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Research on change-point detection, the classical problem of
detecting abrupt changes in sequential data, has focused pre-
dominantly on datasets with a single observable. A growing number
of time series datasets, however, involve many observables, often
with the property that a given change typically affects only a few
of the observables. We introduce a general statistical method that,
given many noisy observables, detects points in time at which
various subsets of the observables exhibit simultaneous changes
in data distribution and explicitly identifies those subsets. Our
work is motivated by the problem of identifying the nature and
timing of biologically interesting conformational changes that
occur during atomic-level simulations of biomolecules such as
proteins. This problem has proved challenging both because each
such conformational change might involve only a small region of
the molecule and because these changes are often subtle relative to
the ever-present background of faster structural fluctuations. We
show that our method is effective in detecting biologically inter-
esting conformational changes in molecular dynamics simulations
of both folded and unfolded proteins, even in cases where these
changes are difficult to detect using alternative techniques. This
method may also facilitate the detection of change points in other
types of sequential data involving large numbers of observables—a
problem likely to become increasingly important as such data con-
tinue to proliferate in a variety of application domains.

molecular dynamics | conformational change | SIMPLE |
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Change-point detection—the problem of detecting abrupt
changes in temporal or other sequential data—represents a

long-standing research area in statistics, with applications in
fields ranging from manufacturing and economics to climatology
and genetics (1). Although an extensive body of literature ad-
dresses this problem, most of it concerns the detection of changes
in a single, univariate observable (1–5).
With the proliferation of data across scientific and engineering

disciplines, many modern applications require the ability to
identify changes in complex systems with large numbers of ob-
servables. Such complex systems often have the property that
each change affects only a (potentially small) subset of observ-
ables. In geophysical or climate data, for example, a change may
affect measurements in a particular geographic region; in public
health monitoring, a disease outbreak may primarily affect a
particular community; and in social media, various events may
affect the activity of particular subsets of users. A number of
change-point detection methods have been developed for mul-
tivariate data (6–13), but most of these methods focus on
detecting substantive changes in the joint distribution of all ob-
servables and are thus ill suited for applications in which a
change might involve only a small subset of observables.
Our own work is motivated by the detection of structural

changes in proteins, a challenging change-point detection prob-
lem in which the essential characteristics of each biologically
interesting change may typically be characterized in terms of a
limited subset of a large number of observables. The atoms
within a protein fluctuate constantly, but occasionally a protein
undergoes a structural transition from one set of structurally

similar, rapidly interconverting atomic arrangements to another.
These transitions, or “conformational changes,” are often of bio-
logical importance, allowing the protein to act as a nanoscale
machine that carries out specific tasks within a cell. The study of
such conformational changes may often be facilitated by atomic-
level molecular simulation techniques, such as molecular dy-
namics (MD) simulation. These simulations, which have grown
longer and more plentiful in recent years (14, 15), provide a
means to capture the motions of individual atoms in a protein
or other biomolecule at fine temporal resolution.
Identifying conformational changes in proteins given the po-

sitions of each atom over time represents a challenge for several
reasons (16–19). First, although a conformational change is
characterized by a difference in the atomic position distributions
of certain atoms before and after the change, this difference may
be small relative to the magnitude of an ever-present background
of rapid fluctuations in the positions of all atoms in the protein.
Second, a typical protein comprises thousands of atoms, and a

large number of univariate observables (e.g., Cartesian coor-
dinates or interatomic distances) are required to fully specify
the positions of all of these atoms. It is often difficult to find
one or a few summary measurements that capture all of the
important conformational changes in a biomolecular simulation
without prior knowledge of the nature of those changes.
Finally, many biologically interesting conformational changes

occur within localized regions of the protein that may each en-
compass as few as 1–2% of its atoms and thus a relatively small
fraction of the observables. Identifying small subsets of observables
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whose distributions change simultaneously can be like searching for
a needle in a haystack, and classical change-point detection methods
are generally not well suited to this task.
To address these challenges, we developed a statistical method

