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Lung cancer is the leading cause of cancer death and respiratory diseases are the third cause of death in industrialized countries;
for this reason the airways and cardiopulmonary system have been the focus of extensive investigation, in particular of the new
emerging branch of regenerative medicine. Mesenchymal stromal cells (MSCs) are a population of undifferentiated multipotent
adult cells that naturally reside within the human body, which can differentiate into osteogenic, chondrogenic, and adipogenic
lineages when cultured in specific inducing media. MSCs have the ability to migrate and engraft at sites of inflammation and
injury in response to cytokines, chemokines, and growth factors at a wound site and they can exert local reparative effects
through transdifferentiation and differentiation into specific cell types or via the paracrine secretion of soluble factors with anti-
inflammatory and wound-healing activities. Experimental and clinical evidence exists regarding MSCs efficacy in airway defects
restoration; although clinical MSCs use, in the daily practice, is not yet completely reached for airway diseases, we can argue that
MSCs do not represent any more merely an experimental approach to airway tissue defects restoration but they can be considered
as a “salvage” therapeutic tool in very selected patients and diseases.

1. Introduction

Lung cancer is the leading cause of cancer death and respi-
ratory diseases are the third cause of death in industrialized
countries; for this reason the airways and cardiopulmonary
system have been the focus of extensive investigation, in par-
ticular of the new emerging branch of regenerative medicine.

Exposure to environmental insults damages the cells of
the lung; thus the lung has a wound-healing capacity that pro-
motes tissue regeneration and/or restoration by proliferation
and differentiation of stem and progenitor cells.

The reparative attitude of adult human tissues falls along
an injury response spectrum: at one end there are tissues
with a constitutively high rate of cell turnover and a well-
delineated stem/progenitor cell hierarchy, like epidermis,
intestine, and hematopoietic system; at the other end there are
organs containing few stem cells and cannot repair efficiently,

resulting in scarring after injury, like heart and brain; in
between these two extremes are tissues that have a low
steady state cell turnover and can react after injury to replace
damaged cells, like lung, liver, and pancreas.

Large airway defects and tracheobronchial dehiscence
following curative lung resection present a major problem
for clinicians because no effective methods of treatment are
available.

Postresectional bronchopleural fistula (BPF) is a patho-
logical connection between the airway (bronchus) and the
pleural space that may develop after lung resection and may
be caused by incomplete bronchial closure, impediment of
bronchial stump wound healing, or stump destruction by
residual neoplastic tissue.

The clinical effect of impaired bronchial stump healing
after anatomic lung resection may culminate in a life-
threatening septic and ventilatory catastrophe. For many
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patients with empyema, the presence or absence of a fistula
makes the difference between recovery, chronicity, and death.

Mesenchymal stromal cell therapy may represent a thera-
peutic option for this unsolved problem and for several other
diseases of the respiratory tract, like COPD and ARDS.

2. Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs) are a population of
undifferentiated multipotent adult cells that naturally reside
within the human body and are generally defined as plastic-
adherent, fibroblast-like cells possessing extensive self-
renewal properties and potential to differentiate in vivo and in
vitro into a variety of mesenchymal lineage cells [1]; they can
differentiate into osteogenic, chondrogenic, and adipogenic
lineages when cultured in specific inducing media [2].

MSCs are described as Major Histocompatibility Com-
plex II (MHC II) negative cells, lacking costimulatory
molecules such as CD40, CD80, and CD86, thus having an
immune phenotype (MHCII™, CD40", and CD86") allowing
evading the host immune system, thus permitting allogenic
transplantation without immunosuppression [3].

The immunomodulatory and anti-inflammatory effect of
MSCs have been extensively studied and used in the gastroin-
testinal tract, like in inflammatory bowel disease and graft-
versus-host disease [4, 5]; it has been recently demonstrated
that MSCs derived from Crohn’s patients deploy indoleamine
2,3-dioxygenase-mediated immune suppression [6].

Once implanted, MSCs are able to interact with the sur-
rounding microenvironment, promoting tissue healing and
regeneration, renewing biologic function by supportive and
trophic functions based on cross talk with other cells present
within diseased tissues [7]. MSCs have been shown to exert
profound anti-inflammatory and immunomodulatory effects
on almost all the cells of the innate and adaptative immune
system by a variety of mechanisms, notably cytokine and
chemokine secretion, like Interleukin-10 (IL-10), Interleukin
6 (IL-6), Transforming Growth Factor Beta (TGFB), Vascular
Endothelial Growth Factor (VEGF), Intercellular Adhesion
Molecules (ICAMs), and Prostaglandin E2 (PG E2) [8].

