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Abstract

Background—The sclera is the white outer shell and principal load-bearing tissue of the eye as 

it sustains the intraocular pressure. We have hypothesized that the mechanical properties of the 

posterior sclera play a significant role in, and are altered by the development of glaucoma – an 

ocular disease manifested by structural damage to the optic nerve head.

Method of Approach—An anisotropic hyperelastic constitutive model is presented to simulate 

the mechanical behavior of the posterior sclera under acute elevations of intraocular pressure. The 

constitutive model is derived from fiber-reinforced composite theory, and incorporates stretch-

induced stiffening of the reinforcing collagen fibers. Collagen fiber alignment was assumed to be 

multi-directional at local material points, confined within the plane tangent to the scleral surface, 

and described by the semi-circular von-Mises distribution. The introduction of a model parameter, 

namely the fiber concentration factor, was used to control collagen fiber alignment along a 

preferred fiber orientation. To investigate the effects of scleral collagen fiber alignment on the 

overall behaviors of the posterior sclera and optic nerve head, finite element simulations of an 

idealized eye were performed. The four output quantities analyzed were the scleral canal 

expansion, the scleral canal twist, the posterior scleral canal deformation and the posterior laminar 

deformation.

Results—A circumferential fiber organization in the sclera restrained scleral canal expansion but 

created posterior laminar deformation, whereas the opposite was observed with a meridional fiber 

organization. Additionally, the fiber concentration factor acted as an amplifying parameter on the 

considered outputs.
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Conclusions—The present model simulation suggests that the posterior sclera has a large 

impact on the overall behavior of the optic nerve head. It is therefore primordial to provide 

accurate mechanical properties for this tissue. In a companion paper [1], we present a method to 

measure the 3-D deformations of monkey posterior sclera and extract mechanical properties based 

on the proposed constitutive model with an inverse finite element method.
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Introduction

The sclera is the outer shell and principal load-bearing tissue of the eye, which consists 

primarily of avascular lamellae of collagen fibers [2]. Ninety percent of the collagen fibers 

in the sclera are Type I, which provide the eye with necessary mechanical strength [3] to 

sustain the intraocular pressure (IOP). Within the posterior portion of the scleral shell, there 

is a fenestrated canal, called the optic nerve head (ONH), through which the retinal ganglion 

cell axons pass transmitting visual signals from the retina to the brain. The meshwork of 

connective tissue beams which span this opening are collectively called the lamina cribrosa.

Glaucomatous optic neuropathy is the second leading cause of blindness worldwide [4, 5], 

and is manifested by a structural damage of the ONH under all levels (normal and elevated) 

of IOP [6]. We hypothesize that the mechanical properties of the posterior sclera are altered 

during the disease and play a significant role in the development and progression of 

glaucomatous damage to the lamina cribrosa and ganglion cell axons within the ONH [6, 7]. 

In order to evaluate the effect of IOP on the connective tissues of the ONH, finite element 

(FE) models of the eye are being studied by our group [8-10] and others [11, 12]. Our goal is 

to fully characterize the mechanical behavior of tissue structures around and within the 

ONH, and to investigate how the mechanical environment in the ONH influences the onset 

and progression of glaucoma. To build these models, accurate characterization of the 

mechanical properties of the load-bearing tissues is necessary.

In our previous studies [13-15], experimental and mathematical models were used to 

determine the uniaxial mechanical properties of the sclera under the assumption of isotropic, 

linear viscoelasticity. Sigal and coworkers have used a simplified FE model of the posterior 

sclera with linear elasticity to determine that the elastic modulus of the sclera would be the 

largest single determinant of strain in the ONH [11, 12]. While this was a good first step, the 

sclera is a complex structure with varying collagen fiber orientation [16-19], so its 

mechanical behavior under IOP-induced mechanical stress is likely to be anisotropic and 

nonlinear. Therefore, new testing and modeling protocols, with anisotropic and nonlinear 

mechanical characteristics, are necessary to fully describe the 3-D behavior of the sclera in 

response to IOP elevations.