that, given time series for a large number of observables,
searches concurrently for both change times and the subset of
observables that change at each of these times. We refer to our
approach as the “simultaneous penalized likelihood estimation”
(SIMPLE) change-point detection method.
We show that SIMPLE detects important and often subtle

conformational changes in real MD simulations of folded and
unfolded proteins, reproducing observations made through pains-
taking manual analysis and also revealing previously unnoticed
changes. SIMPLE automatically attributes detected conformational
changes to subsets of input observables corresponding to specific
regions of the protein molecule, facilitating the interpretation of
results. In quantitative tests performed on synthetic MD trajec-
tories with known change points, we find that SIMPLE detects
conformational changes more accurately than various methods
currently used for biomolecular simulation analysis.
Several other change-point detection methods recently in-

troduced in the statistics literature, including those by Zhang,
Siegmund, and coworkers (20–23), Bleakley and Vert (24), and
Jeng et al. (25), are also designed to detect changes involving
subsets of multiple observables, and they have largely been ap-
plied to the detection of DNA copy number variants in genomics
data. These methods focus primarily on detecting points in the
genomic sequence or in time at which changes occur, addressing
only heuristically the problem of identifying which observables
change at each of those points, or choosing them in a simple
greedy fashion. SIMPLE, by contrast, formulates the problem as
an explicit and concurrent optimization over all possible change
times and all possible sets of observables that may change at each
of those times. SIMPLE also allows for greater flexibility in the
statistical model of the data distribution and can incorporate
prior knowledge about which groups of observables are likely to
change together (such as those corresponding to neighboring
atoms in proteins). Our results indicate that, for certain difficult
change-point detection problems in our application domain,
SIMPLE achieves a substantial accuracy advantage over these
alternative methods.
The formulation of the SIMPLE method is sufficiently general

to allow its application in a variety of other domains that require
the detection of change points in subsets of large numbers of
observables. SIMPLE may thus help address the challenges posed
by the proliferation of “big data” not only in scientific fields such
as genomics, neuroscience, and particle physics, but also in areas
such as business analytics, network security, and quality control.

Overview of Method
SIMPLE takes as input multiple time series representing the
values of a set of observables or measurements over a common
sequence of points in time. When applying the method to sim-
ulations of biomolecules such as proteins, we typically use time
series representing distances between pairs of atoms, or positions
of atoms under global structural alignment. The method could be
easily adapted to use other observables, such as torsion angles.
SIMPLE’s output is a set of change points for each observable.

We wish to choose these change points such that the values of an
observable between any two successive change points are likely to
come from a single probability distribution—in other words, such
that the statistics do not change substantially from one part of that
interval to another. To avoid spurious change-point detections, we
wish to select as few change points as possible. We also wish to
exploit the fact that a single change is likely to involve multiple
observables, and thus multiple observables will often have simul-
taneous change points. In biomolecular simulations, observables

corresponding to neighboring regions of a molecule are particularly
likely to have such simultaneous change points.
SIMPLE formulates the problem as an optimization over all

possible change-point selections given the observed data (Fig. 1).
In particular, it attempts to select a set of change points that
maximizes an objective function of the form

logðmax  likelihood  of   data  given  these  change  pointsÞ
−  λ× ðpenalty  function  for  these  change  pointsÞ, [1]

where λ is a positive constant. The first term is obtained by fitting
the data for each observable between each consecutive pair of
change points to a single probability distribution from a given
family. This term increases as more change points are added.
The penalty function in the second term is constructed to in-
crease as new change points are added, but less quickly if the
added change points are simultaneous with existing ones in other
observables. For biomolecular simulation data, we use penalty
functions that penalize simultaneous changes less if they involve
observables representing spatially proximate regions of a molecule.
The constant λ acts as a sensitivity parameter. Decreasing λ

weakens the effect of the penalty function, yielding a larger
number of detected change points, including points corresponding
to smaller, shorter-lived changes. Increasing λ strengthens the ef-
fect of the penalty term, reducing the number of changes detected
and restricting them to larger, longer-lived changes.
To ensure that SIMPLE detects not only changes in average

structure but also changes in the degree of fluctuation about that
structure, we fit the data using a family of probability distribu-
tions with two parameters representing average and spread, re-
spectively. The method is thus unaffected by scaling and shifting
transformations of any individual time series input. We typically
use Laplace distributions, which provide greater robustness to
outliers than Gaussian distributions by allowing the method to
detect changes in median rather than mean.
Under a broad set of conditions discussed in a later section

