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Abstract: Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal dis-
ease mechanisms. Disrupted cardiomyocyte Ca2+ homeostasis is recognized as a major contributor to the heart failure phenotype, as it 
plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we out-
line existing knowledge of the involvement of Ca2+ homeostasis in these deficits, and identify four promising targets for therapeutic in-
tervention: the sarcoplasmic reticulum Ca2+ ATPase, the Na+-Ca2+ exchanger, the ryanodine receptor, and t-tubule structure. We discuss 
experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future thera-
peutic approaches. 
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I) INTRODUCTION 

 Heart failure treatment has historically undergone several para-
digm shifts. Early pharmacological approaches included cardiac 
glycosides, which may be effective in relieving patients' symptoms, 
but carry a notoriously high risk of toxicity. In the 1980s, adrener-
gic agonists and phosphodiesterase inhibitors were introduced with 
great expectations, as it seemed intuitive to treat impaired contrac-
tility with positive inotropes. However, these agents were observed 
to increase mortality as they induced maladaptive cardiac responses 
and exhausted the failing heart. Consequently, the mainstay of to-
day’s treatment is based on inhibitors of the chronic neurohumoral 
activation in heart failure, such as �-adrenergic blockers and angio-
tensin converting enzyme (ACE) inhibitors. Unfortunately, these 
treatments often only provide heart failure patients with sympto-
matic relief and temporarily impede disease progression. Therefore, 
new treatment strategies are needed that target the basal pathogenic 
mechanisms of this disease. The two main causes of death in heart 
failure patients, declining cardiac pump function and arrhythmias, 
have both been linked to disrupted Ca2+ homeostasis in cardiac 
muscle cells (cardiomyocytes) [1]. While the details of these defi-
ciencies continue to be unraveled, existing data suggest that target-
ing deficient Ca2+ handling in failing cardiomyocytes has enormous 
therapeutic potential. In this review, we will examine the potential 
benefits of modulating several key players in Ca2+ homeostasis, 
with discussion of recent and ongoing clinical trials. However, to 
place these proposed therapies in their proper context, we will first 
briefly outline the involvement of Ca2+ in disrupted contraction and 
relaxation, arrhythmogenesis, and signaling in failing cardiomyo-
cytes.  

Impaired Cardiomyocyte Contraction and Relaxation 

 There is general agreement that smaller and slower contraction 
of individual cardiomyocytes contributes to reduced left ventricular 
contraction (systole) in heart failure [1, 2]. Contractility is regulated 
by a process known as excitation-contraction (EC) coupling [3]. 
This process is initiated as the action potential propagates over the 
surface membrane and into invaginations called t-tubules, trigger-
ing the opening of L-type Ca2+ channels (LTCCs). The resulting  
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Ca2+ influx in turn triggers additional Ca2+ release from the sarco-
plasmic reticulum (SR) via Ca2+ release channels called ryanodine 
receptors (RyRs) (Fig. 1A). This process, known as Ca2+ induced 
Ca2+ release (CICR), is made possible by close proximity between 
LTCCs and RyRs in functional units known as dyads. Ca2+ release 
from a dyad is called a Ca2+ spark, and the spatiotemporal summa-
tion of Ca2+ sparks constitutes the Ca2+ transient. Contraction is 
triggered as Ca2+ binds to the myofilaments.  

 Fundamental to the reduction in contractility in heart failure is 
reduced EC-coupling gain, meaning that less Ca2+ is released from 
the SR upon LTCC activation, resulting in decreased magnitude of 
Ca2+ transients and contractions [4, 5]. This reduction in Ca2+ re-
lease in failing cells largely results from decreased SR Ca2+ content 
which, in turn, results from a) reduced SERCA2a function, b) in-
creased RyR leak and/or c) increased NCX function, which com-
petes with SERCA2a for Ca2+ [1] (Fig. 1B). Reduced EC-coupling 
gain additionally results from impaired communication between 
LTCCs and RyRs. In heart failure, t-tubule organization is dis-
rupted, leading to “orphaned” RyRs which no longer have opposed 
LTCCs (Fig. 1B). Thus, Ca2+ release is de-synchronized across the 
cell, which slows the rising phase of the Ca2+ transient (Fig. 2A), 
and may contribute to reduced contractile power in this condition 
[2]. Ca2+ release is also de-synchronized in failing cells due to a 
sub-population of Ca2+ sparks with slowed kinetics, which we have 
hypothesized result from dispersion of RyRs in the dyad [6]. Fi-
nally, alterations in action potential configuration may de-
synchronize Ca2+ release [7-9], as a prolonged action potential re-
duces the magnitude and kinetics of the Ca2+ current, making trig-
gering of SR Ca2+ release less efficient. Thus, the nature of reduced 
EC coupling gain in heart failure is complex.  

 Relaxation of cardiomyocytes is reported to be slowed and/or 
less extensive in failing cells, which impairs the ability of the ven-
tricle to fill with blood before the next heartbeat. This phase of the 
cardiac cycle, known as diastole, has gained appreciable attention in 
recent years with the realization that a significant proportion of 
heart failure patients exhibit impaired ventricular filling but normal 
systole, a condition known as heart failure with preserved ejection 
fraction (HFpEF) or diastolic heart failure [10]. At the cardiomyo-
cyte level, for efficient relaxation to occur, Ca2+ needs to be effi-
ciently removed from the cytosol following release. The main 
pathways for removal are Ca2+ recycling into SR by the SR Ca2+ 
ATPase 2a (SERCA2a), and Ca2+ extrusion mediated by the plasma 
membrane Na+/Ca2+-exchanger (NCX). Depending on the specific 
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heart failure phenotype, both routes for Ca2+ removal may be im-
paired (Fig. 1B) [11]. Thus, targeting cardiomyocyte Ca2+ homeo-
stasis has the potential to improve both systolic and diastolic func-
tion in heart failure patients. 

Ca
2+

-Dependent Arrhythmogenesis 

 30-50% of heart failure patients are reported to die from sudden 
cardiac death, and the majority of these deaths are linked to ven-

tricular tachycardia [12]. Ventricular tachycardia can result from 
spontaneous electrical activity of cardiomyocytes. In some cases, a 
spontaneous action potential may be triggered by a phasic depolari-
zation during the downstroke of the action potential, called an early 
afterdepolarization (EAD). While the precise mechanisms underly-
ing EAD generation remain debated and may vary in different set-
tings, there is general agreement that many EADs result from inap-
propriate re-opening of LTCCs or other depolarizing currents [13] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Excitation-contraction (EC) contraction coupling in the normal and failing heart. In healthy cardiomyocytes (A), the action potential propagates 
into the t-tubules, opening voltage-gated L-type Ca2+ channels (LTCCs). The resulting Ca2+ influx triggers the opening of Ca2+ release channels (ryanodine 
receptors, RyRs) in the membrane of the sarcoplasmic reticulum (SR). Released Ca2+ initiates contraction as it binds to the contractile apparatus, and relaxation 
occurs as Ca2+ is recycled into the SR by the SR Ca2+ ATPase 2a (SERCA2a), and removed from the cell via the Na+-Ca2+ exchanger (NCX). During heart 
failure (B), Ca2+ release is impaired, leading to slower and smaller contractions. Reduced SR Ca2+ content results from decreased SERCA2a activity, increased 
RyR leak and, in some cases, increased NCX activity. Systolic dysfunction also results from disruption of T-tubule structure, which functionally “orphans” 
some RyRs from LTCCs. Slowed and incomplete Ca2+ removal from the cytosol impairs cardiomyocyte relaxation, and promotes hypertrophy and apoptosis 
signaling. Triggered cardiac arryhythmia has been linked to RyR leak, and removal of released Ca2+ by NCX, causing DADs. EADs may result from inappro-
priate re-opening of Ca2+ channels. Deficient Ca2+ cycling is also linked to altered Na+ homeostasis, following downregulation of the Na+-K+ ATPase (NKA) 
and increased late Na+ current.  
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(Fig. 1B). Abnormal Ca2+ homeostasis can also promote arrhyth-
mogenesis via delayed afterdepolarizations (DADs). These events 
are triggered by spontaneous Ca2+ release from the SR, resulting in 
depolarization as the released Ca2+ is removed from the cell by 
NCX [13]. Thus, targeting cardiomyocyte Ca2+ homeostasis has 
great potential for the prevention of triggered arrhythmias in heart 
failure patients as it is involved in the generation of both EADs and 
DADs. 