This report is the first of two that considers the development of an anisotropic hyperelastic 

constitutive model, with application to an idealized posterior eye geometry. In the second 

report [1], we present a method to experimentally characterize the 3-D deformation pattern 

of monkey posterior sclera due to acute elevation of IOP from 5 to 45 mm Hg, and use an 
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inverse FE method to extract mechanical properties for the entire posterior sclera. The 

methods described in these two reports can be applied to determine the mechanical 

properties of thin soft tissues that act as pressure vessels and are mechanically loaded in 3-

D.

Materials and Methods

Anisotropic Hyperelastic Constitutive Model

For most soft-tissues, collagen is often considered as the primary biomechanical element as 

it provides tensile strength [3], arising from its long and dense fibrous bundle organization. 

Accordingly, soft-tissues can be presented as fiber-reinforced composites, and modeled as 

hyperelastic materials that are characterized by a strain energy function W. An example of 

such strain energy function has been described by Weiss and coworkers [20] to model 

ligaments. It is defined as

(1)

where Wmatrix is an isotropic contribution from the ground substance matrix which contains 

the elastin fibers, proteoglycans, fibroblasts, tissue fluid and all other tissue constituents 

except collagen; Wfiber is an anisotropic contribution from the reinforcing collagen fiber 

family. In [20], the collagen fibers were aligned along a single direction at local material 

points to represent transverse isotropy. Moreover, Wfiber was expressed as a nonlinear 

function of the fourth invariant I4 [21] defined as

(2)

where a0 is a unit vector representing the local fiber direction in the undeformed 

configuration, and C is the right Cauchy-Green deformation tensor. Here, notice the link 

between I4 and the fiber stretch λ. The latter can be expressed as

(3)

where a is a unit vector representing the local fiber direction in the deformed configuration, 

and F is the deformation gradient tensor. Since C = FT · F, the fourth invariant I4 is 

equivalent to the squared fiber stretch

(4)

For many soft-tissues, however, the collagen fiber alignment is multi-directional at local 

material points, instead of being uni-directional. In the past, several investigators have 

successfully implemented new constitutive theories to allow for multi-directionality of the 

collagen fibers with a statistical distribution so as to model soft-tissues [22] including 

arterial walls [23], heart valves [24-26], and corneas [27-29]. In this report, we will pursue 

the same core idea to model the peripapillary and posterior sclera. In the later, the collagen 
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fibers have a large variation in their diameters and are formed into irregularly arranged, 

multi-layered lamellae, with each lamella having different preferred fiber orientation and 

thickness [16, 18, 19]. To allow for multi-directionality at local material points, we assumed 

that the scleral collagen fiber alignment is confined within a plane tangent to the scleral 

surface, following a 2-D statistical distribution function P defined as

(5)

P is known as the semi-circular von-Mises distribution [30] and I0 is the modified Bessel 

function of the first kind (order 0),

(6)

θp is the preferred fiber orientation relative to a local coordinate system, and k is the fiber 

concentration factor. Note that P satisfies the normalization condition

(7)

Figure 1 depicts the variations of P for θp = 0 with different magnitude of k. k = 0 represents 

a case of planar isotropy, whereas a larger k represents a fiber distribution relative to θp. The 

statistical distribution P was chosen for its simplicity as it can describe collagen fiber 

alignment with two parameters.

Using Eq. (1), we propose the scleral strain energy function to be

(8)

where the following notation was used: f ∘ g(x) = f[g(x)]. Here, Wfiber ∘ I4 is the strain energy 

associated with the collagen fiber family aligned in the orientation of θ. Thus I4 becomes a 

function of θ, such as

(9)

To represent tissue nonlinearity, the strain energy associated with the collagen fiber family 

was defined for each θ orientation such that

(10)
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where c3 is the exponential fiber stress coefficient and c4 is the rate of uncrimping collagen 

fibers [20]. Finally, the ground substance matrix of the sclera was modeled as a Neo-

Hookean material such that

(11)

where I1 is the first invariant of the right Cauchy-Green deformation tensor (I1 = tr(C)), and 

c1 is the first Mooney-Rivlin coefficient also equivalent to the matrix shear modulus divided 

by two.