(Mathematical and Algorithmic Formulation of Method), the so-
lution to the optimization problem of Eq. 1 using the Laplace
distribution model is provably asymptotically consistent. That is,
if there are true changes in the probability distribution that is
assumed to generate the input data, then the solution correctly
identifies these changes (and only these changes), given a sufficient
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Fig. 1. Given many noisy observables, the SIMPLE method detects change
points for each one by maximizing a penalized-likelihood objective function
that reflects the assumption that each change likely involves multiple ob-
servables. For (A) any candidate set of change points, (B) a statistical model is
fitted to the data between each pair of change points in each observable,
and the log-likelihood values are summed over all data segments and all
observables. (C) A penalty for each set of simultaneous change points is
summed over all change times. (D) The objective function is the total log-
likelihood minus a sensitivity parameter, λ, times the total penalty.
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number of independent data points between the change times.
Importantly, this result holds even when the true distribution of the
data does not fit a Laplace model, as long as the true data distri-
bution has tails that decay exponentially or faster and satisfies
certain other general properties.
Eq. 1 leads to a complicated optimization problem. SIMPLE

approximates its solution using an iterative algorithm (SI Text)
that leverages a recently developed, fast optimization method for
univariate data (26). This iterative algorithm produces good re-
sults in practice and is both efficient and parallelizable. Even on
a single processor, it can be readily applied to large datasets
involving thousands of time series.

Application to Molecular Dynamics Simulation Data
Simulations of Protein Folding and Unfolding. To illustrate the ap-
plication of SIMPLE, we first consider the MD simulation tra-
jectories presented by Lindorff-Larsen et al. (27) in which 12
proteins spontaneously and repeatedly fold to their native
structures from an unfolded state. For each protein, we applied
SIMPLE to time series of distance measurements between all
pairs of alpha-carbon atoms, using a single penalty function that
promotes simultaneous detection of changes in adjacent amino
acid residues (details in SI Text). This choice of input time series

and penalty function represents our default recommendation for
analyses focused on conformational changes of the protein
backbone. We chose values of the sensitivity parameter λ to yield
∼100 detected changes per simulation.
SIMPLE not only detects the folding and unfolding transitions

but also automatically segments many of them into several steps
corresponding to the formation and loss of metastable structure,
as illustrated in Fig. 2A for a simulation of a WW domain. This
and similar simulations of the WW domain have been the subject
of extensive previous manual, visual, and automated analysis (27–
30), and SIMPLE’s results correspond closely to the results of
these previous analyses. SIMPLE also indicates which of its input
distance measurements are involved in each change, allowing one
to highlight the residues that best characterize each change.
For most of the simulated proteins, SIMPLE also identifies

changes within the folded and unfolded states that reveal partial
folding events, partial unfolding events, and formation of mis-
folded metastable structures. Many of these changes have not
been identified previously. Detection of conformational changes
within the unfolded state is particularly challenging, because such
changes are often masked by large, rapid fluctuations in the un-
structured regions of the protein and because global structural
descriptors such as root-mean-square deviation (RMSD) from the
native structure tend to be less informative in such cases (Fig. 2B).