Ca
2+

-Dependent Signaling 

 Beyond its role in triggering contraction/relaxation and contrib-
uting to the electrical stability of the cardiomyocyte, intracellular 
Ca2+ ([Ca2+]i) is also critically involved in signaling. For example, 
the Ca2+-dependent calcineurin-NFAT pathway is centrally in-
volved in mediating pathologic hypertrophy [14] and inflammation 
[15]. While the precise nature of the Ca2+ signal which triggers this 
pathway remains unclear, accumulating evidence suggests that Ca2+ 
levels in the dyadic cleft may be critically involved [16, 17] (Fig. 
1B). Ca2+-dependent signaling is also involved in cardiomyocyte 
stress-responses and apoptosis, which additionally contribute to 
impaired myocardial function. Indeed, reduced SR Ca2+ content, as 
is known to occur in failing myocytes, has recently been linked to 
activation of the unfolded protein response, apoptosis, and altered 
SR structure [18]. Finally, disrupted Ca2+ homeostasis is known to 
offset the finely tuned balance between energy demand and avail-
ability in the heart. Energy wasting during heart failure results from 
futile Ca2+ cycling, and ATP production is reduced following Ca2+-
mediated mitochondrial dysfunction [19]. As will be described in 
the following sections, several proposed therapies aimed at improv-
ing contraction/relaxation in cardiomyocytes or arrhythmia sup-
pression may simultaneously inhibit detrimental Ca2+ signaling.  

 Based on the above discussion, several key regulators of Ca2+ 
homeostasis emerge as potential therapeutic targets in failing car-
diomyocytes, namely i) SERCA2a, ii) NCX, iii) RyR and iv) t-
tubule structure. In the remainder of this review we will discuss the 
functional control of these targets, their dysregulation in heart fail-
ure, and ongoing efforts to reverse these impairments. This discus-
sion will highlight opportunities to specifically target different heart 
failure phenotypes on a patient-to-patient basis. 

II) SERCA 

SERCA2a Function 

 SERCA2a contributes to Ca2+ removal from the cytosol by 
recycling Ca2+ into the SR. SERCA2a is thus an important regulator 
of diastolic function since, together with NCX, it sets the rate of 
Ca2+ transient decline and resting Ca2+ levels, and thereby the rate 
and extent of cardiomyocyte relaxation [11]. SERCA2a function 
also contributes to control of systolic function, by regulating the SR 
Ca2+ load available for release. SERCA2a activity is primarily de-
termined by cytosolic Ca2+ levels and its endogenous inhibitor 
phospholamban (PLB). Since Ca2+ is usually the rate limiting factor 
for SERCA2a activity, increased [Ca2+]i directly enhances SR Ca2+ 
pumping [20]. PLB is a reversible inhibitor of SERCA2a, which 
acts by decreasing the Ca2+ affinity, but not the maximum pumping 
capacity (Vmax) of SERCA2a. Phosphorylation of PLB by protein 
kinase A (PKA), a cAMP- dependent kinase, relieves this inhibition 
(Fig. 2B). PKA is activated by intracellular cAMP, which is ampli-
fied via the �-adrenergic pathway. As PLB is one of the major sub-
strates for PKA, PLB phosphorylation is accordingly one of the 
primary mechanisms for increasing SR Ca2+ content and relaxation 
rate following �-adrenergic stimulation [11, 21]. The main mecha-
nism that terminates the �-adrenergic cascade is cAMP degradation 
by a class of enzymes called phosphodiesterases (PDEs), which 
importantly modulate SERCA2a function. The inhibitory effects of 
PLB are also relieved via phosphorylation by Ca2+/calmodulin-
dependent kinase type II (CaMKII). As CaMKII is activated by 
increased [Ca2+]i, this mechanism enables SERCA2a stimulation at 

high pacing rates [11]. It is currently unclear whether the Ca2+ sig-
nal for activation of CaMKII is Ca2+ levels near the dyad, and/or 
integrated [Ca2+]i during the Ca2+ transient. Dephosphorylation of 
PLB is mediated mainly by protein phosphatase 1 [22] (Fig. 2B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Disrupted Ca
2+

 homeostasis in failing cardiomyocytes and 

therapeutic targeting of SERCA2a. A: Representative confocal line-scan 
images (left) show that Ca2+ release is de-synchronized across failing cells, 
resulting in smaller and slower Ca2+ transients (centre panel, magnified in 
inset at right). Unpublished data are from a rat model of heart failure follow-
ing myocardial infarction and sham-operated controls (fluo-4 AM loading). 
Smaller transients additionally result from declining SR content due to 
reduced SERCA2a activity. B: SERCA2a activity may be therapeutically 
increased in heart failure by gene therapy-mediated overexpression or 
pharmacological stimulation. Phospholamban (PLB)-dependent inhibition of 
SERCA could be relieved by increasing PLB phosphorylation by: 1) elevat-
ing cAMP levels (stimulating �-adrenergic signaling or preventing cAMP 
breakdown by phosphodiesterases (PDEs)), or 2) preventing PLB de-
phosphorylation by inhibiting protein phosphatase 1 (PP1), or increasing 
activity of inhibitor 1 (I-1). Alternatively, competitive inhibition of PLB 
could be employed. 

SERCA2a in Heart Failure 

 Beginning in the late 1980s, SERCA2a levels were reported to 
be reduced in animal models of hypertrophy [23, 24], and in 1990 
Mercadier et al were first to report reduced mRNA levels of 
SERCA2a in human heart failure [25]. The relation between 
SERCA2a levels and loss of contractile force in heart failure was 
later demonstrated by Hasenfuss et al [26]. Numerous subsequent 
studies have confirmed the significance of reduced SERCA2a lev-
els in heart failure pathogenesis. While some studies have reported 
reduced mRNA levels but unaltered protein levels [27, 28], differ-
ent disease etiologies, stages and animal models employed may 
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contribute to this discrepancy. Regional differences in SERCA 
expression have also recently been suggested to underlie these con-
flicting results [29]. 

 SERCA2a activity may also be reduced in heart failure due to 
altered protein regulation, as a number of studies have reported 
augmented PLB inhibition. Although most studies have failed to 
demonstrate alterations in PLB levels in heart failure [27, 28, 30], 
SERCA2a downregulation gives a relative increase in PLB com-
pared to SERCA2a, and this may increase inhibition of the remain-
ing pumps. Most important, however, seems to be a reduced phos-
phorylation state of PLB observed in human heart failure [27, 31] 
and experimental models of heart failure [28]. In the failing human 
heart, phosphorylation at thr17 has been suggested to be reduced 
despite increased CaMKII activity, due to increased activity of the 
phosphatase calcineurin [32]. Furthermore, reduced ser16 phos-
phorylation has been attributed to increased activity of protein 
phosphatase 1 in both human heart failure [33, 34] and animal 
models [28]. 