After their initial discovery in bone marrow, MSCs were
isolated and characterized from a wide variety of other adult
and fetal tissue, including adipose tissue [9], umbilical cord
[10], dental pulp [11], tendon [12], thymus, spleen [13], cornea
[14], liver [15], brain [16], periosteum [17], placenta [18], and
synovial and amniotic fluids [19].

MSCs isolated from these different tissues are different,
although no significant difference in the profiles of secreted
cytokines by different type of MSCs has been described; some
quantitative differences in the cytokine secretions by adipose
tissue-derived MSCs (AT-MSCs) and bone marrow-derived
MSC (BM-MSC) have been reported [20].

Besides the trilineage differentiation potential into
osteoblasts, adipocytes, and chondroblasts in in vitro culture
with specific stimuli, experimental data have demonstrated
that MSCs can also differentiate into other mesodermal
lineages, such as skeletal myocytes, cardiomyocytes,
tenocytes, and endothelial cells; moreover MSCs have the
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capacity to differentiate into types of cells of endodermal
and ectodermal lineages, including hepatocytes, neuronal
cells with neuron-like functions, insulin-producing cells,
photoreceptor cells, renal tubular epithelial cells, and
epidermal and sebaceous duct cells [8]. MSCs have the
ability to migrate and engraft at sites of inflammation and
injury in response to cytokines, chemokines, and growth
factors [21] at a wound site and they can exert local reparative
effects through transdifferentiation into tissue-specific cell
types or via the paracrine secretion of soluble factors with
anti-inflammatory and wound-healing activities [22].

3. Mesenchymal Stromal Cells in
Respiratory System

The lung is a highly quiescent tissue, previously thought
to have limited reparative capacity and a susceptibility to
scarring [23]; we now know that the lung has a remarkable
reparative capacity, when needed, in response to specific
stimuli and injuries [24].

The tissues of the lung may be categorized as having
facultative progenitor cell populations that can be induced
to proliferate in response to injury as well as differentiate
into one or more cell types [24]; given the complexity of the
respiratory system, a single lung stem cell generating all of the
various lineages within the lung is difficult to conceive: the
two most likely hypotheses are that the lung could respond to
injury and stress (a) by activating stem cell populations or (b)
by reentering the cell cycle to repopulate lost cells [24].

During lung embryonic development, rapid proliferation
and differentiation are the rule rather than the exception; on
the contrary, in the adult lung during postnatal life, it is not
clear whether any lung cells of comparably expansive prolifer-
ative potential or differentiation repertoire still remain active,
and so we refer to these developing cells as progenitors rather
than stem cells, as their self-renewal capacity may be transient
[24].

We can identify, within the respiratory system, at least
four different districts in which different stem cell candidates
may be considered: (1) trachea and proximal bronchi, (2)
distal airway system, (3) alveolar compartment, and (4)
bronchoalveolar duct junction.

The trachea and main stem bronchi are lined with
pseudostratified epithelium composed of basal and luminal
cells; subsets of basal cells, both in mice and in humans, have
extensive proliferative potential, self-renewal capacity, and
the ability to differentiate into basal, secretory, and ciliated
lung epithelial cells in vivo [25]; considering that basal cells
have no other known function in the lung, this supports
the concept that basal cells can function as tissue-specific
stem cells of the airway epithelium, although little is known
about basal cell self-renewal and differentiation and whether
itinvolves asymmetric cell division as do other stem cells [24].

In the distal airway the bronchiolar epithelium is quies-
cent until injured; a subset of secretory cells, named variant
club cells, show proliferation potential in response to injury
but it is still unclear if they go through a process of dedifter-
entiation to reenter the cell cycle and then differentiate again
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after expansion [26]; these cells can be found adjacent to the
neuroendocrine bodies or at the bronchoalveolar duct junc-
tion, confirming the hypothesis of the existence of microen-
vironmental progenitor cell niches in the airways [27].

The type IT alveolar epithelial cells are considered the best
candidate for progenitor cells of the adult lung alveolus [28]
during the late development, in fact, or after various postnatal
alveolar injuries; some type II alveolar epithelial cells can
proliferate, self-renew, and form alveolar epithelial cells type
I [29] presenting self-renewal signals like epidermal growth
factor receptor (EGFR) [30].

At the transition from the bronchiolar region to the alve-
olar region of the lung there is the bronchoalveolar duct junc-
tion, where some variant club cells possess airway epithelial
regenerative potential after induced lung injury [24], defined
as bronchoalveolar stem cells (BASC); however the existence
of BASC in vivo has been contested [31] so further studies are
required to consider BASC as true stem cell lineage existing
in a unique niche between the airways and alveoli [24].