Simulations of a Folded Protein. Next, we illustrate the application
of SIMPLE to a set of simulations in which the β2-adrenergic
receptor (β2AR), a protein that serves as a target of beta blockers
and other widely used drugs, transitions spontaneously from one
experimentally observed conformational state (the “active state”)
to another (the “inactive state”). These simulations were used by
Dror et al. (31) to elucidate the mechanism of receptor activation,
which required the determination of key conformational changes
through painstaking manual analysis and examination.
These simulations differ from those of the previous example in

two important ways. First, each β2AR simulation captures only a
single transition from the initial to the final conformational state.
These simulations are thus representative of most MD simula-
tions in the literature, in that each simulation visits most of the
relevant conformational states only once.
Second, the β2AR remains fully folded throughout the simu-

lations, and the conformational changes that take place are
subtle, often involving only amino acid side chains. To ensure
sensitivity to such side-chain motions, we used as time series
inputs to SIMPLE the distances between each pair of atoms that
came into contact with one another at any point during a sim-
ulation—a total of ∼14,000 pairs of atoms (Fig. 3A). We applied
a fixed nonlinear transformation to each distance to emphasize
formation and breakage of direct contacts between pairs of
atoms, as such contacts are often functionally important in
proteins. The penalty function was chosen to promote the si-
multaneous detection of changes involving distances between
atoms from the same pair of protein residues. This choice of
input time series and penalty function represents our default
recommendation for analyses of simulation trajectories in which
side-chain motions may be of interest (details in SI Text).
Fig. 3B illustrates the results of SIMPLE for one of the β2AR

trajectories. The detected conformational changes correspond
very closely to the changes identified by Dror et al. (31) through
manual and visual analysis as the key conformational changes in
the β2AR’s transition from its active state to its inactive state. In
particular, these conformational changes match the major changes
of the connector region and G-protein–binding site illustrated in
figure 2 of that paper, except that SIMPLE recognizes that the
final change—an inward motion of helix 6 accompanied by a
repositioning of Tyr219 on helix 5—actually involves two steps in
this trajectory, with the helix 6 motion following the Tyr219 mo-
tion. These changes were also detected by SIMPLE in the other 11

WW domainA

422.8422.6422.4 423.0

20

10

0422.2

R
M

S
D

 to
 n

at
iv

e 

Time (µs)

st
ru

ct
ur

e 
(Å

)

Trp-cageB

Time (µs)

st
ru

ct
ur

e 
(Å

)
R

M
S

D
 to

 n
at

iv
e 

15

10

5

0
1110987

Fig. 2. Results from application of SIMPLE to equilibrium protein-folding
simulation trajectories. (A) Three consecutive detected conformational
changes in the WW domain reveal a folding pathway. (B) Two consecutive
detected conformational changes in Trp-cage during the unfolded state
reveal transient formation of a metastable structure that does not lie along
the overall folding pathway. Several of these changes are not evident in
the time series of RMSD to the native structure, which is often used in the
analysis of protein simulations. Aligned ensemble images are shown for the
protein backbone structures between each successive pair of detected
changes, with red color used to indicate the spatial location of the change
between the current ensemble and the previous ensemble as indicated by
SIMPLE’s output (SI Text). As inputs to SIMPLE, we used 595 interatomic
distance observables across ∼65,000 time points for the WW domain tra-
jectory and 190 interatomic distance observables across ∼21,000 time points
for the Trp-cage trajectory (SI Text). Changes detected over the full lengths
of these simulation trajectories are shown in Figs. S1 and S2. The average
number of observables found to change distribution at each change point
was 205 for the WW domain trajectory and 69 for the Trp-cage trajectory.
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active-to-inactive state simulation trajectories shown in figure 3 of
Dror et al. (31) (details in SI Text).

Comparison of Performance with That of Other Methods
To measure the performance of various methods for detecting
conformational changes, we generated synthetic MD simulation
trajectories where changes in the atomic position distributions
occur at known times (there is no such “ground truth” for actual
MD trajectories). We took care to preserve key properties of
actual MD trajectories. In particular, we created synthetic tra-
jectories, using a stationary bootstrap of the actual millisecond-
long MD trajectory of the bovine pancreatic trypsin inhibitor
(BPTI) reported by Shaw et al. (28), so that the noise distribu-
tions and short-timescale autocorrelations of the atomic posi-
tions were similar to those observed in the real trajectory. The
synthetic trajectories transition among four conformational states
modeled on ones described by Shaw et al. (28), with the transi-
tions selected according to a Markov chain. We created 25 syn-
thetic trajectories, each with four state transitions. Each trajectory
was analyzed independently.
Fig. 4 compares various methods according to the number of

