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a b s t r a c t

Background: Inorganic nitrate (NO3
−) is a precursor of nitric oxide (NO) in the body and a large number of

short-term studies with dietary nitrate supplementation in animals and humans show beneficial effects
on cardiovascular health, exercise efficiency, host defense and ischemia reperfusion injury. In contrast,
there is a long withstanding concern regarding the putative adverse effects of chronic nitrate exposure
related to cancer and adverse hormonal effects. To address these concerns we performed in mice, a
physiological and biochemical multi-analysis on the effects of long-term dietary nitrate supplementation.
Design: 7 week-old C57BL/6 mice were put on a low-nitrate chow and at 20 weeks-old were treated with
NaNO3 (1 mmol/L) or NaCl (1 mmol/L, control) in the drinking water. The groups were monitored for
weight gain, food and water consumption, blood pressure, glucose metabolism, body composition and
oxygen consumption until one group was reduced to eight animals due to death or illness. At that point
remaining animals were sacrificed and blood and tissues were analyzed with respect to metabolism,
cardiovascular function, inflammation, and oxidative stress.
Results: Animals were supplemented for 17 months before final sacrifice. Body composition, oxygen
consumption, blood pressure, glucose tolerance were measured during the experiment, and vascular
reactivity and muscle mitochondrial efficiency measured at the end of the experiment with no differ-
ences identified between groups. Nitrate supplementation was associated with improved insulin re-
sponse, decreased plasma IL-10 and a trend towards improved survival.
Conclusions: Long term dietary nitrate in mice, at levels similar to the upper intake range in the western
society, is not detrimental.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Dietary intake of inorganic nitrate has for more than half a
century been considered potentially harmful due to its bio-
conversion to nitrite and carcinogenic nitrosamines [1,2]. After the
discovery of nitric oxide (NO) as a biological signaling molecule
B.V. This is an open access article u

ric dimethylarginine; AU, ar-
ressure; cGMP, cyclic guani-
ptiometry; eNOS, endothelial
assessment of insulin re-
OS, inducible nitric oxide
t; IPITT, intraperitoneal in-
DPH, nicotinamide adenine
oxide synthase; NaCl, sodium
enylephrine; SDMA, sym-
sure; SNP, sodium ni-

),
nitrate and nitrite have been used as stable surrogate markers of
NO synthase-derived NO [3]. More recently an alternative pathway
of NO generation was described in which serial reduction of nitrate
and nitrite to NO and other bioactive nitrogen intermediates oc-
curs [4]. This NO synthase (NOS) independent pathway relies on
retention of nitrate anions through salivary concentration from the
plasma. Nitrate is reduced to nitrite by oral commensal bacteria,
swallowed, absorbed and further reduced to NO and other bioac-
tive nitrogen oxides in blood and tissues [5,6]. A number of studies
have demonstrated robust NO-like bioactivity after ingestion of
nitrate. These include a reduction in blood pressure [7,8], inhibi-
tion of platelet aggregation [8,9], improved vascular function [10]
and increased mitochondrial efficiency [11]. The crucial involve-
ment of oral bacteria in nitrate bioactivation is evident from ex-
periments using an antibacterial mouthwash, or if the test persons
avoid swallowing of saliva after nitrate ingestion. Under these
conditions the nitrate effects are greatly reduced or lost [8,12–14].
A paradox regarding the proposed harmful effects of dietary ni-
trate is the fact that vegetables are the greatest source of this
anion. Long term longitudinal studies have specifically identified
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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green leafy vegetable intake, which is the dominant nitrate source,
as inversely proportional to the risk of diabetes in aging females
and cardiovascular disease in males [15,16].

