxidant effects
under certain conditions.67 Bilirubin is a potent ROS scavenger
that can prevent oxidation of LDL and other lipids.68,69 In addition, bili-
rubin can decrease ROS in EC,70 protect against oxidative damage in
ventricular myocytes,71 and reduce infarct size and mitochondrial
damage following myocardial ischaemia reperfusion.61 In cerebrovas-
cular EC, both CO and bilirubin appear to attenuate TNF-a-induced
apoptosis and inhibit superoxide anion production.72

Interestingly, HO-1 and CO may also crosstalk with NOS enzymes
and modulate levels of NO in the vasculature. Although NO-induced
HO-1expression is cytoprotective in EC,73 excessNOcan reactwith
ROS to generate peroxynitrite that can promote lipid peroxidation
and cell death within the vasculature.74 In turn, HO-1 and CO can
bind to the haeme moiety of NOS and may down-regulate NOS
expression to reduce NO production75 in the vasculature, which
may be protective in certain circumstances. Accordingly, in a rabbit
model of atherosclerosis, induction of HO-1 inhibited progression
of atherosclerosis and was associated with reduced expression of
inducible NOS and NO production, while inhibition of HO-1 had
opposite effects.76

Anti-inflammatory activity
HO-1 is a well-recognized modulator of inflammation. Complete
absence of HO-1 in mice results in a chronic multi-systemic

Figure 3 Certain transcription factors, Nrf2 and Bach1, appear to play an important role in regulating HO-1 expression in cardiovascular condi-
tions. Specifically,Nrf2 and Bach1 form heterodimerswith Mafproteins and bind to consensus antioxidant response element (ARE) sequences in the
HO-1 promoter. Nrf2 transactivates the HO-1 promoter and may provide protection against diabetes and cardiovascular disease. Bach-1 competes
with Nrf2/Maf dimers and represses HO-1 transcription. Accordingly, deficiency of Bach1 has been shown to be protective in animal models of
atherosclerosis, myocardial ischaemia-reperfusion injury, and vascular injury.
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Table 1 Studies relating haeme oxygenase pathway activity to clinical phenotypes and outcomes in humans

Phenotype No. of
studies

No. of subjects
per study

Study sampling characteristics Main findings

HO-1 promoter polymorphism

Hypertension 5 152–1998 Community sample148,150;
Hypertension vs. controls149; MetS
patients vs. controls;151

Arsenic-exposed individuals152

† AA SNP is associated with increased risk of hypertension in women148 and in individuals with MetS151

† Shorter GT repeats/greater HO-1 expression is associated with lower diastolic blood pressure,151 lower
systolic blood pressure and less hypertension152

† HO-1 promoter SNPs associated with hypertension149

† Longer GT repeats/lower HO-1 expression is associated with lower risk of essential hypertension150

Metabolic syndrome 2 152–468 MetS and controls;153 T2DM, MetS,
and controls154

† No difference in promoter length or allelic frequency between MetS and controls,153 or between T2DM,
MetS, and controls154 but S/M genotype was increased in T2DM and MetS patients compared with controls154

Diabetes 4 189–3089 T2DM and controls,155,156 T2DM (no
controls),157 T2DM, MetS, and
controls154

† L allele/longer GT repeats/lower HO-1 expression is associated with increased odds of T2DM155

† S allele/shorter GT repeats/greater HO-1 expression is increased in T2DM and MetS patients compared with
controls154

† Allelic frequencies did not differ between T2DM and control groups,156,157 and T2DM, MetS, and control
groups154

Cardiovascular
disease

16 70–4596 CAD vs. controls,43,44,160,162,164

CAD,159,161,163 T2DM158

post-ischaemic stroke vs.
controls,165,166 haemodialysis
patients vs. controls,167 peripheral
arterial disease,168 chronic stable
angina169 and arsenic-exposed
individuals170,171

† Longer GT repeats/lower HO-1 expression is associated with increased CAD,43,158 worse coronary
scores,161 increased CVD events and all-cause mortality,167 and increased odds of stroke165

† Shorter GT repeats/greater HO-1 expression is associated with more favorable lipid profiles,162 lower
severity of CAD,163 lower CAD risk under high oxidative stress,164 decreased stroke risk in the absence of
hyperlipidemia,166 lower adjusted hazard ratio for coronary events,168 less carotid atherosclerosis,170 and
reduced cardiovascular mortality171