FE Implementation

Note that some of the derivations, if not explained in this section, can be found in the 

excellent textbook on nonlinear continuum mechanics from Holzapfel [31]. The proposed 

constitutive model was implemented within the nonlinear FE code Nike3d [32] that was 

provided by the Lawrence Livermore National Laboratory. Modifications were made to the 

modules for a transversely isotropic, hyperelastic material with near-incompressibility [33]. 

A multiplicative decomposition [20, 31, 34, 35] was applied to the deformation gradient 

tensor F and the right Cauchy-Green deformation tensor C such as

(12)

where J = det (F) is the Jacobian of the deformation;  are both tensors 

associated with a volume-preserving (isochoric) deformation since from Eq. (12), 

. Accordingly, the strain energy function W was decoupled into two parts: 

isochoric (W̃) and volumetric (Wvol), such as

(13)

The material invariants of  are defined as

(14)

The second Piola-Kirchhoff stress tensor S is derived from the strain energy function W as

(15)

where W̃ for the sclera is defined from Eq. (8) as
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(16)

After complete derivation, the 2nd Piola Kirchhoff stress tensor S is expressed as

(17)

where p is the hydrostatic pressure and

(18)

From the 2nd Piola Kirchhoff stress tensor, we obtain the Cauchy stress tensor as follows

(19)

where  is the Left Cauchy-Green deformation tensor associated with the isochoric 

deformation.

The material elasticity tensor ℂ is expressed as

(20)

and the spatial elasticity tensor  is derived from the material elasticity tensor as [36]

(21)

After a substantive amount of manipulations the spatial elasticity tensor becomes
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(22)

where is the spatial projection tensor , which, when applied to a 2nd order 

tensor, extracts its deviatoric component [31]. The terms of the spatial elasticity tensor have 

been derived in Appendix A for the proposed scleral strain energy function.

The 2nd Piola-Kirchhoff stress tensor from Eq. (17), the Cauchy stress tensor from Eq. (19) 

and the spatial elasticity tensor from Eq. (22) are the three tensors that were implemented 

within Nike3d.

Numerical Considerations

Each integral , present in both stress and elasticity tensors (see previously and 

Appendix A), was calculated numerically with a ten-points Gaussian quadrature rule applied 

to each of twelve equally-divided intervals between θp − π/2 and θp + π/2. For a large k 

value (typically k > 20), the statistical distribution function is highly concentrated in its 

preferred orientation θp. Therefore, the method was applied to the interval 

 in order to obtain a better accuracy for the numerical 

integration. Notice that for large k values, the semi-circular version of the von-Mises 

distribution converges to the Gaussian distribution with standard deviation , i.e.

(23)

Model Verification

In order to verify the numerical accuracy of our constitutive model, a biaxial extension test 

was simulated on an 8-noded hexahedral element and results were compared to analytical 

solutions for varying levels of k. The strain energy function was chosen from Eq. (16) and 
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the model parameters were defined as (c1 = 10 Pa, c3 = 50 Pa, c4 = 5, K = 106 Pa), where K 

is the scleral bulk modulus. Note that for k = ∞, the statistical distribution function of Eq. 