 As expected based on above discussions, downregulation of 
SERCA2a levels, and thus activity, have been correlated with both 
systolic and diastolic dysfunction in human heart failure [26, 35]. 
Similar findings have been made in mouse models with SERCA2a 
ablation. Mice with heterozygous SERCA2 knockout (+/-) showed 
reduced levels of SERCA2a, slowed SR Ca2+ uptake, and impaired 
in vivo cardiac contractility and relaxation [36]. Furthermore, con-
ditional cardiomyocyte SERCA2a gene knockout caused decreased 
rates of cytosolic Ca2+ removal, reduced SR Ca2+ content and Ca2+ 
transient magnitude (Fig. 3A), and development of end-stage heart 
failure at several weeks following gene deletion [37-39]. These 
experiments illustrate the direct relationship between SERCA2a 
levels, Ca2+ handling, and cardiac pathology. 

 Reduced SERCA2a function also has important implications for 
other aspects of the failing phenotype, including arrhythmogenesis, 
mechanoenergetics and hypertrophic and apoptotic signaling [40]. 
SERCA2a activity has been implicated in both early and late after-
depolarizations (EADs and DADs). Reduced SERCA2a activity 
decreases the magnitude of Ca2+ release, resulting in decreased 
inactivation of L-type Ca2+ channels and predisposition for EAD 
generation. Effects on DADs however, may depend on the interac-
tion between SERCA2a activity and that of other Ca2+ handling 
proteins. Data from the SERCA2 knockout mouse have shown that 
reduced SERCA2a function is associated with a decreased thresh-
old for RyR opening [41], which appears to be due to CaMKII-
dependent phosphorylation of the channel. At baseline, these cells 
exhibited fewer Ca2+ waves and DADs, however �1-adrenergic 
stimulation increases SR Ca2+ content above the threshold for RyR 
opening, and may explain the increased incidence of arrhythmias in 
this setting [42]. 

Targeting Reduced SERCA2a Activity in Heart Failure 

 As the detrimental effects of reduced SERCA2a function have 
become evident, its potential as a target in heart failure has 
emerged. Transgenic mice overexpressing SERCA2a exhibit en-
hanced cardiac function at baseline in parallel to improved cardio-
myocyte Ca2+ handling (increased Ca2+ transient magnitude, more 
rapid Ca2+ decline) and faster cardiomyocyte shortening and re-
lengthening [43]. Work done in transgenic rats has consistently 
reported similar benefits of SERCA2a overexpression, and these 
rats are less prone to heart failure development after myocardial 
insults [44, 45]. 

 The SERCA2a/PLB ratio has also been increased experimen-
tally in heart failure models by overexpressing SERCA2a via ade-
noviral gene transfer. Isolated cardiomyocytes from failing human 
hearts transduced with the SERCA2a gene exhibited restored Ca2+ 
homeostasis and contractile function [46]. Similarly, in vivo gene 
delivery of SERCA2a in a rat model of heart failure restored 
SERCA2a expression and improved systolic and diastolic function 

[47]. SERCA2a restoration also positively influences myocardial 
arrhythmogenesis, mechanoenergetics, hypertrophic remodeling 
and apoptosis. A concern about SERCA2a restoration was that 
increased SR Ca2+ content would trigger spontaneous Ca2+ release 
in the setting of leaky RyRs. However, this has proven otherwise, 
as Ca2+ leak and ventricular arrhythmias were reduced by increas-
ing SERCA2a levels in a rat model of heart failure [48]. A proposed 
explanation is that reversal of elevated diastolic [Ca2+]i attenuates 
arrhythmogenic NCX currents and/or reduces RyR Ca2+ leak. 

 The group of Hajjar has demonstrated that mechanoenergetic 
wasting in aortic banded rats was reduced by SERCA2a gene trans-
fer, and survival improved, probably due to reduction in RyR Ca2+ 
leak (futile Ca2+ cycling) and improved mitochondrial function [49, 
50]. SERCA2a overexpression also decreases diastolic [Ca2+]i, and 
a resulting attenuation of calcineurin/NFAT activation may be re-
sponsible for attenuated hypertrophic and apoptotic signaling [40]. 
SERCA2a overexpression in rat heart failure also reduced patho-
logic expression of miR-1, a micro RNA involved in regulation of 
transcription factors, receptor ligands, apoptosis regulators and ion 
channels [51].  

 Following these positive experimental results, human trials with 
SERCA2a gene therapy have been initiated. A phase 1 trial with an 
adeno-associated viral-1 vector (AAV1) was used to deliver 
SERCA2a gene by intracoronary infusion. The results were pub-
lished in 2009, establishing safety and feasibility [52]. A phase 2 
trial, the Percutaneous Administration of Gene Therapy in Cardiac 
Disease (CUPID) study, was then conducted to further evaluate 
clinical benefits [53]. The CUPID study was a randomized, double 
blind, placebo controlled trial that included 39 patients with ad-
vanced heart failure. The effects of either low, mid or high dose 
AAV1-SERCA2a gene infusion were compared with placebo. The 
study confirmed safety, and the high dose group demonstrated 
therapeutic response with decreased symptoms of heart failure, 
improved functional status, decreased levels of natriuretic peptides 
and attenuated adverse remodeling of the left ventricle. A three-
year follow-up study of these patients showed reduced mortality in 
those that received high dose gene therapy [54]. High titers of ade-
noviral neutralizing antibodies against the AAV1 are, however, a 
problem in some patients that needs to be addressed. 

 As an alternative to gene therapy, pharmacologic agents may 
directly act to restore SERCA2a function. Istaroxime produces both 
inotropic and lusitropic effects due to its dual mechanism of action 
[55]. First, it directly stimulates SERCA2a, increasing both SR Ca2+ 
content and cytosolic Ca2+ removal (Fig. 2B). Second, it is a non-
glycoside inhibitor of the Na+/K+ ATPase, and thereby increases 
intracellular Na+ levels and indirectly inhibits NCX function. The 
resulting rise in [Ca2+]i makes more Ca2+ available for SERCA2a 
and increases the rate of Ca2+ removal and SR Ca2+ content. In vivo 
animal experiments have shown that both acute and chronic istar-
oxime treatment restore cardiac function with no increase in ar-
rhythmic events or cardiac energetics [56-58]. This is contrary to 
the harmful profile of established inotropic drugs. The HORIZON-
HF trial was a phase-2, randomized, double-blind, placebo-
controlled clinical trial that evaluated hemodynamic, echocardio-
graphic and neurohormonal effects of acute administration of istar-
oxime on heart failure deterioration [59, 60]. The results were 
promising, and included improved systolic and diastolic function, 
lower pulmonary capillary wedge pressure, increased blood pres-
sure and decreased heart rate. 

 Another potential method of restoring SERCA2a activity is to 
reduce the inhibitory effects of PLB. Several studies of PLB-
deficient mice [61-64] have demonstrated enhanced Ca2+ cycling, 
improved lusitropy and inotropy, no increase in mortality and abro-
gated progression to heart failure. Furthermore, inhibition of wild-
type PLB by gene transfer of pseudophosphorylated PLB prevented 
heart failure development in several animal models [65-67] (Fig. 
2B). Inhibition of wild-type PLB has also been demonstrated with 
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loss-of-function PLB mutants [68]. In human heart failure, isolated 
cardiomyocytes were transduced with adenoviral vectors encoding 
PLB antisense RNA, with a resulting improvement of Ca2+ han-
dling and contraction and relaxation velocities [69]. Somewhat 
worrying, however, is the link between human PLB mutations and 
cardiac disease. In fact, PLB null mutations cause lethal forms of 
hereditary dilated cardiomyopathy [70]. This suggests that knock-
down or competitive inhibition of PLB inhibition should be ap-
proached with caution in humans. 