correct and incorrect detections of change times, adjusting λ in

SIMPLE and a sensitivity parameter in each of the other
methods to control the total number of detections (more detail
in SI Text). All other SIMPLE parameters were set to their de-
fault values for analyses focused on conformational changes of
the protein backbone. According to these criteria, SIMPLE,
shown in blue in Fig. 4, substantially outperforms both methods
previously developed for or used in the context of MD simulation
analysis (red) and other methods from the statistics literature
(green). SIMPLE also identifies the observables that change at
each time, but we do not include this in our comparisons because
most other methods do not return this information.
Many common analyses of MD trajectories rely on a single,

generic summary measurement such as the RMSD to the native
structure or the coefficient of the first principal component of
the aligned atomic positions. Certain conformational changes,
however, prove difficult to detect using such summary mea-
surements. To quantify this limitation, we applied a state-of-the-
art univariate change-point detection method described in the
MD literature (17) to the time series for each of these summary
measurements and found that it underperformed most of the
multivariate methods we examined (Fig. 4).
In multivariate analyses of MD trajectories, change-point de-

tection methods are generally passed over in favor of state
identification methods, which aim to explicitly identify the con-
formational states visited during a simulation. These range from
basic clustering techniques to sophisticated algorithms for
building Markov state models (MSMs) (32–35). Fig. 4 shows the
results of using a leading MSM method, MSMBuilder2 (32), to
yield a parsimonious set of state transition times for each tra-
jectory (SI Text). SIMPLE performs substantially better in our
tests than the MSM method. It should be noted that for an al-
ternative synthetic dataset consisting of a long equilibrium tra-
jectory that visits each conformational state dozens of times, the
MSM method is competitive with SIMPLE (Fig. S3). The vast
majority of real-world MD simulations, however, do not visit
every state many times. Our comparison also gives the MSM
approach some artificial advantages (details in SI Text). State
identification is of interest in its own right, and MSM methods
are invaluable for that purpose, but our results show that one
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may be able to detect conformational changes more accurately
using change-point detection methods without identifying states.
We also compared SIMPLE to the recently published change-

point detection methods of Zhang et al. (20) and Bleakley and
Vert (24), which we adapted to the analysis of MD simulations
(Fig. 4, Fig. S3, and SI Text). These methods—which were also
designed to detect changes involving subsets of observables, but
do not perform concurrent optimization over change times and
subsets of changed observables—perform relatively well in our
tests, but do not detect as many of the true changes as SIMPLE
at any given false-positive rate.

Mathematical and Algorithmic Formulation of Method
Detailed Formulation of Penalized-Likelihood Optimization. Consider
J time series observables of T data points each, indexed as
ffYj,tgTt= 1g

J

j=1. Let fτigKi=1 denote a sequence of K candidate
change times with Si ⊂ f1, . . . , Jg the candidate observables that
change at time τi. For each j, let the candidate change times in
observable j be denoted as fτj,igKj

i=1, with τj,0 = 0 and τj,Kj+1 =T.
SIMPLE detects change points in the data by solving the opti-
mization problem

K̂ , fτ̂ig,
�
Ŝi
�
= arg max

K ,  fτig, fSig

XJ

j=1

XKj

i=0

l̂
�
Yj,τj,i+1, . . . ,Yj,τj,i+1

�

− λ
XK
i=1

qðSiÞ. [2]