(5) becomes a Dirac delta function

(24)

Therefore, the isochoric part of the strain energy function is now that of a transversely 

isotropic material, which can be written as

(25)

Effects of Collagen Fiber Alignment on Scleral and ONH Mechanics

To investigate the effects of collagen fiber alignment on scleral and ONH mechanics, an 

idealized FE model of the posterior half of the eye was constructed. The posterior sclera was 

assumed to be a half-sphere with a radius of 10 mm and a constant thickness of 0.5 mm. The 

scleral canal was circular with a radius of 0.8 mm. The fiber orientation was defined such 

that θp = 0° represents the circumferential orientation (i.e. tangent to the scleral canal 

boundary) and θp = 90° the meridional orientation (i.e. perpendicular to the scleral canal 

boundary) as shown in Fig. 2. Only the fiber alignment parameters (k and θp) were allowed 

to vary, whereas the other parameters were fixed for all analyses (c1 = 100 kPa, c3 = 5 kPa, 

c4 = 500, K = 0.1 GPa), which are typical values for monkey posterior sclera [1]. The ONH 

was modeled as an incompressible, linear isotropic material with an elastic modulus fixed to 

0.3 MPa [11]. The nodes at the equator were constrained in all three directions to maintain 

consistency with the experimental protocol in Part-II [1], and IOP was applied to the inner 

surface of the shell, then increased from 0 to 45 mm Hg.

We defined four quantities as outputs in order to understand the impact of collagen fiber 

alignment on scleral and ONH mechanics (Fig. 3). Scleral canal expansion was the 

percentage change in scleral canal radius. Scleral canal twist was the amount of rotation that 

the scleral canal undergoes from its undeformed to its deformed configuration. Posterior 

laminar deformation was the difference in z-displacements between the center of the ONH 

and the edge of the scleral canal (posterior surface). Finally, the posterior z-displacement of 

the scleral canal was also examined.

We chose the following eleven values for the fiber concentration factor k : [0, 0.5, 1, 1.5, 2, 

2.5, 3, 3.5, 4, 4.5, 5], and the following ten values for the preferred fiber orientation θp : [0, 

10, 20, 30, 40, 50, 60, 70, 80, 90]. Therefore, a total of 110 (= 11 × 10) FE runs was 

performed to assess the effects of collagen fiber alignment on scleral and ONH mechanics.

Results

Model Verification

A biaxial extension test was simulated on an 8-noded hexahedral element and Fig. 4 

demonstrates the excellent agreement between the analytical solutions and the FE 
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simulations. When the fiber concentration factor k is equal to zero, the collagen fibers are 

unorganized and their orientations are random, which corresponds to isotropy in the xy-

plane. Therefore, in Fig. 4, the stresses along the two loading directions (x and y) are 

identical and nonlinear. As k increases, we observe higher stresses along the y-axis – the 

axis associated with the preferred fiber orientation. Finally, when k is large, the model 

exhibits transversely isotropic behavior. In this case the stress reaches its maximum along 

the preferred fiber orientation (y), whereas the stress is minimum and linear along the 

second loading direction (x).

Effects of collagen fiber alignment on scleral and ONH mechanics

Figure 5 illustrates the effects of collagen fiber alignment on scleral canal expansion and 

posterior laminar deformation. Small canal expansion occurs when θp = 0°, which is 

associated with large posterior laminar deformation. Conversely, large canal expansion 

occurs when θp = 90°, which is associated with small posterior laminar deformation. It is 

also observed from Fig. 5 that the fiber concentration factor k acts as an amplifying 

parameter on the two considered outputs.

Figure 6 illustrates the effects of collagen fiber alignment on scleral canal twist and posterior 

z-displacement. The maximum amount of scleral canal twist is observed when θp = 45° and 

increases with the fiber concentration factor k. The maximum posterior z-displacement of 

the scleral canal occurs when θp = 0° and k = 5. In this case, the sclera is reinforced with 

concentric rings of fibers around the ONH, and the orientation of the maximum principal 

strains is perpendicular to the scleral canal wall (not shown), which causes the spherically-

shaped sclera to deform into an ellipsoid. For θp > 45°, the scleral canal starts to move 

anteriorly (z-direction), which is especially evident when θp = 90° and k = 5. In this case, the 

orientation of the maximum principal strains is tangent to the scleral canal wall (not shown) 

and the scleral shell bulges in the mid-periphery, which causes anterior movement of the 

ONH. For both output values shown in Fig. 6, the fiber concentration factor k also acts as an 

amplifying parameter, and the effects become more significant for larger k values.

