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We use a regular arrangement of kirigami elements to demon-
strate an inverse design paradigm for folding a flat surface into
complex target configurations. We first present a scheme using arrays
of disclination defect pairs on the dual to the honeycomb lattice; by
arranging these defect pairs properly with respect to each other and
choosing an appropriate fold pattern a target stepped surface can be
designed. We then present a more general method that specifies a
fixed lattice of kirigami cuts to be performed on a flat sheet. This single
pluripotent lattice of cuts permits a wide variety of target surfaces to
be programmed into the sheet by varying the folding directions.
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Reduced-dimensionality objects can be light yet extremely
strong, as in a geodesic dome or the skeleton of a diatom (1).

Design of such structures couples scale-independent geometry and
topology with material properties to create a variety of structures.
In soft gel sheets, programmed inhomogeneous swelling and
stretching can generate tunable 3D shapes that can potentially
serve as compliant mechanisms (2). In more rigid systems, origami
applies a prescribed sequence of folds to a flat sheet and returns a
strong, lightweight, and flexible 3D structure. A great deal of ef-
fort has gone into exploring the breadth of attainable origami
surfaces starting from nearly unstretchable sheets (3–5), including
recent work on designing mechanical metamaterials (6) and self-
folding origami structures (7).
In origami, the inverse problem of prescribing a set of folds to

achieve a target structure has been algorithmically solved. For in-
stance, the circle/river packing method can be used to create a 2D
base for the final product which is then augmented with extra folds
into the desired 3D shape (8). A different method wraps the initial
flat sheet onto a polygonally tiled target surface, using tucking
molecules to hide the excess material within the final shape, and
thus creates curvature (9). Further, software has been developed by
the same author to form developable, irregularly corrugated target
configurations by modifying miura-ori–style patterns (10).
There are, nevertheless, certain limits and constraints in the

use of origami to design generic structures. These problems center
around the potential complexity of the initial fold pattern and the
subsequent greatly magnified complexity of the required sequence
of folds along this pattern. For instance, the fold patterns specified
by the circle/river packing algorithms return a pattern whose fol-
ded state matches a target surface, but there is no guarantee that
any subset of creases can be folded; complex models of this type
are typically precreased and then folded in a very specific and
repetitive sequence. The polygonally tiled surfaces created by the
tucking molecule method are the product of intricately inter-
locking crimp folds hidden away beneath the surface. Both of
these features reflect the fact that typically complex origami de-
signs do not permit a monotonic, continuous folding motion from
the planar state to the desired target state. These extremely deli-
cate fold patterns present an obvious challenge to the goal of
designing self-assembling origami structures, where in many cases
extremely fine control of the fold ordering may be required. Ad-
ditionally, these fold patterns often waste much of the surface
to create effective areas of Gaussian curvature, using extremely

intricate folds, wedges, and pleats to effectively remove material,
hiding it beneath the visible surface.
Recently, we introduced lattice kirigami methods to this design

problem (11); inspired by the work of Sadoc, Rivier, and Charvolin
on phyllotaxis (12–14), we supplemented the folds of origami with a
limited set of cutting and regluing moves taking place on a hon-
eycomb lattice (11). The essence of our kirigami constructions is
that after making the prescribed cuts and identifying edges we have
a surface with localized points of Gaussian curvature, which cause
the surface to buckle into a 3D configuration. Associated folding
then precisely defines the shape of the surface, corralling the points
of Gaussian curvature into useful cues that direct the shape of the
final structure.
The restrictions imposed on kirigami by the honeycomb lattice

and its triangular dual lattice led to a manageable set of allowed
motifs: 2–4 disclination pairs on the honeycomb lattice and ~5–~7
disclination pairs on the dual lattice (dual lattice constructs are
denoted by tildes) that could be connected to other disclination
pairs with cancelling Burgers vectors by paths with glide and
(sometimes partial) climb geometries. An example of pure climb
paired ~5–~7 disclination pairs is shown in Fig. 1A, where the ver-
tices of the cut pattern are seen to lie on the dual lattice sites. In
contrast, the vertices of the cut pattern for 2–4 pairs lie entirely
on the honeycomb lattice and its basis; thus, in its folded con-
figuration a 2–4 defect pair will appear as a pair of neighboring
points on the honeycomb lattices with twofold and fourfold co-
ordination (instead of the normal threefold). Another allowed
kirigami motif is the sixon, a defect formed by completely re-
moving one hexagon from the honeycomb lattice and recon-
necting the cut edges of the remaining surface in one of several
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degenerate ways. One configuration of the sixon identifies pairs
of adjacent edges so that three triangular plateaus emanate from
a central point; another configuration leads to matching 2–4 pairs
in a pop-up/pop-down configuration (11).
In this paper we show that arrangements of these kirigami