4. Mesenchymal Stromal Cells for Lung and
Airway Diseases

The main function of stem/progenitor cells for the airway
epithelium is epithelial homeostasis and the repair of defects
in the airway wall [32].

Stem/progenitor cells can be used to repair defects in the
airway wall, resulting from tumors, trauma, tissue reactions
following long-time intubations, or diseases that are associ-
ated with epithelial damage [33].

In many airways diseases such as asthma, chronic
obstructive pulmonary diseases, obliterative bronchiolitis,
and cystic fibrosis, the airway epithelium is damaged and
subsequently repaired and remodeled [34].

Reconstruction of tracheobronchial defects requires in
the first place the availability of airway epithelial cells and the
presence of fibroblasts or fibroblast-derived substances [33].

The fact that fibroblasts have positive effects on airway
epithelial cell growth emphasizes the fact that the airway
is not a simple structure and that epithelial-mesenchymal
interactions are important [33].

Considering the catastrophic consequences that airway
tissue defects may have after lung resection, culminating
in a pathological communication between the airways and
the pleural space called “bronchopleural fistula” (BPF), we
proposed, on an animal model, an autologous bone marrow-
derived mesenchymal stem cells (BMMSC) transplantation:
it allowed bronchial stump healing by extraluminal fibroblast
proliferation and collagenous matrix development [35]
(Figure 1).

Encouraged by experimental bronchial wall restoration
in large animals and by functional human organ replacement
elsewhere [36], we undertook autologous BMMSC bron-
choscopic transplantation to treat a patient who developed
BPF after right extrapleural pneumonectomy for malignant
mesothelioma [37]. The bronchoscopic transplantation of
bone marrow-derived mesenchymal stem cells in our patient
appeared to help close this small-caliber postresectional

FIGURE 1: Computed tomography shows the internal (black arrow)
and external (white arrow) surfaces of the regenerated bronchial
wall, in a large animal model, of a right bronchopleural fis-
tula, demonstrating abundant peribronchial tissue occluding the
bronchial stump.

FIGURE 2: The specimen of bronchial mucosa obtained by human
bronchoscopic biopsy 60 days after stem cell implantation showed
a discrete coarctation induced by sample taking (left lower box);
however it was possible to appreciate hyperplastic respiratory
epithelium lying on a diffusely fibrotic lamina propria. Bands of
smooth muscle fibers were reduced and replaced by fibroblasts.

bronchopleural fistula, further boosting regenerative
medicine approach for airway diseases (Figures 2 and 3).

There are a number of ongoing clinical trials addressing
the feasibility and safety of MSCs treatment for airway dis-
eases, focusing on the role of human MSCs for the treatment
of subjects with moderate to severe chronic obstructive
pulmonary disease [38, 39].

5. Mesenchymal Stromal Cells Imaging

The serial visualization and tracking of transplanted mes-
enchymal stem cells, including the assessment of their pres-
ence at the site of injection and their possible migration or
retention in other sites, are still issues to be resolved.

Optical methods, mainly based on retroviral vectors to
express fluorescent proteins, allow visualization of cells that
homed in different organs only after sacrifice of the animal,
as the tissue penetrability of fluorescence is limited [40].



FIGURE 3: Immunocytochemical stain for p40 showing a well-
defined layer of basal cells and basal cell hyperplasia consistent with
repair.

Therefore, other techniques, able to track injected MSCs
in vivo, such as positron emission tomography (PET), single-
photon emission CT (SPECT), and magnetic resonance
(MR), have being employed.

PET imaging can be performed using direct and indirect
labeling approaches. Direct approaches are based on label-
ing stem cells with radioactive compounds such as ['*F]-
fluorodeoxyglucose. In proliferating cells the radioactive
compound is distributed to daughter cells; therefore the
signal measured in the cells will shrink due to proliferation
[41, 42] and will be visible for a short period of time,
as the tracer decays over 109 minutes [43]. Moreover, the
direct labeling approach is associated with high efflux and
low intracellular stability. Indirect approaches rely on the
activation of a tracer dye by a protein, such as herpes simplex
virus type 1 thymidine kinase (HSV1-TK), transduced by
a recombinant viral vector into the cells [44, 45]. After
application, the tracer will be phosphorylated through HSV-
TK leading to metabolic trapping in the recombinant cells.
Studies demonstrated the feasibility of this technique for
monitoring cell fate in vivo, after myocardial administration
[46] and in healing after injuries [47].