Deformed scleral shapes can be observed in Fig. 7 for the following three idealized cases (θp 

= 0°, θp = 45°, θp = 90°) where the fiber concentration factor k was equal to five, to 

accentuate the scleral deformation patterns.

Discussion

In this report, an anisotropic hyperelastic constitutive model is presented that can be applied 

to ocular soft tissues and is especially suitable for the posterior sclera. A new model 

parameter, the fiber concentration factor k, along with a statistical fiber distribution function, 

were implemented. k can be considered as an amplifying parameter for the scleral 

deformations. To gain a basic knowledge of the constitutive model behavior, effects of the 

collagen fiber alignment and distribution on scleral deformations due to acute elevations of 

IOP were analyzed for an idealized posterior scleral shell. Results showed that the observed 

patterns of the scleral deformation are complex and very different from those of the linear 

isotropic theory.
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Several important points warrant further discussions in terms of the difference between the 

current model and Weiss’ previous model for ligaments [20]. In the later, the behavior of the 

collagen fibers was described with a total of four independent model parameters: two for the 

initial nonlinear toe-region (c3,c4), one for the upper stretch limit of the toe-region, and one 

for the slope of the subsequent linear region. As shown in our previous study [37], porcine 

posterior sclera exhibits a high degree of nonlinearity for IOPs ranging from 5 to 45 mm Hg, 

and this behavior has been translated into our constitutive model with a two-parameter fiber 

strain energy function. Hence, we chose to limit our implementation of fiber nonlinearity to 

the toe-region to minimize the number of model parameters in our constitutive model, 

because the sclera is usually subjected to a much lower strain environment than that of 

tendons and ligaments. The appropriateness of this specification will be confirmed in Part-II, 

wherein we compare model predictions to experimental measurements of scleral 

deformations [1].

In this study, we simulated the mechanical behavior of a spherical posterior sclera, with an 

idealized collagen fiber organization. Although this combination of idealized geometry and 

fiber alignment is not physiologic, it is clear from these idealized models that the collagen 

fiber orientation in the sclera has a large impact on the IOP-induced deformations imparted 

to the contained ONH. We have previously suggested that the circular arrangement of 

collagen fibers within the peripapillary sclera could provide a protective mechanism of a 

more delicate lamina cribrosa which spans the scleral canal [37]. The current model 

simulations demonstrate that a circular arrangement of collagen fibers significantly limits 

scleral canal expansion, accompanied by a simultaneous increase in posterior laminar 

deformation. Whether scleral canal expansion or posterior laminar deformation induce ONH 

damage in glaucoma remains unknown. Future clinical measurements of those quantities in 

response to acute IOP elevations will provide more insight into the mechanisms of 

glaucomatous damage.

Scleral canal twist was also estimated from the model simulations, and is created when 0° < 

θp < 90° and k ≠ 0. It reaches its maximum for the very specific case of θp = 45°, where 

collagen fibers are running in a helicoidal manner from the eye equator to the ONH pole as 

shown in Fig. 7. While the magnitude of scleral canal twist shown here may not be 

physiological, this twisting feature can add complexity to the mechanical behavior of the 

scleral shell and could be a factor in ONH damage, but this question remains open.

The final output measure that was considered was the posterior z-displacement of the scleral 

canal. Our models showed that if the sclera is reinforced with fibers running tangent to the 

scleral canal the scleral canal deforms posteriorly (Fig. 7), whereas if the fibers are oriented 

perpendicular to the canal, the canal is anteriorly displaced. This behavior is interesting as it 

relates to myopia [16], in which the sclera undergoes a large degree of permanent stretching 

along the anterior/posterior axis.