motifs enables a remarkably versatile ability to design patterns whose
cut-and-folded state matches a desired target surface, allowing us to
algorithmically solve the inverse design problem for a particular class
of surfaces with a specified maximum gradient.
Importantly for their potential for self-assembly, the kirigami

design paradigms we propose are both simple—to the extent of
being easily designed by hand—and robust to the ordering and
relative rates of edge folding. In what follows we will first de-
scribe a simple solution to the inverse design problem of cre-
ating a stepped surface with assigned heights at each point by
arranging paired ~5–~7 pairs along the lattice vectors of a larger
superimposed honeycomb lattice. The excised patches define
the location of the points of Gaussian curvature, and the des-
ignation of mountain and valley folds defines the height. We
then present a second method using the same principle in a
more refined manner to produce a reconfigurable surface. The
stepped surfaces we create have many uses, among them being
a similarity to water retention random surfaces in which the
amount of water that collects in the basins of these landscapes
is studied (15). Varying the parameters of the random land-
scape shows the link to percolation problems, and in this con-
text our reconfigurable kirigami structures could be used to
develop surfaces that can trigger the relevant percolation
transition across the landscape in this and similar systems.
More broadly, by invoking the degeneracy and flexibility of the
sixon structure we can design a pluripotent lattice of sixons that
can be folded into a dizzying array of target shapes by selec-
tively assigning their mountain and valley folds.

Design Using ~5–~7 Elements
Fig. 1 depicts a single ~5–~7 climb pair element, where an extended
hexagon is excised from the sheet, its edges are identified, and
mountain and valley folds perpendicular to the short sides of the
excised hexagon are applied. The two regions labeled “P” can
independently pop up or pop down relative to their initial con-
figuration, depending on the fold choices. In contrast, the re-
gions labeled “R” share an edge in the folded configuration and
therefore must be at the same height. Thus, an isolated ~5–~7 climb
pair element has four allowed configurations if we do not allow
rotations in R3.
A workable design paradigm requires combining many of

these kirigami elements together, and in general one of the
challenges of kirigami design is to understand the allowed relative
configurations of kirigami elements. Important progress can be
made by realizing that a collection of ~5–~7 climb pair elements can
be placed on the edges of a larger honeycomb superlattice, one

Fig. 1. Construction and configuration of the fundamental ~5–~7 climb pair
kirigami element. (A) The cut surface in its unfolded state with and without
the underlying honeycomb lattice. Because they share an edge after as-
sembly, regions marked “R” must be at the same height in the folded
configuration. Regions marked “P” can either be at the same height or
differ in height by two. (B–E) The four allowed folding configurations of the
~5–~7 climb pair element.

Fig. 2. (A–E) The basic building blocks of ~5–~7 stepped surfaces. (Left) The
unfolded configuration, where the excised hexagons sit on a larger-scale
honeycomb lattice. (Middle) The folded configuration. (Right) A reduced
representation suitable for easily designing target surfaces. (F) Folded con-
figurations where the positive-climb paths of three dislocations converge.
(G) Junction representation of the meeting of folding lines and cutting lines (i.e.,
places where excised regions had their edges identified) in the reduced repre-
sentation. Only the junctions marked “O” represent allowed configurations.
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whose edge lengths correspond to some multiple of the original
lattice spacing. That is, arranging the ~5–~7 cuts of the underlying
lattice according to the superlattice positions guarantees that the
kirigami elements are commensurate.
Fig. 2 A–E, Left, demonstrates the allowable ways (modulo