Here, l̂ðYj,τj,i+1, . . . ,Yj,τj,i+ 1Þ is the maximum log-likelihood, under
some statistical model, of data in an observable between two
candidate change points of that observable. q : 2f1, ..., Jg →R is a
strictly increasing penalty function on subsets of observables that
satisfies the property qðS1 ⊔ S2Þ< qðS1Þ+ qðS2Þ whenever S1 and
S2 are nonempty and disjoint, so that simultaneous change points
incur a smaller penalty than change points of the same observ-
ables at differing times. In the special case where J = 1, λ= logT,
and the likelihood model is Gaussian with shared variance across
segments, our objective function reduces to the univariate prob-
lem studied by Yao (4).
In our applications, we use the Laplace distribution model

l̂
�
Yj,τj,i+1, . . . ,Yj,τj,i+ 1

�
= max

μ, v
log

0
@ Yτj,i+1

k=τj,i+1

1
2v

exp
�
−
��Yj,k − μ

��
v

�1A,

[3]

and we perform the optimization in Eq. 2 under the constraint
that change times τj,i and τj,i+1 are separated by at least two data
points (to avoid degeneracies in the maximum-likelihood value).
We note that the likelihood model implied by Eqs. 2 and 3 treats
data between change points in each observable as independent
and Laplace distributed with unknown median and scale and also
treats observables as independent of one another. However,
SIMPLE is effective even when some of these assumptions are
not satisfied. We observe below that the method is asymptotically
consistent even when the data are not Laplace distributed and
when observables may be correlated with each other, as long as
the median and/or mean absolute deviation of the marginal dis-
tributions of some observables change at each change point.
Empirically, we also observe that the data model of Eq. 3 yields
reasonable performance in the presence of weak autocorrelation
within each observable between change points. In applications
where data are instead strongly autocorrelated, we would advo-
cate applying SIMPLE using an autoregressive or other time-
series likelihood model in place of Eq. 3.

For analysis of biomolecular simulation data, we use pen-
alty functions of the form qðSÞ= ðPijS∩GijβÞα for parameters
0< α, β< 1, where Gi ⊂ f1, . . . , Jg are groups of observables
representing spatially proximate locations on the protein mole-
cule. Each term jS∩ Gijβ promotes simultaneous detection of
changes in the observable group Gi, and the summation and
exponentiation by α promotes simultaneous detection of changes
across all observables. Our recommended (default) choices of
the parameters α and β and groups Gi, based on qualitative
performance in real-data examples, are discussed in SI Text. We
find that, in our synthetic-data experiments, the performance of
SIMPLE is relatively stable under different choices of α and β
and groups Gi (Fig. S4).
For application domains where prior knowledge is not avail-

able to guide the construction of observable groups, we suggest
using the generic penalty function qðSÞ= jSjα. The single tuning
parameter α controls the extent to which change points are
detected as simultaneous across observables. It takes on a value
between 0 and 1 and may be set closer to 1 if each change is
expected to involve few observables or closer to 0 if each change
is expected to involve most of the observables. In the absence of
prior knowledge, we suggest a default value of 0.7.

Asymptotic Consistency Under General Distributional Assumptions.
Theorem. Let the data fY · ,tgTt=1 be T independent random vectors
of J (not necessarily independent) observables. Suppose there exist
K0 true change times fτ0i g

K0

i=1 with changed observable sets fS0i g
K0

i=1,
such that data for observable j between change points i and i+ 1
of that observable are marginally distributed according to some
distribution Fj,i. Assume the following conditions hold:

i) Each Fj,i has tails that decay at least exponentially, i.e.,
Fj,ið−xÞ+ ð1−Fj,iðxÞÞ≤Ae−Bx for some A,B> 0 and all x∈R.
Each Fj,i has density fj,i bounded below by some m> 0 in a
neighborhood of its median and above by some M <∞ over all
of R.

ii) Each Fj,i differs from Fj,i+1 in its median and/or mean absolute
deviation from the median.

iii) For any disjoint nonempty sets S1, S2 ⊂ f1, . . . , Jg, qðS1Þ+
qðS2Þ> qðS1⊔S2Þ> qðS1Þ.

iv) The minimum separation between change times satisfies
liminfT→∞ððminiτ0i+ 1 − τ0i Þ=TÞ> 0, and the penalty magni-
tude satisfies limT→∞ðλðTÞ=TÞ= 0 and λðTÞ≥CðlogTÞ2 for
some C> 0.

v) There exists a known upper bound Kmax ≥K0 (independent of T).

