
HOMEOSTATIC EXPANSION AS A BARRIER TO LYMPHOCYTE 
DEPLETION STRATEGIES

Nicholas A. Zwang1 and Laurence A. Turka2

1Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 
MA

2Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, 
MA

Introduction

Purpose of review—Following lymphodepletion, lymphocytes repopulate the immune space 

both through enhanced thymopoiesis and proliferation of residual non-depleted peripheral 

lymphocytes. The term homeostatic proliferation (alternatively homeostatic expansion or 

lymphopenia-induced proliferation) refers to the latter process. Homeostatic proliferation is 

especially relevant to reconstitution of the lymphocyte compartment following immunodepletion 

therapy in transplantation. Repopulating lymphocytes can skew toward an effector memory type 

capable of inducing graft rejection, autoimmunity, or, in the case of allogeneic bone marrow 

transplantation, graft versus host disease. Here we review recent studies exploring the biologic 

mechanisms underlying homeostatic proliferation and explore implications for therapy in 

transplantation.

Recent findings—Two immune-depleting agents, alemtuzumab and rabbit antithymocyte 

globulin, have been well-characterized in their abilities to induce an effector-memory phenotype 

in repopulating lymphocytes. Additionally, we have gained new understandings of the 

mechanisms by which the cytokines Interleukin-7 (IL-7) and Interleukin-15 (IL-15) regulate this 

process. Recent studies have also explored the functions of non-cytokine and signaling molecules 

in lymphopnenia-induced proliferation. Finally, we have seen the promise and limitations of 

several therapeutic approaches, including recombinant IL-7 therapy, CD8+-targeted antibodies, 

and peri-transplant cyclophosphamide, to treat post-transplant lymphopenia and reduce the risks of 

immune dysregulation following homeostatic proliferation.

Summary—Immune dysfunction following homeostatic proliferation is a special challenge in 

transplantation. A deeper understanding of the underlying biology has led to a number of 

promising new therapies to overcome this problem.
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I. Introduction

Following lymphodepletion, lymphocytes repopulate the immune space both through 

enhanced thymopoiesis and proliferation of residual non-depleted peripheral lymphocytes. 

The term homeostatic proliferation (alternatively homeostatic expansion or lymphopenia-

induced proliferation) refers to the latter process. Early studies of homeostatic proliferation 

showed that T cells surviving lymphodepletion divided, developed memory phenotype and 

function, and then acted in a dominant fashion to render animals resistant to cardiac or renal 

allograft tolerance via costimulatory blockade.1,2 In line with these findings, recent studies 

have shown that lymphopenia itself is enough to break stable costimulatory blockade-based 

peripheral tolerance.3 In a mouse model of MHC-mimatched cardiac transplantation, 

lymphopenia (achieved either by irradiation or anti-CD4+/CD8+ monoclonal antibodies) 

induced acute T and B cell-mediated rejection, accompanied by a T cell shift toward a 

CD44hi effector-memory (EM) phenotype and the appearance of donor-specific antibodies. 

The process of homeostatic proliferation can be divided into “slow” (one cell division per 

24–36 hours) or “fast” (one division per 6–8h) kinetics. While slow proliferation occurs in 

response to a “sensing of empty space”, rapid proliferation is primarily a gut antigen-driven 

process.4 Slow homeostatic proliferation predominates in homeostatic proliferation 

following lymphodepletion in mouse models. Furthermore, both T and B cells can undergo 

homeostatic proliferation. In this review, we will focus on recent developments in the slow 

homeostatic proliferation of T cells following lymphodepletion, which we believe is most 

relevant to understanding rejection and autoreactivity following transplantation.

II. Pharmacologic lymphocyte depletion promotes autoimmunity and the 

expansion of alloreactive lymphocytes

Alemtuzumab (anti-CD52) is a potent lymphocyte depletional agent that has been used as 

induction therapy for transplantation and for treatment of multiple sclerosis. CD4+ cells and, 

to a lesser extent, naïve CD8+ cells, are most susceptible to alemtuzumab-induced 

lymphodepletion.5,6,7,8 A larger population of naïve T cells may remain undeleted, however, 

as peripheral lymph nodes may be a reservoir for these cells following alemtuzumab 

induction.9 Alemtuzumab therapy leads to skewing toward memory CD4+ and CD8+ 

phenotypes in renal transplant recipients; those with evidence of rejection (by biopsy, new 

or donor-specific antibodies) following alemtuzumab therapy have an increased proportion 

of CD8+ effector memory cells (CD45RO−CD62L−).10 These same patients further have 

decreased frequencies of regulatory T cells (Tregs) among CD4+ cells. While other work, in 

contrast, has suggested an increased frequency of Foxp3+ cells following alemtuzumab 

induction.11 It is possible that in this instance Foxp3 expression may be only a transient 

marker of T cell activation.12,13, 14 Among patients with multiple sclerosis, homeostatic 

proliferation following alemtuzumab therapy leads to recovery of a highly activated, 

proliferative, oligoclonal, and memory-like population of CD4+ and CD8+ cells.15 In 

particular, the CD8 pool is dominated by a terminally-differentiated, effector memory 