The recent studies showing beneficial cardiovascular and me-
tabolic effects of dietary nitrate in animal models and humans
have been short term or acute. Other long term dietary studies
have been performed investigating the putative toxicity of nitrate
and nitrite using high doses of these anions [17–21]. This study
aimed at determining the long term effects of dietary nitrate in-
take in mice at doses similar to what can be achieved in humans
by a diet rich in vegetables. During nitrate or matched sodium
chloride supplementation of approximately 18 months, we looked
at the parameters for metabolic, cardiovascular and inflammatory
differences.
Materials and methods

Animals

All animal procedures in this study were in strict adherence to
the Guide for the Care and Use of Laboratory Animals as adopted by
the U.S. National Institutes of Health and were approved by the
Regional Animal Care and Use Committee of Stockholm, Sweden.
Six week-old male C57Bl/6 mice (n¼27) were obtained from
Charles River (Sulzfeld, Germany). After 1 week acclimatization
the animals were fed low nitrate chow (0.06 mg/g NO3,
D06041501DW, Research Diets, New Brunswick, NJ, USA) and
housed in rooms at 22 °C with a 12/12 day-night cycle. After
3 months, the animals were separated into similar weight groups
of 14 and 13 with 1 mM sodium chloride (NaCl) or 1 mM sodium
nitrate (NaNO3) respectively in the drinking water. Over this per-
iod, weight and food and water uptake were monitored (Fig. 1).
The health of the animals was monitored using an institutional
physiological checklist and if behavior resulted in a combined
score of 0.4 the animal was sacrificed and blood and organs col-
lected. Seven animals were sacrificed due to poor health and four
animals died of natural causes during the experiment.

Materials

All chemicals not specified were obtained from Sigma-Aldrich
at the highest grade available.

Body composition

Body composition by dual energy X-ray absorptiometry (DeXA)
was measured under isoflurane anesthesia using the PIXImus
Fig. 1. Experimental timeline. Diagram of the experimental procedures on the mice o
mentation. NaCl, sodium chloride; NaNO3, sodium nitrate; DeXA, dual energy X-ray abso
intraperitoneal insulin tolerance test.
imager (General Electric, Niskayuna, NJ, USA) according to manu-
facturer's instructions [22].

Intraperitoneal glucose tolerance test

Animals were starved for 6 h, separated individually, fasting
blood glucose recorded (Freestyle Lite, Abbott Diabetes Care, Ala-
meda, CA, USA). Following an intraperitoneal injection of D-glucose
(2 g/kg BW) blood glucose was measured at 15, 30, 60 and 120 min
[22].

Intraperitoneal insulin tolerance test

Under non-fasting conditions the mice were separated and
initial blood glucose measurement was taken from the tail, an
intraperitoneal insulin load (0.75 IE kg�1) was administered and
blood glucose was measured at 15, 30, 45, 60, 75, 90, and 120 min
[22].

Blood pressure

Blood pressure was monitored using the Coda High Throughput
Noninvasive Tail Monitoring System (Kent Scientific, Torrington,
CT, USA) following the manufacturer's protocol. Systolic, diastolic
and mean arterial pressure measurements were collected over
5 consecutive days and averaged [22].

Indirect calorimetry

Individual mouse oxygen consumption was measured using an
INCA indirect calorimeter (Somedic, Horby, Sweden). Animals
were placed in the equipment between 5 pm and 6 pm and un-
derwent 36 h at 24 °C and 24 h at the thermoneutral 34 °C
maintaining a 12/12 light dark cycle consistent with animal room
timing.

Mitochondrial isolation

After euthanizing the mouse, the soleus muscle was extracted,
weighed and immediately added to 1 mL of ice-cold isolation
medium: 100 mM sucrose, 100 mM KCl, 50 mM Trizma–HCl, 1 mM
KH2PO4, 0.1 mM EGTA and 0.2% BSA (weight). The sample was
homogenized with a pair of scissors (E5 min) and left for sedi-
mentation. The supernatant was removed and the sample was
washed by adding new isolation medium again followed by sedi-
mentation. This procedure was repeated twice whereupon isola-
tion medium containing bacterial protease (0.2 mg/mL) was added
and the sample was left on ice for 30 s followed by low intensity
ver the course of the experiment. The green squares indicate period of supple-
rptiometry; IPGTT, intraperitoneal glucose tolerance test; BP, blood pressure; IPITT,
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vortexing during 30 s. After repeating the procedure once more,
the sample was transferred to a Potter-Elvehjem homogenizer and
further homogenized at 125 rpm during approximately 2 min. The
sample was then transferred to a falcon-tube pre-filled with 3 mL
of isolation medium and centrifuged at 700g for 10 min (4 °C). The
supernatant was collected and further centrifuged at 10,000g
during 10 min. The buffy coat of extramitochondrial debris was
carefully washed away with isolation medium followed by re-
suspension in isolation medium. After a new centrifugation step at
7000g for 5 min, the pellet was further washed and resuspended
in mitochondrial preservation medium (0.6 ml/mg tissue sample)
containing 0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate,
20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose,
1 g/L BSA, 20 mM histidine, 20 mM vitamin E succinate, 3 mM
glutathione, 1 mM leupeptin, 2 mM glutamate, 2 mM malate and
2 mM Mg–ATP.