 Alternatively, relieved SERCA2a inhibition can also be accom-
plished by therapeutically increasing PLB phosphorylation. Protein 
phosphatase 1 (PP1), which dephosphorylates PLB, exhibits in-
creased activity in heart failure due to i) increased expression [28, 
33] and ii) reduced activity of inhibitor-1 [71] (Fig. 2B). Inhibiting 
the activity of PP1 is therefore a putative strategy to increase PLB 
phosphorylation. Indeed, gene delivery of inhibitor-1 or inhibitor-2 
has been associated with reduced incidence of arrhythmia, hyper-
trophy, heart failure and death in animal models of heart failure [72, 
73]. Delivery of short hairpin RNA targeting PP1 by adenoassoci-
ated viral vectors was also observed to prevent ventricular remodel-
ing [74]. Recently, a decoy peptide mimicking phosphorylated PLB 
was shown to competitively inhibit PP1 from interacting with wild-
type PLB, and improved cardiac contractility resulted [75]. How-
ever, since protein phosphatase 1, together with protein phosphatase 
2a, exert the majority of total phosphatase activity in the heart, in-
hibition of its function will affect many phosphorylated cardiac 
proteins and may produce undesirable side-effects. The ryanodine 
receptor is such a target that poses a specific concern, as hyper-
phosphorylation of this receptor has been hypothesized by some to 
be arrhythmogenic [76] (see discussion in the RyR section). 

 PLB phosphorylation may also be increased by enhancing 
kinase activity. PKA activity is dependent on cAMP levels which 
could be raised by either increased synthesis (via adenylyl cyclase), 
or reduced degradation (via phosphodiesterases) (Fig. 2B). One can 
envision several possible approaches to increase adenylyl cyclase 
activity. Although the enzyme is activated by traditional inotropic 
�-agents such as dobutamine, the �1-receptor signaling pathway is 
associated with increased mortality. Gene therapy aiming at in-
creasing adenylyl cyclase expression could bypass the detrimental 
�1-receptor cascade (Fig. 2B). Adenylyl cyclase isoform 6 is acti-
vated by the �1-receptor, and overexpression of this enzyme is re-
ported to improve contractility and survival in animal models of 
heart failure [77, 78]. A human trial has been initiated to evaluate 
the potential of adenoviral delivery of adenylyl cyclase 6 by intra-
coronary infusion in human heart failure (ClinicalTrials.gov Identi-
fier: NCT00787059). Another method to increase cAMP bioavail-
ability, but avoid the �1-receptor cascade, is to inhibit cAMP deg-
radation by phosphodiesterases (PDEs). Most cardiac PDE activity 
has been attributed to PDE3, PDE4 and, more recently, PDE1 [79] 
(Fig. 2B). PDE3 inhibition is known to have inotropic effects in 
heart [80, 81]. However, the benefits of PDE3 inhibition have only 
been sustained in short-term therapy, and long-term mortality is 
increased predominantly due to ventricular arrhythmias [80, 81]. It 
is likely that the underlying mechanisms are the same as for �1-
receptor stimulation, as increased Ca2+ cycling results in the genera-
tion of arrhythmic currents and unfavorable metabolic effects. In-
terestingly, PDE3 inhibiton is also reported to contribute to the 
inotropic effects of the myofilament sensitizer Levosimendan [82]. 

II) NCX 

NCX Function 

 While SERCA2a recycles Ca2+ into the SR, NCX is the main 
route for Ca2+ extrusion from the cardiomyocyte. NCX plays an 
important role in setting resting Ca2+ levels, and thus the extent of 
cardiomyocyte relaxation. However, since resting [Ca2+]i regulates 
SERCA2a activity, SR content, and Ca2+ transient magnitude, the 

net effect of altered NCX activity on the rate of Ca2+ decline can be 
difficult to predict, and may vary between species [11]. This func-
tional interaction between NCX and SERCA2a is illustrated in Fig. 
3A.  

 Although NCX functions predominantly to extrude Ca2+, it may 
also work in reverse mode resulting in Ca2+ influx. It is generally 
agreed upon that the NCX exchanges one molecule of Ca2+ for 
three molecules of Na+ [83], making it electrogenic. Therefore, 
forward-mode NCX operation results in a depolarizing current, 
while reverse mode carries a repolarizing current. The driving force 
which determines NCX direction and function are the electro-
chemical gradients, namely membrane potential and transmembrane 
gradients of Ca2+ and Na+ [84]. Negative membrane potential and 
low intracellular Na+ concentration ([Na+]i) promote forward opera-
tion mode. Since low cytosolic Na+ levels are actively maintained 
by the Na+/K+-ATPase (NKA), NCX function and NKA function 
are closely coupled (Fig. 1A). Indeed, experimental data suggest 
that NCX and the �2-isoform of NKA are closely localized in the t-
tubules, which allows their function to be linked by [Na+]i in a re-
stricted microdomain [85-87]. For example, reducing NKA�2 activ-
ity can locally elevate [Na+]i which inhibits Ca2+ removal by NCX, 
while making reverse-mode NCX function more likely [88]. 

 Another mechanism of NCX regulation is the small inhibitory 
protein phospholemman. This is a member of the FXYD family of 
ion transport regulators and is found to co-localize with both NKA 
[89] and NCX [90] in heart (Fig. 3B). PKA and PKC phosphoryla-
tion modulate its inhibitory effect, but in a different manner in NCX 
compared to NKA; phospholemman phosphorylation relieves NKA 
inhibition but increases NCX inhibition [91]. During phosphoryla-
tion, phospholemman therefore increases contractility, by inhibiting 
NCX and increasing [Ca2+]i [92], but also protects against Na+ over-
load by relieved inhibition of NKA [93]. 

NCX in Heart Failure 

 NCX upregulation is a common feature of both human heart 
failure [94-96] and animal models of heart failure [97, 98]. As such 
changes often occur simultaneously with SERCA2a downregula-
tion, a marked increase in NCX/SERCA2a ratio is commonly re-
ported, and has been implicated in both contractile dysfunction and 
arrhythmogenesis [99]. Reduced contractility is caused by increased 
transsarcolemmal Ca2+ extrusion relative to SR Ca2+ recycling, 
which depletes SR Ca2+ stores. Accordingly, experimental overex-
pression of NCX in cardiomyocytes is associated with reduced SR 
Ca2+ load and contractile dysfunction [100]. Thus, in many heart 
failure models, NCX upregulation potentiates the loss of SR Ca2+ 
caused by reduced SERCA2a activity (Fig. 3A). On the other hand, 
increased NCX function may actually be beneficial for diastolic 
function, by correcting for defective Ca2+ removal due to reduced 
SERCA2a function. In support of this concept, Hasenfuss et al 
showed that NCX levels predicted diastolic function in human heart 
failure, with preserved relaxation in subjects with upregulated NCX 
[101].  

 However, NCX function is dependent not only on its expres-
sion, but also by local Na+ and Ca2+ levels and action potential con-
figuration – all of which are altered in heart failure [102]. [Na+]i is 
reported to be increased in both human heart failure and animal 
models [103], due to either decreased Na+ extrusion or increased 
Na+ influx. NKA is the major Na+ extrusion pathway in cardiomyo-
cytes, and in several, but not all models of heart failure NKA ex-
pression is found to be decreased [103] (Fig. 1B). Downregulation 
of the �2 NKA isoform is of particular significance, due to its func-
tional coupling with NCX [104, 105]. Important Na+ influx mecha-
nisms believed to contribute to Na+ loading are NCX [102], Na+/H+ 
exchange (NHE) [106] and increased late Na+ current [107, 108]. 
With sufficient Na+ loading in end-stage heart failure, NCX-
mediated Ca2+ extrusion may be impaired despite increased NCX 
expression [37, 39]. Prolongation of action potential duration in 
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failing myocytes can exacerbate this deficit as positive membrane 
potentials reduce the driving force for Ca2+ extrusion by NCX [9, 
39]. With respect to arrhythmogenesis, NCX activity may be impli-
cated in several ways [13]. As described previously, spontaneous 
Ca2+ release during diastole is a feature of heart failure, and extru-
sion of released Ca2+ elicits DADs. When NCX expression is in-
creased, the depolarizing current will be larger and DADs are more 
likely to trigger action potentials, ectopic beats and arrhythmias. In 
addition, inward NCX current associated with Ca2+ extrusion during 

the downstroke of the action potential may prolong action potential 
duration, leading to EADs and spontaneous beats [13].  