Let K̂, fτ̂ig, fŜig be the solution to the optimization problem in
Eq. 2 with the Laplace data model of Eq. 3, under the constraints
jτi+1 − τij≥ 2 and K ≤Kmax. Then, for some sufficiently large C in
condition iv and any «> 0 ,

lim
T→∞

Pr
�
K̂ =K0,   Ŝi = S0i   and 

��τ̂i − τ0i
��

T
< «  for  all 1≤ i≤K0

�
= 1.

This Theorem ensures that, in the limit of infinite data between
change times, the solution to the SIMPLE optimization problem
using the Laplace likelihood model has the correct number of
true change times with arbitrarily small relative errors in those
times, as well as the correct subsets of changed observables. This
asymptotic consistency result holds even if the J observables are
not Laplace distributed or are not independent. Indeed, we use
the Laplace model simply as a robust tool for detecting changes
in median and in mean absolute deviation from median, whether
or not the data actually follow a Laplace distribution. A proof
and further discussion are provided in SI Text.

Overview of Algorithmic Approach. Although the optimization
problem in Eq. 2 is conceptually simple, it may be difficult to
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solve exactly even for datasets of moderate size. We propose an
iterative algorithm to approximate its solution, which yields good
results in our tested applications. Empirically, this algorithm
appears to require close to linear (in the total size JT of the input
data matrix) runtime per iteration and terminates in a small
number of iterations.
The key idea underlying the algorithm is that if candidate

change points in all but one observable are held fixed, then the
optimization problem for change points in the last observable
reduces to a univariate penalized-likelihood optimization prob-
lem with time-varying penalties. A pruned dynamic programming
algorithm recently developed by Killick et al. (26) may be applied
to efficiently and exactly solve this univariate problem. To ap-
proximate the solution to Eq. 2, we use an iterative approach in
which, at each iteration, we solve this univariate problem for
each observable by treating as fixed the changes in the other
observables from the preceding iteration. To prevent the algo-
rithm from reaching a poor local maximum, we include an additional
step in each iteration that can adjust the detected time of a change in
multiple observables. The algorithm is easily parallelizable, and a
parallel implementation using MPI is available at https://github.com/
DEShawResearch/SIMPLEchangepoint. Further details are pro-
vided in SI Text.

Concluding Remarks
Although we have emphasized the application of the SIMPLE
method for the detection of conformational changes in bio-
molecular simulation data, the method is quite general in its
formulation and should be applicable to many other problems in
which one wishes to detect changes affecting subsets of many
observables. Potential applications include the detection of dis-
tributed denial-of-service (DoS) attacks in computer networks

(36), of weather and climate changes from meteorological data
(37), and of disease outbreaks from surveillance data collected
at multiple locations (38). These problems are similar to that of
detecting conformational changes in biomolecules in that a dis-
tributed DoS attack, climate change, or disease outbreak is likely
to cause a simultaneous change in a number of the monitored
observables. In each case, the total number of monitored ob-
servables is potentially very large, and spatial or graphical re-
lationships among them could be exploited through an appropriate
choice of penalty function in SIMPLE. Some of these applications
place a premium on the detection of a change as soon as it occurs,
and this remains an important topic for future work.
Researchers have previously noted that classical multivariate

change-point detection methods often fail to detect changes that
involve only a small number of observables. Rogerson and Yamada,
for example, applied univariate and multivariate cumulative sum
methods to disease surveillance and concluded that neither is
completely satisfactory, as “the univariate method is generally better
at detecting changes ... that occur in a small number of regions; the
multivariate is better when change occurs in a large number of
regions” (ref. 38, p. 2195). We believe that SIMPLE, which is
designed to identify changes involving any number of observables,
could help fill this gap between classical univariate and multivariate
approaches, providing an analytical tool that could prove in-
creasingly useful as new data acquisition technologies continue to
drive an explosive proliferation in the number and size of datasets
involving large numbers of observables.
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