Mitochondrial respirometry

All mitochondrial experiments were performed at 37 °C in a
2-channel respirometer (Oroboros Oxygraph O2-K; Oroboros In-
struments, Innsbruck, Austria). Respiration medium contained
0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate, 20 mM taur-
ine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose and 1 mg/mL
BSA. Mitochondrial substrates used for complex I respiration were
pyruvate (5 mM) and malate (2 mM). Stepwise titration of carbo-
nylcyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) was
performed in order to measure maximal uncoupled respiration.
The produced adenosine triphosphate per consumed oxygen (P/O-
ratio) was determined at 10 kPa in the presence of 2 mM ATP.
Adenosine diphosphate was infused with a microinjection pump
(Tip2K; Oroboros Instruments) at nonsaturating concentrations to
produce a respiration rate corresponding to approximately half
maximal state 3 respiration. The ADP infusion rate was divided by
the oxygen consumption in order to calculate the P/O-ratio. Cor-
rections were made for back diffusion of oxygen into the respira-
tion chamber, oxygen dissolved in the infused ADP solution and
oxygen consumption by the oxygen electrode.

Vascular reactivity

Isolation and dissection of carotids were performed as de-
scribed previously [23]. In brief, bilateral carotid arteries were
isolated and placed in physiological salt solution (PSS, composition
in mM: 119 NaCl, 4.7 KCl, 1.6 CaCl2, 1.2 KH2PO4, 1.2 MgSO4, 25.1
NaHCO3, 5.5 glucose, 0.026 EDTA). Arteries were dissected and
mounted in myograph chambers (model 620M, Danish Myo
Technology, Denmark), and isometric tension was recorded
(Powerlab 4/30, A D instruments, Australia). After mounting, ves-
sels were equilibrated for 20 min in PSS bubbled with carbogen
(95% O2; 5% CO2) at 37 °C, pH 7.4. Resting tension of the arteries
was set in accordance with Mulvany's normalization procedure
[24]. Following a second equilibration, 0.1 mol/L KCl was applied to
assess arterial ring viability. Carotid arteries were then assessed for
their dose response to acetylcholine (ACh, 10�9–10�4 mol/L), so-
dium nitroprusside (SNP, 10�9–10�4 mol/L), and 30 min con-
tractile response to the non-selective NO-synthase inhibitor
Nω-nitro-L-arginine methyl ester (L-NAME, 100 mM) after pre-
constriction with phenylephrine (PE, 0.1 or 1 mM). Arteries were
washed three times and allowed to stabilize between experi-
mental segments.

Plasma markers

Insulin ELISAs were purchased from Mercodia (Uppsala, Swe-
den). Multiplex proinflammatory 7 cytokine kit and custom made
metabolic kit (Glucagon, active GLP-1, Insulin, and Leptin) were
purchased from Mesoscale Discoveries (Rockville, MD, USA). T3
and T4 ELISA kits were purchased from Calbiotech (Spring Valley,
CA, USA). cGMP EIA was purchased from GE Healthcare. All kits
were run according to manufacturers' instructions. Plasma nitrite
and nitrate and urinary nitrate were analyzed by HPLC (ENO-20)
and autosampler (840, EiCom, Kyoto, Japan). Plasma was extracted
using methanol (1:2) then centrifuged for 10 min 4 °C 10g. Urine
samples were initially diluted (1:50) using carrier solution con-
taining 10% methanol. Nitrate and nitrite were separated by re-
verse phase/ion exchange chromatography followed by nitrate
reduction to nitrite by cadmium and reduced copper. The nitrite
was then derivatized using Griess reagent to form diazo com-
pounds and analyzed by detection at 540 nm.
Plasma amino acids