 Through its regulation of resting Ca2+ levels, NCX is also an 
important control point for hypertrophy signaling. In this regard, 
marked upregulation of Ca2+ extrusion may effectively compensate 
for SERCA2a loss and prevent hypertrophy, as we recently reported 
in SERCA2 KO mice [36, 109]. Without such compensation, in-
creased diastolic [Ca2+]i and hypertrophic remodeling are expected 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Altered NCX activity as a therapeutic target in heart failure. A: Experimental Ca2+ transients from SERCA2 knockout mice are dramatically 
reduced (left panel). Modeling data predict that simultaneous NCX ablation increases Ca2+ transient magnitude (right). This indicates that NCX competes with 
SERCA2a for the same pool of Ca2+ and reduces SR Ca2+ content and release. Data are adapted from [227], with permission. B: NCX activity could be thera-
peutically modulated by direct targeting or altering electrochemical gradients. NCX inhibitors attenuate cellular Ca2+ extrusion and thereby increase cellular 
Ca2+ load and ultimately contractility. Inhibition of NKA similarly inhibits NCX-mediated Ca2+ extrusion by increasing cellular Na+ levels. However, preven-
tion of Ca2+ overload is desirable in patients at risk for arrhythmia, and this may be attained by inhibition of Na+ influx pathways, which augments Ca2+ extru-
sion. 
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[16] (Fig. 3A). Since Na+ and Ca2+ levels are coupled, increased 
[Na+]i in heart failure may indirectly promote hypertrophy, as re-
ported following NHE-1 activation [110, 111]. 

Targeting NCX in Heart Failure 

 The above discussion illustrates that there is great potential for 
targeting NCX in heart failure, to prevent arrhythmia and improve 
pump function. Current pharmacological inhibitors of NCX are the 
drugs KB-R7943 [112], SEA-0400 [113] and SN-6 [114] (Fig. 3B). 
While KB-R7943 also blocks Na+, K+ and Ca2+ channels, SEA-
0400 and SN-06 have more selective profiles. Still, regardless of 
pharmacological profile, NCX inhibitors indirectly inhibit LTCCs 
by increasing [Ca2+]i [115]. Even so, NCX inhibition is expected to 
have inotropic effects by shifting the balance from Ca2+ extrusion to 
SR Ca2+ recycling. Furthermore, NCX blockade is expected to 
block generation of the arrhythmogenic inward INCX.  

 NCX inhibition has been investigated in a range of different 
cardiac disease models, including heart faiilure. In a rabbit rapid-
pacing model of heart failure, in vivo SEA-0400 administration was 
observed to reduce action potential duration, repolarization disper-
sion and the number of EADs and ventricular tachycardias [116]. In 
canine heart failure, DADs were also attenuated by SEA-0400 
[117]. Inotropic effects of reduced NCX function have been ex-
perimentally demonstrated by intracellular application of the ex-
change inhibitory peptide (XIP) in a canine model of heart failure, 
with restoration of SR Ca2+ reuptake and release [118]. Also, phar-
macological NCX blockade by SEA-0400 showed positive 
inotropic effects in mice with heart failure following transverse 
aortic constriction [115], although relaxation was slowed. This is an 
expected drawback of NCX inhibition for heart failure etiologies 
where increased NCX function compensates for impaired Ca2+ re-
moval by SERCA2a. Thus, NCX inhibition may be best suited for 
patients which predominantly exhibit systolic dysfunction. How-
ever, based on presently available data, Antoons et al recently con-
cluded that the effects of NCX inhibition have thus far been pre-
dominantly beneficial in reducing arrhythmias and restoring con-
tractility [119]. An added benefit of NCX inhibition may be at-
tenuation of myocardial fibrosis and stiffening, as reported by Ka-
mimura et al in a rat model of heart failure with preserved ejection 
fraction. They hypothesized that the underlying mechanism was 
reduced Ca2+ entry into fibroblasts which attenuates collagen pro-
duction [120]. 

 Rather than directly modulating NCX function, an alternative 
approach is to indirectly modify NCX activity via changes in [Na+]i. 
Cardiac glycosides function, at least in part, by inhibiting NKA and 
increasing [Na+]i, which attenuates NCX-mediated Ca2+ removal 
and augments SR Ca2+ load (Fig. 3B). However, such action also 
increases the propensity for triggered arrhythmias, and Ca2+ over-
load is implicated in myocardial dysfunction, remodeling and fail-
ure. Istaroxime, which is a non-glycoside NKA inhibitor, bypasses 
these side effects of Ca2+ overload by also stimulating SERCA2a 
(as discussed in the SERCA section). Alternatively, the opposite 
strategy of targeting pathological increases in [Na+]i may reduce 
NCX mediated Ca2+ overload and improve survival. As discussed 
above, increased NHE-1 activity has been implicated in Na+ gain in 
failing cells, and NHE-1 inhibition has been shown to experimen-
tally reverse cardiac hypertrophy [110, 121]. However, several 
clinical trials have not been able to reproduce the cardioprotective 
effects of the NHE-1 inhibitors cariporide or eniporide in patients 
with acute coronary syndromes [122-124]. In fact, the most recent 
of these trials demonstrated cariporide-induced toxicity [124]. Tar-
geting the late Na+ current is another possible approach (Fig. 3B). 
Ranolazine, an inhibitor of this current, has been shown to reduce 
[Na+]i, and reverse diastolic dysfunction in tissue preparations from 
failing hearts [107]. Unfortunately, the recent RALI-DHF study 
failed to demonstrate improved left ventricular relaxation following 

Ranolazine treatment in patients with heart failure with preserved 
ejection fraction [125].  

 The final putative strategy for targeting NCX function that we 
will consider is modulation of phospholemman. Both up- and 
downregulation of phospholemman expression and phosphorylation 
are reported in different heart failure models [91]. Further compli-
cating interpretation of the suitability of phospholemman as a drug 
target is its roving inhibition of NCX and NKA. Overexpression of 
phosphomimetic phospholemman in mice resulted in premature 
death due to heart failure and arrhythmias. Ca2+ removal was slower 
and diastolic Ca2+ increased [126], indicative of NCX inhibition. 
One might expect that the opposite intervention, that is reducing 
phospholemman phosphorylation to activate NCX, might be a suit-
able therapeutic approach in heart failure. However, expected re-
ductions in diastolic [Ca2+]i and Ca2+-dependent signaling would 
likely come at the price of reduced contractility, as has been re-
ported in studies examining NCX overexpression [100]. 

III) RyR 

 As described above, increased NCX activity and reduced 
SERCA2a activity are considered to be important contributors to 
reduced SR Ca2+ content in heart failure. The third pathway by 
which SR Ca2+ content may be reduced is via increased RyR Ca2+ 
leakage. As with SERCA2a and NCX, RyR is also recognized as a 
therapeutic target. In order to understand its potential in therapy, we 
will first outline its function in normal and diseased hearts. 

RyR Function 

 RyR is a large tetrameric protein localized to the SR membrane. 
RyR2, which is the major cardiac RyR isoform, acts as a scaffold-
ing protein that associates with a number of proteins to form a mac-
romolecular complex [127, 128]. This complex, which is important 
for RyR regulation and integrity, includes regulatory proteins such 
as protein kinase A, protein phosphatase 1 and 2a, calmodulin, 
calmodulin kinase II and phosphodiesterase 4D3 (PDE4D3) (Fig. 
4B). This structure allows tight control of RyR function via several 
phosphorylation sites, as well as Ca2+ activation and inactivation 
sites. The RyR2 binding protein FKBP12.6 (calstabin 2) stabilizes 
the tetrameric conformation. 