rotations in R3) of decorating a given hexagon in the bulk of the
superlattice with ~5–~7 elements (additional units are allowed at the
boundaries of the sheet) while still maintaining the connectedness
of the sheet. For instance, the structure labeled “Unit 0” is created
with zero cuts and six folds around the central hexagon, which is
accommodated by arranging six radial ~5–~7 climb pair elements that
each point at the corner of a hexagon on the superlattice. Fig. 2,
Middle, shows the folded configuration of each of these basic
building blocks. In our nomenclature, “Unit n” refers to a super-
lattice hexagon with n of its sides replaced with a ~5–~7 climb pair
element. The three structures in Fig. 2F labeled “special units”
contain points at which three dislocations, whose Burgers vectors
sum to zero, have positive-climb paths that converge together (as
described in the Supplementary Material in ref. 11). In real mate-
rials these special units may be less stable than the other units, but
their use substantially simplifies the design of target structures.
Fig. 2, Right, shows a simplified 2D representation of each

structure given by color-coding the edges of the hexagonal
superlattice as either folds or cuts (trivially done by comparing
the relative elevation of the structure across a line). The allowable
configurations can be determined by considering each vertex of
the superlattice, as shown in Fig. 2G: to avoid tearing and other
unwanted structural deformations of the sheet, each vertex must
have either zero or two folding lines incident upon it.
With this junction rule in hand it is straightforward to reverse

engineer a 2D map of the ~5–~7 elements and fold lines needed to
stepwise approximate a target surface. In Supporting Information
we demonstrate this by designing a kirigami ziggurat, which we
then realize in a simple experimental setting.
However, even aside from the restrictions imposed by the

junction rules described above, these ~5–~7 climb pair kirigami de-
signs share one of the fundamental limitations of the origami
patterns: for every desired target surface an entirely new pattern of
cuts has to be programmed into the sheet, and only then can the
folds be made. In many contexts we would prefer a pluripotent
kirigami blueprint. Similar in spirit to the universal hinge pattern
for making generic polycubes (16), we desire a single arrangement
of kirigami elements that can accommodate many different target
structures, all accessed by entirely local sequences of fold reas-
signments (i.e., changing a local set mountain folds to a valley
folds and vice versa). In the next section we show that a triangular
lattice of sixons can achieve precisely this goal.

Deploying Sixons for Surface Design
As before, to make use of the sixon structure we must un-
derstand the allowed arrangements of sixons with respect to each
other. Fortunately, this is particularly straightforward: multiple
sixons can be arranged in a triangular lattice. That is, the fold
patterns required by the placement of multiple sixons can be
made commensurate by choosing the excised hexagon centers to
lie on a triangular lattice. The simplest implementation of this is
shown in Fig. 3A. The folded state of this pattern, schematically
shown in Fig. 3B, consists of triangular basins at height 0 sepa-
rated by triangular plateaus at height 1 (in units of the sidewall
heights). By thinking of this structure in a gravitational potential
we consider the configuration in Fig. 3B to be the ground state of
the triangular lattice of sixons because it minimizes the sum of
the relative plateau heights.

A

B

C

D

Fig. 3. (A) A triangular lattice of sixons together with lines for mountain
(dot-dashed) and valley (dashed) folds to create the ground state configu-
ration. (B) The ground state of the pattern in A, with sidewall heights re-
duced for visual clarity. (C) A reduced triangular representation for an
arbitrary height configuration of the lattice, where the numbers inside each
triangle correspond to the height of that triangular plateau. Each plateau
height differs by one from any plateau with which it shares an edge. (D) The

cut-and-fold pattern corresponding to the height map in C, where the gray
hexagons are the excised regions.
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Local excitations of this configuration correspond to changing
the plateau heights, for instance, by interchanging the nested
valley and mountain folds around a height-zero triangular basin,
creating a height-two triangular plateau surrounded by height-
one plateaus. If the sheet can bend and stretch as in bistable
origami (17), transforming from the ground state to these excited
states only requires opening and then reclosing the three excised
hexagons that bound the relevant triangular plateau. Otherwise,
to avoid tearing or bending while moving from one target to
another, it is necessary to return to the completely flat state. The
requirements that folds be commensurate and the sheet not
stretch impose the only restriction on allowed excitations: the
height of any triangle in the folded configuration must differ by
one from the height of any triangle with which it shares an edge.
One such excited state is shown in Fig. 3C; as shown in Fig. 3D,
given a reduced representation of the heights, it is trivial to assign
the corresponding mountain and valley folds in the real sheet.
The restriction on the excited states is quite modest, making it