Urea cycle amino acids and methyl-arginines were analyzed as
previously described with a few modifications [25]. Briefly, after
thawing samples on ice, 25 ml of plasma were crashed with 225 ml
of 0.2% formic acid in isopropanol containing the internal standard
(0.73 mM of N4-Arginine). Afterwards samples were vortexed for
30 s and centrifuged at 8000g for 10 min. Finally 5 ml of the su-
pernatant was analyzed by liquid chromatography tandem mass
spectrometry (LC–MS/MS). Separation was performed on an AC-
QUITY UPLC System from Waters Corporation (Milford, MA, USA)
using an Atlantis HILIC Silica 3 mm (150�2.1 mm2) column from
Waters. Mobile phases consisted of 0.2% formic acid in ACN:MeOH
(75:25, v/v) and 0.2% formic acid in water. The flowrate was set at
400 ml/min. The chromatographic gradient was set as follows:
0 min, 100% A; time range 0-8 min, 100-60% A (linear decrease);
time range 8–9 min, 60-50% A (linear decrease); time range 9-
9.8 min 50% A (isocratic range), time range 9.8-10.0, 50-100% A
(linear increase). The column was then allowed to equilibrate at
100% A for 3 min. Detection was performed using a Waters Xevos

TQ triple quadrupole equipped with an Electrospray Ion Source
working in positive mode. For the quantification, the following
SRM transitions were used: Arginine (175.1-70.1), Ornithine
(133.1-70.1), Citrulline (176.1-70.1), ADMA (203.1-46.0), SDMA
(203.1-172.1) and N4-Arginine (179.1-71.1).
NADPH oxidase activity

Segments of the heart, liver and kidney were cut from frozen
tissue and homogenized in PBS using a Bullet Blender (Next Ad-
vance, Inc. Averill Park, NY, USA) following the manufacturer's
protocol. Particulate was centrifuged, supernatant was collected
and diluted, and then 50 mM of lucigenin and 0.1 mM NADPH
added. Superoxide production was measured every 3 s for 3 min
with the AutoLumat LB953 Multi-Tube Luminometer (Berthold
Technologies, Bad Wildbad, Germany) [22].
Statistics

Comparison between groups was calculated by student's t-test.
For comparison of 2 groups over time a 2-way ANOVA followed by
Bonferroni post-hoc test was used. Survival was calculated using
Log-rank test. All statistical calculations were made using Graph-
pad Prism (La Jolla, CA, USA). A p valueo0.05 was considered
significant. All results are shown as mean7SEM.



Fig. 2. Weight and body composition. Average weight (A) and lean and fat body composition (B) at different time points over the course of the study. Control represented by
open bars and nitrate by green bars. Average weight consists of the 8 animals per group. In the body composition graph the numbers above the bars indicate animals per
group. Values are means 7 SEM.
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Results

Metabolic changes

Weight and body composition
Past publications have found that nitrate intake inhibited

weight gain [20,26–28]. In contrast with these findings we found
no differences in average weight or weight gain over the 17
months of nitrate supplementation when compared to control
(Fig. 2A). Only animals that survived until final sacrifice were in-
cluded in this weight comparison. Food and water consumption,
measured periodically over the length of the study, were similar
between groups (not shown). There were no differences in fat and
lean body composition between groups when measured at 2, 12,
and 17 months of supplementation (Fig. 2B). At final sacrifice,
there were no significant differences in the weight of the heart,
liver, pancreas, kidney, and gonadal adipose tissue (Table 1). One
mouse in each group had hepatomegaly when they were sacrificed
due to poor health.

Glucose and insulin tolerance tests
Short-term dietary nitrate has previously been shown to im-

prove glucose metabolism in endothelial NO synthase (eNOS)
deficient mice with features of metabolic syndrome [29]. To see if
there were any differences in glucose handling, intraperitoneal
glucose tolerance tests (IPGTT) were run periodically throughout
the experiment. There were no differences in the area under the
curve of IPGTTs performed at 5, 7, 10, 14 and 17 months of treat-
ment (Fig. 3A) (5 month results shown in Fig. 3B). This held true
for the fasting glucose levels (Control 7.3470.14 mmol/L vs Nitrate
7.4570.14 mmol/L; p¼0.563). An intraperitoneal insulin tolerance
test at 17 months of treatment showed improved insulin respon-
siveness in the nitrate treated group as measured by percent
change from basal glucose level (Fig. 3C) and area under the curve
of the individual tests (Fig. 3D).
Table 1
Final body weight and organ weight.