In this study, one interesting aspect of the model behavior requires special attention. It 

should be noted that the fiber concentration factor k has very little effect on scleral canal z-

displacement and posterior laminar deformation, when the preferred fiber orientation θp is 

close to 45 degrees (Fig. 5 and Fig. 6). Moreover, the fiber concentration factor k has little 
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effect on scleral canal expansion when the preferred fiber orientation θp is equal to zero 

degrees (Fig. 5), and none on scleral canal twist when the preferred fiber orientation θp is 

equal to zero or ninety degrees (Fig. 6). All together, these results raise a potential issue 

when deriving model parameter estimates based on experimental measurements. It is clear 

that if only one of the above four output quantities is measured experimentally, it will not 

provide sufficient information to extract proper model parameter estimates for the 

peripapillary and posterior sclera as the solution of the inverse problem may not be unique. 

For example, if we imagine the eye with circumferential fibers in the posterior sclera, 

measuring scleral canal expansion experimentally does not provide sufficient data to 

estimate the degree of anisotropy of those fibers. One would also have to measure scleral 

canal z-displacement experimentally to provide a proper estimate of the fiber concentration 

factor in the posterior sclera. It is therefore essential to characterize the full 3-D 

deformations of the posterior scleral shell to obtain proper model parameter estimates as to 

study the interactions between ONH and scleral mechanics. This work will be undertaken in 

our second report [1].

Our models depict the scleral canal as the center of the posterior scleral shell although the 

geometric center of the posterior globe is actually the fovea. The fovea is the target structure 

of the visual axis, contains the greatest density of light-sensitive cells (photoreceptors), and 

is responsible for the eye's sharpest vision. In monkey and human eyes, the scleral canal is 

located 3 to 4 mm away from the fovea along the horizontal midline in the nasal hemisphere 

of the eye [38]. To the best of our knowledge, no previous work has provided a fiber-based 

constitutive model for the posterior sclera and studied the effects of scleral anisotropy on the 

optic nerve head. Because of this, we have chosen to locate the scleral canal in the center of 

the posterior globe to simplify the problem and to establish an initial understanding of the 

constitutive model presented herein so as to study the interactions between ONH and scleral 

mechanics. Moreover, this type of geometry fits well with the work we conducted in Part-II, 

where the scleral shells were clamped and the ONH was centered with respect to the scleral 

field of view (at the apex of the pressurized scleral shell). Because the physiologic shape of 

the posterior globe and the location of the scleral canal relative to its center may importantly 

contribute to ONH and scleral mechanics, future models will take these features into 

consideration.

Modeling and mechanical testing of ocular soft tissues will contribute to our understanding 

of ONH and peripapillary scleral damage in glaucoma, myopia, and a host of other ocular 

disorders. The knowledge gained in this study using our proposed hyperelastic constitutive 

model will now be used in a second report [1] to estimate the mechanical properties of 

monkey posterior sclera.
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Appendix A

We will notice that the following operations hold true

(26)

(27)

(28)

(29)

Below is the evaluation of the terms needed for the spatial elasticity tensor

(30)

(31)

(32)

(33)

(34)

where W̃
44 is defined as

(35)
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Nomenclature

Notations

a, A, b, B 0th order tensors (scalars)

a, b, c 1st order tensors (vectors)

A, B, C 2nd order tensors (dyadics)

, , ℂ 4th order tensors (tetradics)

Symbols – Scalars

c1 1st Mooney-Rivlin coefficient
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c3 fiber stress coefficient

c4 fiber uncrimping rate coefficient

I0 modified Bessel function (1st kind, 0th order)

I1, Ĩ1 1st invariants of C and C̃

I4, Ĩ4 squared fiber stretches (4th invariants)