RyR in the Failing Heart 

 There is general agreement that RyRs become leaky during 
heart failure, resulting in increased frequency of Ca2+ sparks (Fig. 
4A) and waves, which promote arrhythmogenesis as released Ca2+ 
is removed by NCX, causing DADs [13]. Leak-induced elevation of 
[Ca2+] in or near the dyad is also believed to activate pathologic 
signaling leading to hypertrophy and myocardial dysfunction [17, 
129]. However, the effect of RyR leakage on mechanical function 
remains a point of discussion. Many have reported that leak-
induced reduction of SR Ca2+ content may decrease Ca2+ transient 
amplitude and contractility. However, the concept of autoregulation 
put forward by the Eisner group predicts that the decrease in SR 
Ca2+ content will be counterbalanced by a larger fractional SR Ca2+ 
release due to increased RyR sensitivity, leaving Ca2+ transients 
unaltered [130]. This concept is in accordance with the phenotype 
of human catecholaminergic polymorph ventricular tachycardia 
(CPVT), where RyR leak is increased, but contractile force is pre-
served. However, in heart failure RyR leak is also accompanied by 
disturbed SERCA2a and NCX function, which is likely critical for 
mediating depressed contractile function. The Eisner group has also 
shown that increased leak does not alter global diastolic [Ca2+ ]i 
[131], although even local increases in resting Ca2+ levels might 
inhibit relaxation. 

 Increased RyR open probability in heart failure has been attrib-
uted to PKA or CaMKII phosphorylation. Marx et al reported that 
increased �-adrenergic signaling caused PKA-mediated “hyper-
phosphorylation” at Ser2808 of RyR, resulting in FKBP12.6 disso-
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ciation from the channel, destabilization of the closed conformation 
of RyR, and increased Ca2+ leak [132]. Follow-up work by this 
group proposed that stress-induced phosphorylation, oxidation, and 
nitrosylation of RyR [133] also result in depletion of protein phos-
phatases and PDE4D3 [134], which further potentiates RyR hyper-
phosphorylation and FKBP12.6 dissociation. Recently, Lundby et 
al mapped downstream phosphorylation sites of �1-receptor signal-
ing, and RyR Ser2808 was indeed identified as one phosphorylation 
target [135]. However, PKA phosphorylation of RyR and its rele-

vance to heart failure pathogenesis are highly controversial [136]. 
Of particular note, the groups of Houser and Valdivia have been 
unable to reproduce PKA phosphorylation at Ser2808 as a relevant 
mechanism in the cardiac fight-flight response and heart failure 
development [137-140]. 

 Work done in the Bers group showed that CaMKII phosphory-
lation of RyR in mice altered Ca2+ sparks [141], whereas PKA 
phosphorylation did not [142]. In agreement with this finding, in-
creased RyR leak during heart failure has been linked to CaMKII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Altered Ca
2+

 sparks in failing cardiomyocytes and therapeutic targets of RyR activity. A: Line scan confocal imaging of failing cardiomyocytes 
(post-infarction mouse) reveals more frequent and slower Ca2+ sparks (temporal profiles of indicated sparks shown at right; reproduced from [6], with permis-
sion). Thus, disrupted RyR function in heart failure promotes SR Ca2+ leak and dyssynchronous Ca2+ release. B: RyR function is regulated by a large protein 
complex. Phosphorylation (by PKA and CaMKII) and dephosphorylation (by protein phosphatase 1 or 2a) are important regulatory pathways. Strategies to 
inhibit RyR phosphorylation, such as CaMKII inhibitors, are demonstrated to reduce SR Ca2+ leak. RyRs “blockers” such as rycals are an alternative approach 
to reducing leak. 
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phosphorylation at Ser2814 [143]. Recent evidence indicates that 
CaMKII-mediated S2814 phosphorylation actually promotes heart 
failure development [129, 144, 145]. Importantly, CaMKII activity 
is enhanced during chronic �1-adrenergic and angiotensin receptor 
II stimulation, as seen in heart failure, and expression of CaMKII is 
also increased in this disease [146]. 

 While there has clearly been much study of RyR phosphoryla-
tion in heart failure, there is also some evidence to suggest that RyR 
expression may be altered, at least in some models [6, 147]. In mice 
with heart failure following myocardial infarction, we recently ob-
served reduced RyR expression and Ca2+ sparks with slow kinetics 
[6] (Fig. 4A). Slow spark regions also exhibited slowed Ca2+ re-
lease during the action potential, which contributed to de-
synchronized SR Ca2+ release in failing cells. We have hypothe-
sized that reduced RyR density or sporadic RyR distribution may 
underlie these abnormal sparks. 

Targeting RyR Leak to Restore Cardiac Function 

 Despite the controversies described above, there is clearly great 
potential for drugs that might act to reduce RyR-mediated Ca2+ 
leak, and thus prevent arrhythmias, hypertrophic signaling and pos-
sibly contractile dysfunction. Therapeutic agents may either directly 
interact with RyR, or indirectly reduce RyR phosphorylation by 
targeting upstream signaling pathways. 

 Several compounds, collectively called rycals, are known to 
bind and modulate RyR directly (Fig. 4B). One of the first drugs 
shown to restore abnormal RyR function was JTV519 (K201). This 
agent stabilizes the closed RyR conformation, but whether this is 
mediated by FKBP12.6 binding is still controversial. An early study 
in a canine model of heart failure showed that JTV519-treated 
hearts exhibited attenuated PKA-mediated phosphorylation of RyR, 
restored FKBP12.6 binding, inhibited SR Ca2+ leak, and ultimately 
rescued left ventricular function [148]. Further evidence that 
KFBP12.6 binding to RyR underlies these drug actions came from 
the observation that JTV519 effects were observed in transgenic 
FKBP12.6+/- but not FKBP12.6-/- mice [149, 150]. However, later 
studies [151, 152] have questioned such a requirement for 
FKBP12.6, as Yamamoto et al proposed that JTV519 acts to stabi-
lize RyR by restoring normal RyR interdomain interactions [152]. 
There are early indications that JTV519 may have therapeutic 
promise, as experiments in human myocardium indicated that it 
improved both diastolic and systolic function under Ca2+ overload 
conditions [153]. However, it is not clear that these effects stem 
solely from RyR stabilization, as the drug also inhibits ICa, INa and 
IK1 [154]. A new derivate of JTV519, S107, has a more selective 
profile [155], and has been reported to increase the binding of 
FKBP12.6 to RyR, and to reduce abnormal diastolic Ca2+ release, 
arrhythmias [155], and heart failure progression in mice [133]. In a 
current phase 2, placebo-controlled randomized trial, the anti-
arrhythmic properties of another RyR modulating drug, S44121, are 
being evaluated in patients with congestive heart failure (ISCRTN 
reg nr 14227980). 

 Flecainide and tetracaine have also been identified as possible 
RyR inhibitors. Flecainide is a class Ic antiarrhythmic clinically 
used to treat atrial fibrillation. The drug has additionally been 
shown to inhibit the open-state of the RyR, and thus experimentally 
prevent Ca2+ waves and arrhythmias in both mouse and human 
CPVT [156, 157]. However, this finding is controversial as Liu et 
al found that flecainide prevented triggered activity in CPVT mice 
primarily by Na+ channel block, while Ca2+ homeostasis was mini-
mally affected [158]. Tetracaine, on the other hand, is a closed-state 
blocker of RyR [159], and could thereby reduce diastolic Ca2+ leak 
without interfering with systolic Ca2+ release. 