Control (8) Nitrate (8) p-Value

Final body weight 38.46 7 1.76 36.48 7 1.99 0.469
Heart 0.205 7 0.00 0.213 7 0.00 0.310
Liver 1.993 7 0.14 2.017 7 0.20 0.924
Pancreas 0.175 7 0.01 0.185 7 0.01 0.576
Kidney 0.540 7 0.02 0.534 7 0.02 0.835
Gonadal fat 1.432 7 0.17 1.382 7 0.20 0.854
Metabolic markers in plasma
The improved insulin tolerance test suggested changes in hor-

mone levels, so we looked at plasma hormone levels related to
metabolism by multiplex ELISA. There were no differences in
plasma leptin, glucagon, active GLP-1 and insulin levels (Table 2).
Closer look at the individual results indicated one obese nitrate
animal skewed the insulin results away from significance (Fig. 4A).
This mouse had insulin resistance as identified in the nitrate
treated animals by the diamond in the individual IPITT AUC
(Fig. 3D), fasting insulin level (Fig. 4A) and the HOMA-IR figures
(Fig. 4B). Statistical calculation without this animal led to sig-
nificantly decreased insulin and HOMA insulin resistance score in
the dietary nitrate group.

Prior research had identified nitrate intake as down regulating
plasma levels of thyroid hormones thyroxine (T4) and triio-
dothyronine (T3) [20,26,30]. Our experiment found total T3 tren-
ded to being decreased in the nitrate treated group and this re-
mained after calculating the ratio of T3 to T4 (Table 2).

Oxygen consumption
Research in humans has shown that acute nitrate intake re-

duces resting metabolic rate and oxygen cost during exercise, and
these effects are coupled to improved skeletal muscle mitochon-
drial efficiency [11,31,32]. Indirect calorimetry was measured in a
subset of animals at 11 months of treatment to see if there were
changes in oxygen consumption under both ambient and ther-
moneutral conditions. Thermoneutral conditions remove the re-
quirement for the animals to expend energy maintaining their
body temperature. There were no significant differences in oxygen
consumption, respiratory quotient, or delta oxygen under normal
(24 °C, data not shown) or thermoneutral (34 °C) conditions (Ta-
ble 3). At sacrifice, soleus muscle was isolated from the mice and
mitochondrial efficiency was measured. Longterm nitrate treat-
ment did not change the respiratory control ratio, the P/O ratio,
leak, state 3, or 4 or uncoupled respiration (Table 4).

Cardiovascular parameters

Blood pressure
Acute dietary nitrate has been shown to decrease blood pres-

sure in humans [7,8]. Blood pressure was measured by tail cuff
monitoring after 16 months of nitrate treatment. No differences
between the treatment groups were identified in the systolic,
diastolic or mean arterial pressure (MAP) (Table 5).

Vascular reactivity
At final sacrifice, ex vivo reactivity of the carotid artery was



Fig. 3. Glucose and insulin tolerance tests. Area under the curve (AUC) of the intraperitoneal glucose tolerance test (IPGTT) as a percentage of the 5 month IPGTT in control
animals (A), and group average IPGTT curve at 5 month of supplementation (B). Intraperitoneal insulin tolerance test (IPITT) as percent of basal glucose (C) and area under
the curve for each of the individual mice measured in arbitrary units (AU) (D). Control represented by open bars or symbols and nitrate by green bars or symbols. Values are
means 7 SEM. npo0.05.

Table 2
Plasma hormone markers.

Control (8) Nitrate (8) p-Value

Leptin (pg/L) 7.542 7 1.55 8.399 7 2.99 0.803
Glucagon (pg/mL) 187.9 7 29.5 208.3 7 43.2 0.702
GLP-1 (pg/mL) 28.72 7 3.49 33.42 7 7.77 0.589
Insulin (pg/L) 3.881 7 0.61 2.627 7 0.76 0.222
Total T3 (nM) 2.712 7 0.12 2.199 7 0.22 0.060
Total T4 (nM) 56.85 7 3.75 54.98 7 2.54 0.648
T3/T4 Ratio 0.048 7 0.002 0.040 7 0.003 0.052

Table 3
Metabolic cages: thermoneutral.