† AA SNP is associated with less ischaemic heart disease158

† No relationships observed between AA SNP or GT repeats and CAD160

Restenosis after
intervention

7 96–1357 Coronary stenting,172–174,178 balloon
angioplasty or stenting175–177

† Long allele carriers had increased risk of restenosis172,173 and adverse cardiac events172

† Short allele carriers had decreased risk of restenosis175,177

† No difference in restenosis,174,178 but short allele carriers had lower IL-6178

Indirect Measures of HO-1 Activity

Metabolic syndrome 8 1423–12 342 Community sample,95,145,179–182 adult
women,94 children and
adolescents183

† Higher exhaled CO more likely to develop MetS145

† Serum total bilirubin inversely related to prevalence of hyperinsulinaemia, and systemic inflammation,95 MetS
and insulin resistance,94,95,179,180,182,183 but not in multivariable models181

Diabetes 5 417–5960 T2DM patients vs. controls,132 T2DM
patients,184 community sample186

children and adolescents183

† Plasma HO-1 concentration increased in T2DM cases compared with controls132

† Total serum bilirubin inversely related to HbA1c levels in T2DM patients,184 prevalence of MetS and insulin
resistance in adults,179 and insulin resistance in children and adolescents183

† Higher serum bilirubin associated with increased risk of developing T2DM186

Cardiovascular
disease

10 53–130 052 T2DM vs. controls,4 community
sample,144,145,187,188,190 statin-
treated cohort,189 men,191,192

overweight/obese high
cardiovascular risk patients193

† HO-1 expression increased with increasing stenotic grade, and was higher in diabetic subjects4

† Higher exhaled CO associated with incident CVD145 and with developing overt CVD in the presence of
subclinical CVD144

† Higher blood COHb levels associated with higher incidence of cardiac events and deaths191

† Higher serum bilirubin associated with lower Framingham risk score,187 and lower risk of MI, CAD, and CVD
events in men, less clearly in women188

† Lower serum bilirubin associated with increased risk of CAD,190,192 all CVD events, MI, and all-cause
mortality,189 and stroke189,190

† Bilirubin was not a risk factor independent from traditional cardiovascular risk factors193

CAD, coronary artery disease; MI, myocardial infarction; CVD, cardiovascular disease; MetS, metabolic syndrome; T2DM, type 2 diabetes mellitus.
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inflammatory disorder with evidence of vascular and perivascular in-
volvement.77 When exposed to lipopolysaccharide (LPS), HO-1 defi-
cient (HO-1–/–) mice have greater end-organ damage and reduced
survival.78 In turn, HO-1 induction by haemoglobin79,80 as well as bili-
verdin8 can attenuate lung inflammation, decrease pro-inflammatory
cytokine expression, and improve survival following LPS exposure.

Notably, CO has been shown to mediate many of the anti-
inflammatory effects of HO-1. Administration of CO to LPS-stimulated
macrophages inhibits NF-kB activation and secretion of granulocyte
macrophage-colony-stimulating factor.81 Carbon monoxide has also
been shown to decrease expression of TNF-a, IL-1b, and macrophage
inflammatory protein-1b, while increasing expression of the anti-
inflammatorycytokine IL-10 inmacrophagesand inmice.13Additionally,
recent studies suggest thatHO-1mayplaya role inalternative activation
of macrophages towards an M2 anti-inflammatory phenotype.82,83

HO-1 has been shown to exhibit anti-inflammatory effects in the
vasculature, as well as globally. In EC, overexpression of HO-1 and
bilirubin attenuate TNF-a-induced upregulation of VCAM-1 and
E-selectin by inhibiting NF-kB activation.84 Furthermore, overex-
pression of HO-1 or its products in vivo have led to protective anti-
inflammatory as well as anti-proliferative effects in models of vascular
injury, in-stent restenosis, and transplant arteriosclerosis.85–87 Over-
expression or induction of HO-1, as well as CO administration, have
been shown to reduce leukocyte infiltration, pro-inflammatory cyto-
kine expression, NF-kB activation, and apoptosis, in addition to at-
tenuating intimal proliferation in rat aortic allografts and stented
arteries.85– 87