easy to design a cut-and-fold pattern based on a triangular lattice
of sixons that approximately matches a target surface with a
stepped surface of triangular plateaus. In this formulation,
achievable target surfaces are limited only to have a maximum
gradient set by the ratio of plateau height to plateau width. If the
gradient of the target surface obeys this bound, finding the kir-
igami solution to the inverse design problem is as straightforward
as projecting the heights of a target surface down onto a tri-
angular lattice and then rounding the height assignment of each
triangle to the nearest even or odd integer so that triangles
sharing an edge will have heights that differ by exactly one. In-
deed, if there is a known maximum gradient among the target
surfaces into which a sixon array will be (re)configured, the cut
sizes determining the ratio of plateau height to width can be
chosen to match this maximum gradient. From the triangular
height map the pattern of mountain and valley folds immediately
follows, as in Fig. 3D. We illustrate this simple design paradigm

in Fig. 4, where the same triangular lattice of sixons can be used
to approximate (to pick two arbitrary examples) both a monkey
saddle and the topographic features at the northern terminus of
the US Appalachian Trail (18).

Conclusion
We have demonstrated that adding kirigami cutting motifs to the
folds of origami leads to a powerful framework in which target
structures can be algorithmically designed via arrays of kirigami
elements. Subject to a gradient constraint, using a superlattice
simplifies the design for a static target surface, whereas tri-
angular lattices of sixons form a versatile base pattern able to
accommodate fold patterns for any stepped target structure. If
the material allows for dynamic changing of fold type, then the
sixon lattice can be reconfigured between arbitrary surface
configurations. Current studies involve designing pluripotent
kirigami templates that lift the gradient limitation as well as
other geometric and topological limits. We note that our choice
of triangular plateaus and sixons was a powerful but not entirely
unique choice with which to engineer a pluripotent sheet of
kirigami elements. We show in Supporting Information that using
square plateaus leads to a similar (but more restrictive) design
paradigm.
We note that our kirigami designs are superior to many ori-

gami designs for comparable results, especially in relation to
self-assembly. For example, our experimental realization of a
ziggurat-style pryamid (Supporting Information)—actuated by
heat-shrink tape placed across the short axis of the excised
hexagons—makes it clear that in our kirigami constructions the
fold process is very robust. That is, in contrast with the origami
methods discussed above, detailed control over the folds is not
necessary to correctly form the target structure. Also, unlike
some origami designs, this kirigami-based approach to ap-
proximating surfaces with sixons maintains a constant com-
plexity of fold pattern per unit surface area. The underlying

Fig. 4. Illustration of the pluripotent design capability of the sixon lattice. Starting from the base configuration of a 151 × 151 grid of triangular plateaus, a
target surface is first selected [here a monkey saddle or Mt. Katahdin (18)]. The height of this target surface is projected onto the grid of triangular patches,
and from this a local sequence of fold assignments is made to construct the final kirigami structure.
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structure is always a triangular lattice of sixons, and different
surfaces differ in their folding template only by switching moun-
tain and valley folds as needed.
Because the folds connecting sixons are coupled, a triangular

lattice of sixons has more fold lines than degrees of freedom.
This attribute could be exploited to create truly multipotent
kirigami sheets by partitioning the folds into nonoverlapping
sets and programming each of those sets to fold in response to
different stimuli. We schematically illustrate such a duopotent
sheet in Supporting Information, programming half of the fold
lines to form a half-cylinder when activated, whereas the other
half of the fold lines transform the sheet into a Mexican hat
potential. This raises the exciting prospect that with dynamical

control over the fold type, a single lattice of sixons could serve
as the base for, e.g., microfluidic devices with dynamically change-
able channels. Work on implementing such a dynamically recon-
figurable kirigami surface is currently underway. We also anticipate
that exploring the collective elasticity of these kirigami sheets will
provide further insight into 2D mechanical metamaterials (19).
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