Control (6) Nitrate (5) p-Value

Inactive period
Oxygen consumption 20.5271.779 20.0071.828 0.843
Respiratory quotient 0.72670.054 0.77870.026 0.438
Delta oxygen 8.60270.727 8.37970.813 0.842
CO2 production 14.4370.624 15.3671.113 0.468

Active period
Oxygen consumption 32.4271.969 33.1674.784 0.881
Respiratory quotient 0.59670.027 0.67770.075 0.299
Delta oxygen 13.6371.025 13.7071.812 0.974
CO2 production 19.3371.207 21.7672.385 0.362
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carried out in a myograph. There were no differences in the en-
dothelium-independent dilatory response to sodium nitroprusside
between controls and nitrate treated mice (Fig. 5A). The en-
dothelium-dependent response to acetylcholine was also similar
Fig. 4. Plasma insulin and HOMA. Plasma insulin (A) and HOMA score for insulin resistance (B) calculated from blood glucose and insulin level at sacrifice and shown as
arbitrary units (AU). Values are means 7 SEM.



Table 4
Mitochondrial respiration.

Control (5) Nitrate (5) p-Value

RCR 5.55370.794 4.55170.398 0.301
P/O Ratio (pmol s�1) 1.23270.132 1.21570.078 0.910
Leak respiration 0.41070.190 0.32870.067 0.538
State 3 respiration 6.41470.952 4.47170.787 0.154
State 4 respiration 0.49770.117 0.46770.082 0.839
Uncoupled respiration 6.93371.888 5.18070.629 0.404

RCR¼Respiratory control ratio.
Leak, States 3 and 4, and uncoupled respiration units are pmol /s/mg.

Table 5
Blood pressure.

Control (10) Nitrate (12) p-Value

Systolic 95.871.49 98.172.42 0.452
Diastolic 66.871.32 66.971.47 0.972
MAP 76.171.26 76.971.74 0.730
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between the two groups (Fig. 5B). Treatment with non-selective
NO synthase inhibitor L-NAME for half an hour induced a similar
sized contraction in both groups (Fig. 5 C). Taken together, the
results demonstrate that long term dietary nitrate had no adverse
effects on vascular reactivity.

Vascular plasma markers
Analysis of nitrogen oxides in the final plasma collection in-

dicated no difference in plasma nitrite or nitrate between the
treatment groups (Fig. 6A and B). Two animals with liver nodules
skewed the control group towards increased plasma nitrite levels
inducing a trend towards significance (Fig. 6A). Plasma cGMP has
been shown to be increased after acute nitrate dosing, though
there were no differences after long term nitrate treatment
(Fig. 6C). To confirm that the animals were ingesting nitrate, we
measured urinary nitrate collected from the bladder at final
Fig. 5. Ex vivo vascular reactivity. Carotid rings were analyzed for their response to so
L-NAME (C). Control represented by open squares and nitrate by green squares. Values
sacrifice (Fig. 6D). Urine collected directly from the bladder at
sacrifice contained similar amounts of nitrate in both groups.
However, in the control group one mouse with liver nodules
skewed the control data. Exclusion of this animal led to twice as
high levels of urinary nitrate in the treated animals.

Previous research has identified a crosstalk between nitrate
and decreased eNOS function as evidenced by changes in plasma
amino acid concentrations and aortic eNOS phosphorylation [33].
Nitric oxide is produced by the reaction of oxygen and L-arginine
with the eNOS yielding L-citrulline. There were no significant dif-
ferences in total arginine, citrulline and ornithine concentrations
or in ratios of citrulline to arginine, or ornithine to citrulline
(Table 6). Dimethyl arginines, which are inhibitors of eNOS func-
tion, were also analyzed with no significant differences in their
plasma concentration (Table 6).

Inflammation and oxidative stress
Inflammatory markers in plasma. During aging there is a natural
increase in plasma inflammatory markers [34]. Using a pro-in-
flammatory multiplex ELISA we found no differences in interferon-
gamma, interleukin-1beta, interleukin-6, KC/GRO, (an interleukin-
8 homolog found in mice), and interleukin 12p70 (Table 7). The
anti-inflammatory interleukin-10 was significantly decreased in
the nitrate supplemented group. The overall values were in the
same range as we found in a batch of 6–9 month-old wildtype
animals (unpublished data).