CD28−CD57+CD8 population expressing perforin and Granzyme B. Such as population is 

known to be associated with autoimmunity, and indeed in this study of 87 patients, two 

thirds developed (primarily thyroid) autoimmunity.
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Rabbit antihymocyte globulin (rATG) depletes naïve but not central memory or effector 

memory T cell subsets in kidney transplant patients.16 Early studies of immune monitoring 

of CD4+ cells following ATG induction has indeed revealed a residual population of 

CD25+CD45RO+CD45RA− (i.e., EM) cells but also transient expression of Foxp3,17 which, 

again, may only be a marker of CD4+ activation. Nonetheless, administration of mouse ATG 

in a mouse model of Treg-dependent autoimmune diabetes increased the prevalence of 

Foxp3+ and CTLA-4+ cells while delaying the onset of autoimmunity.18 Perhaps Treg 

induction (transiently) counterbalances memory T cell expansion following ATG induction. 

Recent examination of the kinetics of lymphocyte depletion following rATG given as 

induction therapy in renal transplantation found that rATG durably depletes the T cell 

compartment to counts below 250 CD3+ cells/uL at six months, compared to minimal T cell 

depletion following basiliximab or no induction therapy.19 In contrast to prior studies, this 

recent investigation found no increase in thymopoiesis (i.e., CD31+ cells among CD4+ or 

CD8+ cells) one month following rATG induction. Rather, peripheral cytokine-mediated 

signaling by IL-7 and IL-15 via Stat5 increased in the first month following rATG therapy, 

particularly among memory T cell subsets. These studies indicate that T cell recovery 

following ATG comes from peripheral T cell pools rather than heightened thymopoiesis.

III. New insights into the immunobiology of homeostatic proliferation: IL-7, 

IL-15, and non-cytokine regulators

In humans, unlike mice, the majority of proliferating T cells derives from the periphery 

rather than the thymus.20 Therefore, peripheral cytokine signaling is essential to maintain 

the lymphoreplete state and repopulate the T cell compartment in lymphopenia. IL-7 is the 

primary cytokine responsible for T cell homeostatic proliferation. In young thymectomized 

and elderly adults, circulating IL-7 levels are higher than those of healthy controls.21 IL-7 in 

these patients with low or no thymic function appears to stimulate T cell proliferation via 

STAT5 signaling. IL-7 itself has been described as a “rheostat” to maintain the T cell 

compartment.22 In lymphopenia, excess IL-7 stimulates T cell proliferation. Proliferating T 

cells consume IL-7, and levels fall to the basal state as the T cell compartment repopulates. 

This mechanism prevents excess proliferation and preserves T cell homeostasis. A recent 

study found that IL-7-induced proliferation requires intermittent (rather than continuous) 

signaling and that TCR engagement provides this interruption.23 T cells with inadequate 

affinity for peripheral (self) TCR ligands die following prolonged IL-7 signaling; this 

mechanism maintains a population of T cells with appropriate affinity for self ligands.

In addition to IL-7, IL-15 signaling is important for CD8+ T cell survival and 

proliferation.24,25,26 While IL-15 enhances homeostatic proliferation of memory CD8+ cells, 

IL-15 alone is not enough for homeostatic proliferation of naïve CD8 T cells. 27 In naïve 

CD8+ cells, MHC I engagement is also necessary for homeostatic proliferation.28 Emerging 

data show that memory CD4+ may also be responsive to IL-15.29,30,31 Finally, TGB-β may 

attenuate IL-15 signaling and act as a brake on homeostatic proliferation-driven 

autoimmunity.32,33, 34,35,36,37
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In the past year, a number of studies have shown the importance of cell-intrinsic signaling, 

non-cytokine TCR regulation, and trafficking molecules in regulating homeostatic 

proliferation.

The protein tyrosine phosphatase gene product PTPN2, which dampens TCR signaling in 

CD4+ and CD8+ cells, is implicated in human autoimmunity.38,39 T cell knockout of PTPN2 

in a mouse model resulted in more rapid lymphopenia-induced CD8+ proliferation compared 

to control animals. Adoptive transfer of PTPN2-deleted CD8+ cells into congenic hosts 

resulted in effector/memory differentiation and autoimmunity compared to adoptive transfer 

of control CD8+ cells..40 This response was IL-7-independent. miRNA-181a enhances TCR 

signaling, in part by suppressing expression of other protein phosphatases.41 Thus, 

miRNA-181 or another miRNA might inhibit PTPN2 expression and thereby dampen 

lymphopenia-induced proliferation.

It has been suggested that transcription factors may regulate the ability of hematopoietic 

stem cells to repopulate the lymphocyte compartment. For example, Hoxb4 signaling may 

promote a hematopoietic stem cell CD4+ central memory (CD44hiCD62L+) phenotype in 

response to lymphopenia.42 In competitive adoptive transfer experiments, Hoxb4-

overexpressing central memory cells contributed less than wild-type central memory cells to 

reconstitution of lymphoid organs.