The anti-inflammatory effects of bilirubin and biliverdin may also
protect against CVD risk.88– 95 Biliverdin decreases IL-6 secretion
in vitro in both macrophages and LPS-stimulated EC.8 In the vascula-
ture, HO-1 induction down-regulates oxidant-induced leukocyte
rolling and adhesion, and this finding appears mediated by bilirubin
and biliverdin.96 Bilirubin has also been shown to attenuate upregula-
tion of E-selectin, VCAM-1, and ICAM-1, as well as to inhibit neutro-
phil adhesion in TNF-a-stimulated EC.97

Effects on apoptosis
Whereas oxidative stress and inflammation can lead to apoptosis
within the vasculature, HO-1 and its products may counter this
process. In EC, CO protects against apoptosis following TNF-a and
anoxia-reoxygenation via activation of the p38 MAPK pathway.14,98,99

In vascular smooth muscle cells (VSMCs), absence of HO-1 has been
shown to increase susceptibility to oxidant stress and cell death in a
vein graft stenosis model.100 Paradoxically, overexpression of HO-1
and bilirubin in VSMC have also been shown to stimulate apoptosis.101

Notably, CO did not have an effect on apoptosis in this study and, in a
separate study, wasshown to inhibitVSMCapoptosis via soluble guany-
late cyclase (sGC) activation and suppression of p53 expression.102 In
addition, HO-1 induction by haemin decreases SMC apoptosis and pre-
vents atherosclerotic plaque progression in vivo.103 Furthermore, HO-1
overexpression in the myocardium decreases lipid peroxidation, IL-1b
expression, pro-apoptotic signalling, and myocardial infarct size.64

Taken together, HO-1 and the products of haeme metabolism may
have differential effects on apoptosis depending on the cell type and
mechanism of cellular injury, although most studies suggest that the
HO-1-CO pathway confers anti-apoptotic properties in the setting
of vascular injury.

Effects on cellular proliferation
HO-1 has potent anti-proliferative effects in the vasculature. HO-1
overexpression in a femoral artery injury model inhibited arterial re-
modellingby reducing VSMCproliferationand inducingexpressionof
the cell cycle inhibitor p2125; in contrast, absence of HO-1 exagger-
ated cellular proliferation and enhanced vascular lesion formation.25

Overexpression of HO-1 also decreased VSMC proliferation in
models of transplant atherosclerosis and in-stent restenosis.86,87

Carbon monoxide has been shown to mediate these protective
effects of HO-1 on VSMC proliferation. In aortic transplant and
carotid artery injury models, CO inhibited VSMC proliferation and
attenuated intimal hyperplasia in injured vessels and aortic transplant
allografts.85,104 In addition to VSMC proliferation, migration of VSMC
may contribute to intimal thickening following vascular injury, and the
HO-1/CO pathway has recently been shown to attenuate VSMC mi-
gration.105 Notably, overexpression of HO-1, CO gas, or treatment
with a CO-releasing molecule (CORM) each decreased migration of
VSMC via NOX1 inhibition.105

Although CO is best known for modulating the anti-proliferative
effects of HO-1, emerging data suggest that biliverdin may have anti-
proliferative properties as well.88 –90 Biliverdin has been shown to
attenuate intimal hyperplasia and decreased EC apoptosis in vein
grafting and balloon angioplasty models.90 Biliverdin was also found
to decrease SMC migration in vitro.90 Additionally, hyperbilirubinae-
mic Gunn rats develop minimal intimal hyperplasia following
balloon injury.88 In mechanistic in vitro studies, bilirubin attenuates
VSMC proliferation and arrests the cell cycle by inhibiting phosphor-
ylation of the retinoblastoma tumour suppressor protein (Rb).88

HO-1 and CO may also play a role in regulating proliferation of EC
and angiogenesis. HO-1 overexpression increased proliferation and
capillary tube formation in coronary EC,106 while inhibition of
HO-1 inhibited VEGF-induced angiogenesis.107 In addition, HO-1de-
ficient EC have been shown to have reduced angiogenesis that was
rescued by CORM.108 HO-1 has also been shown to influence the
mobilization of endothelial progenitor cells (EPCs) followingvascular
injury.109,110 Overexpression of HO-1 or CO inhalation accelerated
re-endothelialization of denuded vessels and enhanced EPC mobil-
ization after carotid artery injury.109 In contrast, HO-1– / – animals
generated fewer endothelial colony forming cells110 and had
reduced EPC mobilization and decreased re-endothelialization fol-
lowing vascular injury.109 Thus, HO-1 may promote EC repair, yet
inhibit proliferation and migration of VSMC, thereby preventing the
development of intimal lesions at multiple cellular levels. Taken to-
gether, the beneficial effects of the HO-1/CO pathway may
provide dual vascular protection to promote repair in the setting
of vascular injury, further highlighting the central role of HO-1 in car-
dioprotection.