NADPH oxidase activity in tissue. Oxidative stress due to increased
NADPH oxidase activity is often increased with aging and chronic
inflammation. NADPH oxidase activity was compared in heart, li-
ver and kidney tissue. There were no differences between the
treatment groups in tissue NADPH oxidase activity, supporting the
lack of inflammation changes found in the plasma cytokine mea-
surements (Fig. 7).
dium nitroprusside (SNP) (A), acetylcholine (ACh) (B) or 30 minute application of
are means7SEM. PE¼phenylephrine.



Fig. 6. Nitrogen oxides and cGMP. Final plasma nitrite (A), nitrate (B), cGMP (C), and urinary nitrate (D). Note the split y-axis on graphs B and D. Data from two animals in the
control groups with liver nodules are shown as diamonds. Values are means7SEM. Ns¼non-significant.

Table 6
Plasma amino acids.

Control (8) Nitrate (8) p-Value

Arginine (mM) 85.97710.15 78.2176.275 0.526
Ornithine (mM) 41.7974.252 45.0675.976 0.662
Citrulline (mM) 43.5972.418 42.5072.734 0.770
Cit/Arg 0.54470.047 0.57570.062 0.699
Orn/Cit 0.96570.092 1.06370.139 0.562
SDMA (mM) 0.30270.036 0.26670.009 0.344
ADMA (mM) 1.98470.085 1.88470.005 0.322

Fig. 7. Tissue NAPDH oxidase activity. NADPH oxidase activity was measured by
NADPH addition to heart, liver and kidney homogenates inducing superoxide
production and reaction with lucigenin. Control represented by open bars and ni-
trate by green bars. Values are means 7 SEM.

Table 7
Plasma cytokines (pg/mL).

Control (8) Nitrate (8) p-Value

INF-gamma 1.89770.602 1.12070.114 0.245
IL-1beta 5.70870.298 6.82470.616 0.125
IL-6 49.07714.68 32.5273.421 0.309
IL-10 57.0475.991 35.7975.329 0.018n

KC/GRO 60.26712.83 54.9774.552 0.708
IL-12p70 216.9783.63 135.678.981 0.360

n po0.05
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Survival

We made a survival curve of the animals that died or had to be
euthanized due to poor health. The results suggested a slightly
better median survival with nitrate supplementation vs the con-
trol group (Control 600.5 days vs Nitrate 640.5 days, po0.05). This
should be confirmed in a larger study.
Discussion

This study in normal healthy mice shows that dietary nitrate
does not have any obvious adverse long-term effects, an important
finding considering the major health concerns associated with
nitrate intake. Though there are continued concerns of nitrate
intake inducing adverse health effects in humans, our study found
limited differences from control mice after close to a year and a
half of high dietary nitrate. Our calculations extrapolating average
mouse nitrate consumption to a 75 kg person would yield ap-
proximately 26.1 mg nitrate per day on the control diet and
350 mg/day on the nitrate diet. These doses fall at the ends of the
average intake range of 40 mg to 120 mg/day published in World
Health Organization advisory documents [35], combined from
multiple national nitrate intake studies. A study from the Neth-
erlands, analyzing nitrate and nitrite content in a duplicate sample
of individual 24 h food and water intake in 1994, found a range of
1–322 mg/day with a median of 53 mg nitrate per day and ap-
proximately 20% of the volunteers exceeded 150 mg/day [36].
While the control is on the low side of published ranges, it is a
plausible level due to increased societal reliance on processed
food, often containing negligible nitrate content. Vegetarians often
ingest more nitrate so the treatment regimen may be more re-
presentative of a vegetarian diet.
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Prior research on the toxicity and carcinogenicity of nitrate in
rats used doses 10–50 times that used in this study, without salt
matched controls [17,18,20,21]. Even at such exorbitant doses
Chow et al. (1980) saw no survival difference when compared to
control, while Maekawa et al. (1982) saw more animals in the
nitrate group surviving at termination but no differences in cancer
incidence of various organs. A more recent study using a dose 10
times our nitrate dose over a shorter treatment period, found ni-
trate led to decreased weight gain and decreased plasma fasting
insulin, T4 and T3 levels [20]. Our study showed no difference in
group weight or weight gain over the course of 17 months of ni-
trate treatment.