SPECT uses the radioactive decay of radionuclides and
gamma rays to provide 3D information on cell location
using tomographic reconstruction. Most usable and FDA-
approved SPECT isotopes are short-lived (e.g., Tc-99 m (360
minutes), Ga-67 (4320 minutes), In-111 (4020 minutes), and
1-123 (780 minutes)) [48]. SPECT can also be combined with
PET and CT imaging and has been successful in imaging
labeled human MSCs (hMSCs), in animal models, although
the effects of emission from a tracer dye can be toxic and may
interfere with hMSC functions [49, 50].

Both PET and SPECT have the ability to provide func-
tional myocardial data and therefore have been studied
mostly in the context of myocardial ischemia [51].

Thanks to its capacity for high spatial resolution (ranging
from 50 ym in animals up to 300 um in whole body clinical
scanners), magnetic resonance (MR) has been considered
an excellent method for tracking cells in vivo. Cells can
be labeled either with positive contrast agents, used in TI-
weighted MRI such as gadolinium, or with negative contrast
agents, such as superparamagnetic iron oxide (SPIO) and
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ultrasmall superparamagnetic iron oxide (USPIO) particles
[40, 52], which are highly sensitive and have a dominant
effect on the T2/T2# relaxation times. Most cell tracking
studies have used SPIO and USPIO to label stem cells for
detection with MR, due to the pronounced signal change
that even small amounts of these contrast media can create
(owing to the so-called blooming artifact). This allows the
detection of even very small numbers of labeled cells [53,
54]. With such agents, MRI has been shown to allow the
location of iron-labeled cells to be noninvasively monitored
in vivo over several weeks [55-57]. However, drawbacks of
labeling by ferromagnetic nanoparticles include that other
endogenous sources of signal loss may appear in images that
are sensitive to iron (e.g., due to blood, hemosiderin, bone,
and air) making it difficult to unambiguously identify regions
containing labeled cells [58, 59]. Another drawback is that
the iron oxide particles may be retained in a tissue, even if
the grafted (stem) cell dies, hence leading to false positive
signals [48]. Moreover, most FDA-approved SPIOs have now
been discontinued from the market, so moving to clinics with
SPIO-labeled cells will be difficult in the near future.

Emerging MR imaging techniques are under evaluation,
such as imaging based on perfluorocarbon formulations,
whose advantage is the high specificity due to the virtual
absence of fluor from the body [59]. The fluorine signal can
be accurately quantified from the MR images by comparing
the 'F signal in the tissue of interest to an external reference
containing a known amount of fluorine atoms. The principal
drawback of the fluor-based MR imaging is its relatively
low sensitivity when compared to cellular imaging with iron
nanoparticles.

It is therefore clear that the choice of an imaging
technique will rely on the efficacy, toxicity, and resolution
considered the best for the specific research setting under
evaluation.

6. Conclusion

Experimental and clinical evidence exists regarding MSC
efficacy in airway defects restoration [35, 37, 60]; although
clinical MSC use, in the daily practice, is not yet completely
reached for airway diseases, we can argue that MSCs do
not represent any more merely an experimental approach to
airway tissue defects restoration but they can be considered
as a “salvage” therapeutic tool in very selected patients and
diseases (Figure 4).

Although some concerns have been expressed with regard
to MSCs potential of neoplasm development in cancer
patients [61], no clear evidence exists in particular in case of
MSC injection in tissue free of cancer and without “in situ”
neoplasms [62].

Interesting clinical and experimental results have been
obtained by MSCs therapy for large bone defects [63, 64].

Encouraging results have been reported for the treat-
ment of acute respiratory distress syndrome with allogeneic
adipose-derived mesenchymal stem cells in a randomized,
placebo-controlled pilot study, showing that administration
of allogenic adipose-derived MSCs appears to be safe and
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MSC therapy
(minimally invasive, —>
promising initial results)

(i) Autologous bone marrow-
derived MSC
transplantation

(ii) Adipose-derived MSC

transplantation
(i) Fibrin glue )
Conventional (ii) Cyanoacrylate glue P ohstresec-tlonal
endoscopic (iii) Silver nitrate —— > airway tissue
therapy —> (iv) Albumin-glutaraldehyde defects
(minimally invasive, scarcely tissue adhesive
effective) (v) Ethanol
(vi) Stents
Standard . .
surgical (i) Open window thoracostomy
procedure —> (ii) Eloesser flap

(extremely invasive,
maximally effective)

(iii) Claggett procedure

FIGURE 4: An algorithm showing standard, endoscopic, and MSC based therapies for postresectional airway tissue defects.

feasible in the treatment of ARDS [65] as well as in a phase
I clinical trial disclosing that a single intravenous infusion
of allogeneic, bone marrow-derived human MSCs was well
tolerated in nine patients with moderate to severe ARDS [66].
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