Anti-thrombotic activity
Induction of HO-1 enzymatic activity and CO have demonstrated
beneficial effects on platelet aggregation and thrombus forma-
tion.18,20,98,111 – 116 CO has well-described inhibitory effects on plate-
let aggregation via activation of sGC and increased platelet cGMP
levels.20 In addition, induction of HO-1 and bilirubin have been
shown to delay thrombus formation, suggesting that bilirubin has
anti-thrombotic properties as well.111 Absence of HO-1 leads to

L.E. Fredenburgh et al.1516



accelerated arterial thrombus formation and EC apoptosis following
vascular injury that could be rescued by CO and biliverdin.116

HO-1– /– mice also have increasedmortality following aortic allograft
transplantation due to graft thrombosis that was attenuated by
CORM or adoptive transfer of wild-type platelets.114 Similarly,
HO-1 inhibition in rats led to graft rejection following heart trans-
plantation with coronary artery thrombosis, leukocyte infiltration,
and myocardial infarction which could be attenuated by CO.113

HO-1– /– mice also have exaggerated venous thrombosis following
inferior vena cava ligation, with increased expression of tissue
factor, selectins, and pro-inflammatory signaling.115 Furthermore,
HO-1 gene transfer into injured carotid arteries of apolipoprotein E
null mice leads to earlier thrombolysis, with reduced fibrin deposition
and decreased expression of plasminogen activator inhibitor-1.113

Vasoregulation
Although HO-1 has been shown to modulate vascular tone in experi-
mental studies, the physiologic significance of HO-1 on vascular re-
activity in vivo remains unknown. In studies where induction of HO-1
decreased blood pressure in hypertensive animals, the vasodilatory
effects have been attributed to CO.117,118 Overexpression of HO-1
decreased vasoreactivity of pig arteries ex vivo, in a manner that
appeared related to a cGMP-dependent mechanism independent
of NO.25 Additional studies have demonstrated that exogenously
administered CO relaxes isolated aortas in an endothelium- and
NO-independent fashion.119,120 Endogenous CO release has also
been shown to dilate blood vessels in the liver, skeletal muscle, and
brain.121–123 The mechanism by which CO mediates vasodilation
has largely been attributed to sGC activation and increases in cGMP
but, compared with NO, CO is a weak activator of sGC.119,124 Add-
itional mechanisms of CO-induced vasorelaxation include stimulation
of calcium-activated potassium channels (BKCa) in VSMC,125 as well as
modulation of endothelial-derived vasoconstrictors.126 Furthermore,
in some vascular tissues under certain conditions, CO has been
shown to have vasoconstrictive effects by inhibiting endothelial NO
synthase (eNOS) expression and diminishing NO production.127,128

The HO pathway and cardiovascular risk
factors
Extending fromtheexperimentaldata focusedonthemechanisticcon-
tributors to CVD, HO-1 has been shown to be upregulated in the
setting of cardiovascular risk factors such as cigarette smoking,129

hyperglycaemia,130 and hypertension.131 Although increased plasma
and monocyte HO-1 levels have been observed in persons with
type 2 diabetes,132,133 the role of the HO-1–CO pathway in diabetes
and metabolic disease is incompletely understood. Multiple experi-
mental studies have demonstrated a protective role for HO-1 and its
products in relation to insulin resistance and diabetes.50–53,91,92,134–138

In rodent obesity models, HO-1 induction decreases weight gain,
reduces adiposity, and improves insulin sensitivity and glucose toler-
ance.134–138 Furthermore, HO-1 induction leads to increased levels of
adiponectin and PPAR-g in adipocytes, reduced adipocyte size,138 and
decreased adipogenesis in obese mice.139 However, a recent study sug-
gests that HO-1 activity is paradoxically a maladaptive contributor to
obesity-related insulin resistance and diabetes.140 These seemingly
contradictory bodies of data could be related to a differential effect of

HO-1 metabolism products or a dose-dependent effect of HO
pathway activity.