The animals used in our study were healthy wildtype mice,
which started to be afflicted by aging related issues and death
around 20 months of age. The overall health of the mice may have
prevented our finding beneficial effects due to long-term nitrate
supplementation. The study, initially developed to document these
beneficial effects, was modified towards a survival experiment due
to lack of differences. Larsen et al. (2014) found acute nitrate did
not change the glucose tolerance response in healthy volunteers,
though there are other parameters such as blood pressure and
oxygen consumption where acute nitrate induced changes. The
long term supplementation may have also affected the nitrate
homeostasis of the animals, which is supported by the lack of
differences in final plasma nitrite, nitrate and cGMP. Urinary ni-
trate disposal increased from 7 months (data not shown) of
treatment to 17 months reflecting a modified disposal potentially
matching the nitrate intake. These changes could also have af-
fected the ability to identify changes in blood pressure, vascular
reactivity, indirect calorimetry and mitochondrial efficiency which
were analyzed after 10 months of nitrate treatment. Conversion of
nitrate to nitrite in the oral cavity and ingestion is imperative to
achieve blood pressure improvement; which may be modified
under extended nitrate treatment and homeostasis modifications.
The lack of differences in nitrite concentration bears this out. In
contrast to organic nitrate where continuous treatment leads to
endothelial dysfunction, there were no adverse effects on vascular
function as measured by blood pressure or ex vivo carotid re-
sponse after long-term inorganic nitrate supplementation.

The plasma concentration of tri-iodothyronine (T3) and IL-10
were reduced, IL-10 significantly, compared to control after long
term nitrate treatment. Whether these findings are coincidence or
part of a program of overall signaling changes in the body remains
to be determined. Previous studies analyzing T3 concentration and
inflammatory cytokines in patients with euthyroid illness have
conflicting results with one study finding no association between
T3 and cytokines [37], while another reported decreased T3 and
increased IL-10 and IL-6 [38].

T3 and T4 concentrations affect metabolic function and have
been shown to be decreased in people with hypothyroidism and
increased in hyperthyroidism. Body mass index changes inversely
to plasma T3 concentration [39,40]. Weight loss studies looking at
T3 concentration before and after weight loss show that plasma T3
was lower compared to controls [41–43]. Pourhassan et al. (2014)
following a cohort of non-smoking adults between 2 and 4 years,
stratified the volunteers by weight loss, weight gain or weight
stable and found concomitant decreases in T3 and insulin in the
weight loss group and a T3 concentration increase in the weight
gain group. In contrast to studies using supra-physiological nitrate
intake in rats which found decreased plasma T3 and T4 con-
centrations with decreased weight gain [20,26,27,30,44–46], there
was no significant weight or weight gain difference between
groups at any point during the 17 month period. Combining our
findings of improved insulin response, decreased plasma T3 and
plasma insulin in most of our mice, opens the possibility that ni-
trate treatment lowers the threshold for metabolic response.
The decrease in anti-inflammatory IL-10 is another counter-
intuitive event. In general IL-10 increases are described to lead to
better insulin response, while IL-6 leads to insulin resistance [47].
IL-10 has been shown to be decreased in response to acute in-
flammation [48,49] and multiple sclerosis [50] inversely to the
increased pro-inflammatory cytokines. There was no increase in
inflammatory signaling in our experiments. Jadert et al. (2012)
showed that acute nitrate decreased inflammatory response to
signaling for neutrophil extravasation and recruitment without a
change in overall clearance of a bacterial load [51]. Nitric oxide and
nitrite have been shown to negatively modulate iNOS and NADPH
oxidase activity [52]. As speculated with T3 maybe nitrate mod-
ulates inflammatory signaling lowering the basal cytokine ex-
pression. Future experiments will need to explore this possibility.
Conclusions

The findings in this study do not support any long-term toxic
effects of dietary nitrate. Several of the beneficial effects described
previously with short-term nitrate supplementation could not be
reproduced in this model of natural aging. Intriguing results of
decreased plasma insulin, and IL-10 and improved insulin toler-
ance and survival will need to be confirmed in larger follow up
studies. Studies exploring different doses of nitrate supplementa-
tion will yield better indications for optimal supplementation.
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