 Finally, there is great therapeutic potential in targeting signaling 
pathways that control RyR phosphorylation via PKA or CaMKII. 
Indeed, several existing heart failure therapies may ultimately target 
RyR phosphorylation via actions on these kinases. For instance, one 

important mechanism behind the beneficial effects of �1-
antagonism may be reduced PKA- and/or CaMKII-dependent RyR 
phosphorylation [133] [160] (Fig. 4B). In addition, ACE inhibitors 
have been shown to reverse both elevated CaMKII expression and 
the hypertrophic phenotype in spontaneously hypertensive rats 
[161]. Angiotensin receptor blockers may similarly reduce CaM-
KII-derived leak. Specific inhibition of CaMKII by agents such as 
KN-93 or AIP also reduce RyR leak [143] (Fig. 4B), and have been 
shown to improve the force frequency-relationship in trabeculae 
isolated from failing human hearts [162]. KN-93 was additionally 
shown to prevent arrhythmia in CaMKII� overexpressing mice 
[163]. Finally, interventions such as SERCA2a overexpression 
which reduce diastolic Ca2+ levels can inhibit RyR opening directly 
and/or via reduced CaMKII activation [48]. The benefits of CaM-
KII inhibition may extend beyond effects on RyRs, as CaMKII 
targets a range of dysfunctional processes in heart failure, including 
gene transcription, inflammatory signaling and fibroblast activation 
(reviewed in [164]).  

IV) T-TUBULE STRUCTURE 

T-Tubule Structure and Function 

 As described in the introduction, the transverse tubules (t-
tubules) are invaginations of the cellular membrane which form an 
organized, primarily transverse, network that enables the formation 
of dyadic junctions between the cellular membrane and the SR 
[165]. T-tubules have been identified in ventricular cardiomyocytes 
in a wide variety of mammalian species (for a thorough review see 
[166]) and recent studies on larger mammals such as pig, sheep, 
cow, horse, and human [167-170] also found t-tubules in atrial 
myocytes (for review see [171]). The majority of t-tubules lie in 
close proximity to the Z-lines of healthy ventricular cells [172-174]. 
However, in addition to the transverse elements of the t-tubule sys-
tem, a smaller proportion of longitudinal elements extend between 
Z-lines [6, 175, 176]. T-tubule geometry and distribution vary be-
tween species, and it has been suggested that ventricular cells from 
smaller species (with higher heart rates) have thinner t-tubules but 
higher overall t-tubule densities [5, 174, 177, 178].  

 T-tubule density and organization play an important role in 
determining the homogeneity of SR Ca2+ release. The high degree 
of t-tubule organization in rodent ventricle cells facilitates very 
synchronous Ca2+ release [5, 6, 179]. In cells with lower t-tubule 
density, such as pig ventricular myocytes, Ca2+ release is less syn-
chronous [180], and in de-tubulated cells a wave-like inward 
propagation from the periphery to the center of the myocyte is ob-
served [181]. In addition, cultured ventricular cells lose t-tubules 
progressively over time leading to dyssynchronous release of Ca2+ 
[182]. Thus, in healthy cardiomyocytes, a well-organized t-tubule 
network ensures close localization between LTCCs and RyRs, tight 
control of CICR, and uniform Ca2+ release across the cell. 

T-Tubules in the Failing Heart 

 We and others have shown that T-tubule structure is altered in 
pathological states such as heart failure (for review see [2]). De-
pending on species, the specific heart failure etiology, and the time-
point during disease progression, these alterations may include: i) 
disorganization of transversely-oriented t-tubules (Fig. 5A) [6, 105, 
179, 183-193], ii) loss of t-tubules [5, 105, 185, 187, 188, 191, 194-
200], iii) increase in the longitudinal fraction of tubules [6, 109, 
179, 183, 189, 190, 193, 201, 202], and iv) dilation of t-tubules 
[173, 192, 199-201]. T-tubule loss or drift of transverse elements 
causes spatial dissociation between LTCCs in the t-tubules and 
RyRs in the SR, leading to the formation of orphaned RyRs (Fig. 
1B). Such changes impair the ability of LTCCs to trigger SR Ca2+ 
release [6, 183], but also de-synchronize the Ca2+ transient, as Ca2+ 
release from orphaned RyRs can be triggered only after diffusion of 
Ca2+ from intact dyads [6, 159, 178, 188, 196, 203-205]. In the 
majority of studies, the relationship between T-tubule disruption 



440    Current Pharmaceutical Design, 2015, Vol. 21, No. 4 Røe et al. 

and Ca2+ release dyssynchrony has been merely correlative. How-
ever, we recently examined this issue quantitatively in a mathe-
matical model describing spatiotemporal dynamics of Ca2+ in the 
cytosol and SR. With progressive disorganization of T-tubule struc-
ture during heart failure development, the model confirmed greater 
Ca2+ release dyssynchrony (Fig. 5A). However, the model and ex-
periments additionally showed that the magnitude of Ca2+ release 
and RyR Ca2+ sensitivity also affect release synchrony [193]. Of 
note, reduced SR content in failing cells exacerbates dyssynchrony 
of Ca2+ release resulting from T-tubule disruption. The less homo-
geneous Ca2+ transient is slower and of lower amplitude in failing 
cells, which has been linked to slower and smaller contraction [2]. 

 In addition to enabling dyad formation, the integrity of t-tubules 
plays a crucial role for action potential propagation through the 
myocyte. T-tubule detachment from the surface membrane prevents 
those tubules from receiving action potentials, and effectively or-
phans RyRs in their dyadic junctions. However, interesting new 
data indicate that detached t-tubules also impede action potential 
propagation into t-tubules which remain in contact with the cell 
surface, worsening dyssynchrony of Ca2+ release [206]. Further-
more, important ion channels and transporters present in the t-
tubules are expected to exhibit dramatically altered distribution 
following t-tubule re-organization. Such changes likely contribute 
to altered action potential configuration, which exacerbates im-
pairments in CICR in failing cells [9, 207, 208]. Since the LTCC 
and NCX are more prominently expressed in t-tubules compared to 
the sarcolemmal membrane [175, 209], t-tubule disruption has been 
linked to deficient trans-sarcolemmal Ca2+ fluxes [179, 182, 183]. 
We have additionally linked impaired NCX-mediated Ca2+ removal 
in failing cells to loss of the alpha-2 NKA isoform during t-tubule 
disorganization, and disruption of a Na+ microdomain shared by 
these proteins [105]. 

 While there are clearly a number of detrimental consequences 
of altered t-tubule organization in failing cells, our recent data indi-
cate that the increased longitudinal fraction of t-tubules frequently 
observed during heart failure may be compensatory. We observed 
that in SERCA2 knockout mice, newly grown longitudinal elements 
form dyadic junctions with the SR [109]. Although LTCCs are not 
present in these tubules, they do contain NCX in close apposition to 
RyRs. Our mathematical modeling data suggest that such changes 
facilitate a greater reliance on trans-sarcolemmal Ca2+ cycling, by 
facilitating NCX-mediated Ca2+ entry and removal, and that Ca2+ 
entry via NCX can elicit CICR. This hypothesis has not yet been 
confirmed by functional data, and it also remains to be determined 
whether a similar adaptive role of newly grown tubules occurs in 
other heart failure models. 

 It is currently unclear whether t-tubule disarray during heart 
failure is pro-arrhythmic. Data from the Wehrens group have indi-
cated that orphaned RyRs exhibit increased activity [186], which 
might theoretically contribute to greater SR Ca2+ leak and/or Ca2+ 
waves. However, our own data have indicated that Ca2+ sparks al-
most exclusively occur at intact dyads in failing cells [6]. This find-
ing is supported by previous reports from failing [210, 211] and de-
tubulated [181] cardiomyocytes.  