Translating an old paradox into a
new paradigm
The dual effects of the HO pathway, having been demonstrated in
multiple settings,warrant special attention.Dependingon theexperi-
mental conditions, HO-1 and its products have been observed
to exert differential effects. For instance, HO-1 and CO exert anti-
proliferative effects in VSMCs but pro-proliferative effects in
ECs.106,107 Most studies suggest that HO-1 and its products confer
anti-apoptotic properties in the face of vascular injury, but overex-
pression of HO-1 and bilirubin has also been shown to stimulate
apoptosis in VSMC.101 Similarly, whereas CO administration demon-
strates vasodilatory effects in most studies, CO has also been shown
to have vasoconstrictive effects under different experimental
conditions.127,128

Just as experimental studies have demonstrated variable HO-1 and
CO activity in the setting of different experimental conditions, clinical
studieshave also producedapparently conflicting results (Table 1). On
the one hand, genetic polymorphisms leading to increased HO-1
expression have been associated with lower risk for hypertension,
diabetes, and CVD in both referral and general population samples.
On the other hand, indirect measures of HO-1 activity have been vari-
ably associated with increased risk for metabolic traits and CVD in
selected and unselected community cohorts. There are several pos-
sible reasons for discrepant findings including differences in study
design, potential confounders, and limitations of the various indirect
measures of HO-1 activity used. It is also likely that while physiologic
levels of HO-1 pathway activity are essential for health, measures of
increased HO-1 activity reflect a compensatory—and, in some
situations, an excessive—response to pathologic stress.

Overall, the apparent paradox of differential effects of HO-1 and
its products in experimental models and the both very low and
very high levels of HO-1 activity observed in association with
adverse clinical outcomes may, in fact, reflect the central biological
role of the HO-1 pathway in maintaining cellular and tissue homeo-
stasis (Figure 4). This phenomenon has been demonstrated for well-
established markers of cardiovascular stress, including conventional
inflammatory markers (i.e. c-reactive protein, interleukins) and natri-
uretic peptides, for which genetic deficiencies predispose to adverse
disease phenotypes even while excess circulating levels are also con-
sistently associated with adverse clinical events.141 –143

Future directions
Taken together, prior investigations of the HO pathway underscore
its potential role in modulating risk for CVD and, in turn, to serve as a
therapeutic target with wide ranging implications. To this end, there is
morework to be done. For instance, the extent to which measures of
HO-1 activity may serve as reliable prognostic markers of clinical car-
diovascular risk has yet to be established. Most genetic studies of
HO-1 variants have been performed in Asian cohorts and, thus,
require validation in other populations. The largest studies of CO
and clinical outcomes have relied predominantly on measures of
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CO in exhaled breath144,145; even though associations with cardio-
vascular and metabolic endpoints in these studies were significant
after accounting for potential confounders (e.g. smoking status and
lung disease), additional investigations using more direct measures
of endogenous CO are needed. Measures of endogenous CO are
preferred in part because circulating levels of the other HO
pathway products, biliverdin and iron, are more prone to variation
due to the activity of other metabolic pathways. In addition,
gaseous or water-soluble tablet delivery of CO (i.e. in the form of
CORM) has shown promise as agents for inducing HO-1 activity.
Interestingly, HO-1 is also induced by many existing therapeutic
agents including statins, rapamycin, paclitaxel, NO, aspirin, and pro-
bucol.146,147 Of course, the extent to which certain pre-clinical or
clinical disease states could benefit from induction of deficient
HO-1 activity, as opposed to inhibition of excess HO-1 activity,
remains unknown.

Overall, a large body of accumulating and emerging evidence
highlights the need for more research of the HO pathway and its pro-
ducts, particularly endogenous CO, with respect to the development
of CVD in humans. Ongoing investigations in the field promise to
improve our understanding of how activity of the HO pathway may
be harnessed to optimize human health and reduce the global
burden of CVD. Accordingly, further discoveries regarding the thera-
peutic potential of interventions targeting the HO pathway appear to
be on the horizon.
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