J Jacobian of the deformation

k fiber concentration factor

K bulk modulus

p hydrostatic pressure

P statistical distribution function

W strain energy function

W̃ isochoric strain energy function

Wvol volumetric strain energy function

λ, λ̃ fiber stretches

θp preferred fiber orientation

Symbols – Vectors

a0 local fiber direction in the undeformed configuration

𝐚 local fiber direction in the deformed configuration

Symbols – 2nd Order Tensors

B, B˜ left Cauchy-Green deformation tensors

C, C˜ right Cauchy-Green deformation tensors

F, F˜ deformation gradient tensors

I 2nd order unit tensor, Iij = δij

S 2nd Piola-Kirchhoff stress tensor

σ Cauchy stress tensor

Symbols – 4th Order Tensors

𝕔 spatial elasticity tensor

ℂ material elasticity tensor

4th order unit tensor, ijkl = δikδjl

𝕡 spatial projection tensor
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4th order unit tensor, 

Operators

(A·B)ij = AikBkj 2nd order tensor

A : B = AijBij scalar

(  : B)ij = ijklBkl 2nd order tensor

(  : )ijkl = ijmn mnkl 2nd order tensor

(A ⊗ B)ijkl = AijBkl 4th order tensor

(A⊗B)ijkl = AikBjl 4th order tensor

4th order tensor
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Figure 1. 
Polar representation of the semi-circular von-Mises distribution describing in-plane collagen 

fiber alignment. In this case, the preferred fiber orientation θp is equal to zero degrees. When 

the fiber concentration factor k is equal to zero, the collagen fibers have an isotropic 

distribution in a plane tangent to the scleral wall. As k increases, the collagen fibers align 

along the preferred fiber orientation θp. Note that the distributions were plotted on a circle of 

unit one to ease visualization.
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Figure 2. 
An idealized FE model of the posterior hemisphere of an eye. The fiber orientation was 

defined such that θp = 0° represents the circumferential orientation (i.e. preferred fiber 

orientation tangent to the scleral canal boundary) and θp = 90° the meridional orientation 

(i.e. preferred fiber orientation perpendicular to the scleral canal boundary). The ONH is 

considered as the posterior hemisphere's pole, which includes the lamina cribrosa and retinal 

ganglion cell axons.
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Figure 3. 
Schematics of the scleral canal and the ONH in the undeformed and deformed 

configurations to explain how the four output values were calculated. The four output values 

considered are scleral canal expansion, scleral canal twist, posterior laminar deformation and 

scleral canal z-displacement.
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Figure 4. 
Model verification for a biaxial extension test on an 8-noded hexahedral element where 

symmetry conditions were applied. Here, the preferred fiber orientation is aligned along the 

y-axis and collagen fibers are confined within the xy-plane. When the fiber concentration 

factor k is equal to zero (isotropy in the xy-plane), Cauchy stresses in x- and y-directions are 

equal, for both the analytical and finite element solutions. When the fiber concentration 

factor is large (k ≫ 1), the sclera behave like a transversely isotropic material. Notice the 

good agreement between the analytical and finite element solutions.
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Figure 5. 
Effects of the preferred fiber orientation θp and fiber concentration factor k on scleral canal 

expansion and posterior laminar deformation at 45 mm Hg. Each curve has a specific k 

value, where k = 0, 2, or 4 (dashed lines) and k = 1, 3, or 5 (solid lines).
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Figure 6. 
Effects of the preferred fiber orientation θp and fiber concentration factor k on scleral canal 

z-displacement and scleral canal twist at 45 mm Hg. Each curve has a specific k value, 

where k = 0, 2, or 4 (dashed lines) and k = 1, 3, or 5 (solid lines).
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Figure 7. 
Effects of the preferred fiber orientation θp under acute elevation of IOP. Scleral 

deformations were exaggerated and displayed for three idealized cases with θp = 0°, θp = 45° 

and θp = 90°, respectively. The fiber concentration factor k was equal to five for all three 

cases, and deformations were exaggerated ten times to emphasize the scleral deformation 

patterns observed.
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