Possible Therapeutic Targets to Recover the t-Tubule Network 

 To date, t-tubule structure has not been deliberately targeted in 
clinical practice. However, Sachse et al. [202] recently showed that 
resynchronization therapy of failing canine hearts improved the 
organization of t-tubules, suggesting that similar therapies in pa-
tients may also promote reverse remodeling of t-tubules. A sug-
gested explanation for this action is that re-synchronization relieves 
the mechanical stress present in the late-activated lateral wall, and 
attenuates stress- or strain-dependent signaling which may lead to t-
tubule disruption. Support for this hypothesis comes from the ob-
servation that Sildenafil treatment during pulmonary artery hyper-
tension was observed to improve t-tubule structure by reducing 

afterload on the right ventricle [188]. Similar effects have been 
reported following pressure unloading by administration of �1-
receptor blockers [212] and mechanical unloading by heterotopic 
transplantation of post-infarction failing hearts [195]. Thus, it ap-
pears that the load and/or stretch placed on the myocardium are key 
factors in determining the organization/disorganization of the t-
tubule network. The t-tubules themselves may transduce these sig-
nals as they contain stretch-sensitive transmembrane proteins and 
channels, and exhibit altered geometry during stretch and contrac-
tion of the myocyte [213, 214]. 

 Several molecules have been described to influence t-tubule 
structure and function [2]. One of the more extensively studied 
molecules is Junctophilin-2 (JP2) which plays an important role in 
anchoring t-tubules to the SR (Fig. 5B). Knockout (KO) models 
have shown that JP2 is critical for normal cardiomyocyte function 
[215]. This led to several investigations of JP2 in heart failure, and 
it is now well documented that JP2 is markedly down-regulated in 
failing mice [212], rats [185, 188, 216], and humans [217]. JP2 
down-regulation was observed to correlate well with t-tubule loss 
[185], and recent studies have shown that JP2 knockdown or trans-
genic expression of JP2 shRNA causes t-tubule remodeling [194]. 
Thus, although the molecular mechanisms underlying JP2 down-
regulation in heart failure remain unclear, existing data indicate that 
stabilization of JP2 levels may have therapeutic potential. Interest-
ingly, caveolin-3, a muscle-specific caveolae-related protein which 
associates with JP2, may be important for anchoring JP2 in the t-
tubule, and is down-regulated along with JP2 in pathological states 
including heart failure [218] (Fig. 5B). Furthermore, caveolin-3 KO 
mice exhibit structural remodeling of the t-tubule network in skele-
tal muscles [219]. Caveolin-3 over-expression may therefore serve 
as a therapeutic approach to combat JP2-dependent t-tubule remod-
eling. 

 Based on the growing consensus that mechanical stress regu-
lates t-tubule structure and function, it is perhaps not surprising that 
recent work has implicated a role for calcineurin-NFAT signaling. 
It is well-established that this pathway transduces mechanical stim-
uli during hypertrophy [220] through a number of effectors, includ-
ing microRNAs. MicroRNA-24 (miR-24), a member of the miR-
23a-27a-24-2 cluster which is up-regulated in heart failure [221], 
has been identified as a prominent regulator of JP2 expression in 
cardiac tissue [221] (Fig. 5B). Overexpression of miR-24 in cul-
tured cardiomyocytes led to JP2 down-regulation, disrupted dyadic 
structure, and dysfunctional CICR. The same group has since 
shown that miR-24 suppression protects against heart failure pro-
gression, and associated disruption of t-tubules and Ca2+ homeosta-
sis [222]. Thus, therapeutic inhibition of miR-24 or other compo-
nents of the NFAT signaling pathway holds great potential for 
maintaining dyadic integrity in heart failure. 

 Another protein of interest is telethonin (Tcap), a stretch-
sensitive protein located in the Z-disc of cardiomyocytes. Tcap KO 
mice were observed to exhibit progressive disruption of the t-tubule 
network during development [191]. These defects were especially 
apparent in hearts working against increased mechanical load (tho-
racic aortic constriction). In addition, increased Tcap expression 
was associated with recovery of t-tubules during reverse remodel-
ing induced by SERCA2a gene therapy [192]. Further studies are, 
however, needed to elucidate the precise interplay between myo-
cardial load, expression of Tcap, and t-tubule organization. 

 Amphyphisin-2 (BIN1) is a protein involved in the formation of 
t-tubule invaginations and the trafficking of LTCCs to the t-tubules 
[223, 224]. Hong et al. [225] found that BIN1 was downregulated 
in failing human cardiomyocytes and that this was linked to de-
creased expression of LTCCs in the cell membrane. However, it is 
important to point out that in many heart failure models t-tubule 
density is unaltered or even increased, including a larger fraction of 
longitudinally-oriented tubules [109, 179, 183, 189, 190, 201, 202]. 
Whether BIN1 is involved in the growth of these new tubules re-
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mains unknown, but raises the possibility that BIN1 overexpression 
might have therapeutic potential. 

FUTURE PERSPECTVES 

 As is evident from the above discussion, a growing body of 
preclinical data suggest that targeting abnormal Ca2+ handling in 
heart failure may be beneficial. However, much work remains to be 
done. Our current understanding of Ca2+ homeostasis during heart 
failure is largely focused on the end-stage of the disease, with sur-

prisingly little known about changes in Ca2+ homeostasis during 
disease development. Existing data indicate that Ca2+ cycling is 
initially increased at early stages [226], but it is unclear if such 
alterations may be beneficial if maintained over longer periods, or if 
these apparent “compensations” in fact drive disease progression. 
Investigating the time course of changes in Ca2+ handling will gen-
erate complex data sets, and it will be a considerable challenge to 
integrate and interpret these data effectively. Therefore, we believe 
that the emerging fields of systems biology and mathematical mod-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). T-tubule disruption in heart failure and pathways to restore t-tubule structure. A: Confocal images post-infarction murine cardiomyocytes 
stained with di-8-ANEPPS show disrupted t-tubule structure in heart failure (left panel, magnified in insets). Accordingly, SR Ca2+ release was de-
synchronized in comparison with sham-operated controls. Mathematical modeling quantitatively reproduced the dyssynchronous pattern of Ca2+ release when 
changes in t-tubule organization, RyR threshold, and SR Ca2+ content were accounted for (right panels). Data are adapted from [193], with permission. B: T-
tubule integrity and function is dependent on several proteins. JP2, along with caveolin 3, anchors t-tubules to the SR membrane. Increased calcineurin-NFAT 
signaling resulting from mechanical stress downregulates JP2 and disrupts t-tubules. JP2 expression may be restored by mechanical unloading, blockade of 
calcineurin-NFAT signaling, or by overexpressing the stretch-sensitive protein Tcap. BIN1 is involved in t-tubule growth and is downregulated in heart fail-
ure. Overexpression of BIN1 may therefore attenuate t-tubule loss.  
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eling will play an increasingly important role in accurately identify-
ing drug targets and predicting the consequences of their modula-
tion. Since our ultimate goal is to reduce morbidity and mortality in 
heart failure patients, such mathematical models should be aimed at 
predicting function from the cardiomyocyte level up to the intact 
heart. Greater clinical translation can also be attained by increased 
experimentation on large animal heart failure models and human 
heart failure tissue. Close collaboration between experimentalists 
and clinicians will be essential for testing novel, cellular-level 
therapies in clinical trials. 

CONCLUSION 

 The past several decades of investigation have revealed that 
altered Ca2+ handling is as an important pathophysiological mecha-
nism in heart failure, and that SERCA2a, NCX, RyR, and t-tubule 
structure are key players. Such insight has enabled the recent thera-
peutic targeting of these systems, resulting in attenuation or reversal 
of important facets of the heart failure phenotype, including me-
chanical dysfunction, arrhythmogenesis, and pathological signaling. 
Although the majority of these data are from experimental studies, 
recent and ongoing clinical trials have shown promise. Since heart 
failure is a diverse disease entity, with variations in etiology, phe-
notype, stage and molecular basis, it is anticipated that future thera-
pies based on cardiomyocyte mechanisms will have the potential to 
individualize treatment, and improve patient outcomes. 
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