Finally, the integrin CD18 (lymphocyte function-associated antigen-1, or LFA-1) functions 

in naïve T cell trafficking between the gut and secondary lymphoid organs43,44 and is 

implicated in gut autoimmunity.45 Adoptive transfer of CD4+ CD18−/− cells into Rag−/− 

hosts has shown the requirement of CD18 both for fast and slow lymphopenia-induced 

proliferation.46 The above studies have illustrated the importance of non-cytokine regulators 

of homeostatic proliferation that skew toward an effector memory phenotype in homeostatic 

proliferation.

IV. Clinical implications for autoimmunity after treatment of lymphopenia 

and strategies to prevent autoreactivity

Recombinant IL-7 has come into use to promote T cell recovery in lymphopenia. The 

therapeutic goal has been to expand the population of mature lymphocytes rather than to 

induce thymopoiesis.47,48 While studies of T cell subsets suggest that IL-7 administration to 

humans with refractory malignancies increases naïve T cell fractions,49 these results need to 

be interpreted with caution. IL-7 administration in lymphopenic hosts may have markedly 

different effects. A recent Phase I trial of IL-7 administration in allo-HSCT skewed 

repopulating CD4+ and CD8+ cells toward an effector-memory (CD45RA−CCR7−) 

phenotype.50 Recent studies of IL-7 administration to mice have suggested that CD4+ 

single-positive (miR181a -expressing) thymocytes are more sensitive to IL-7-induced 

proliferation than are peripheral CD4+ cells.51 In these animals, peripheral lymphopenic 

CD4+ proliferation in response to IL-7 had a strong TCR co-stimulation requirement; these 

proliferating cells were primarily slow rather than fast-proliferating cells. These data suggest 

that thymopoiesis provides an important contribution to resolving lymphopenia and that IL-7 

therapy affects slowly rather than quickly-proliferating cells under conditions of homeostatic 
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proliferation. Prior studies have suggested that PI3K signaling is essential for proliferation 

of these CD4+ cells, particularly in CD31+ recent thymic emigrants.52,53

Another potential approach to overcoming homeostatic proliferation as a barrier to 

transplantation is to delete potentially pathologic CD8+ cells specifically in transplant 

recipients. Yamada et al employed this approach with the use of anti-CD8 mAbs at the time 

of lymphodepletion in a mixed chimerism model of MHC mismatched renal transplantation 

in nonhuman primates;54 their findings of decreased Tmem responses in CD8-depleted 

antimals are encouarging. The same group subsequently studied alefacept, a fusion protein 

of the extracellular CD2-binding portion of the human leukocyte function antigen-3 (LFA-3) 

adhesion molecule.55 This agent is thought to interrupt cytotoxic effector memory T cell 

proliferation by blocking the interaction between effector-memory CD2+ cells and LFA-3. 

Alefacept therapy for psoriasis preferentially depleted CD4+CD45RO+ effector memory 

cells, which correlated with clinical improvement in skin lesions.56 Alefacept preferentially 

and reversibly depleted CD8+ effector memory (CD28−CD95+) cells in a nonhuman primate 

transplantation model57; CD28− cells in this model were CD2hi, helping to explain 

alefacept’s ability to preferentially deplete CD8+ cells.

Post-transplant cyclophosphamide administration is an attractive approach to prevent GVHD 

by depleting alloreactive CD8+ cells that might otherwise survive induction therapy.58,59 

Recent data suggest that post-transplant cyclophosphamide administration primarily targets 

rapidly-dividing allo-specific cells, relatively sparing naïve cells essential to maintenance of 

immunocompetence following HSCT.60 CD4+Foxp3+ Tregs appear resistant to 

cyclophosphamide and recover quickly following cyclophosphamide induction for 

allogeneic bone marrow transplantation.61 Sparing of Tregs may partly underlie the 

mechanism by which cyclophosphamide prevents GVHD.

Finally, in contrast to Tconv cells, Tregs require IL-2 is essential for Treg survival and 

proliferation, both in lymphopenia and the lymphoreplete state.62 This observation has led to 

low-dose IL-2 as therapy to promote Treg proliferation in hepatitis C-associated vasculitis63 

and GVHD following stem cell transplantation.64 IL-2 therapy for GVHD restores pStat5 

signaling and proliferation of Tregs without affecting Tconvs.65 Thus, Treg-specific therapy 

may ultimately find a place in transplant immunosuppression protocols alongside more 

generalized lymphodepletion strategies and targeted effector-memory cell deletion.

V. Conclusion

Lymphodepletion for induction transplant therapy is double-edged sword. On the one hand, 

highly effective agents such as alemtuzumab and rATG are able to prevent early T cell 

mediated rejection. On the other hand, repopulated T cells skew toward allo-specific, 

effector-memory phenotypes following lymphodepletion. An interesting concept in tumor 

immunobiology turns the concept of homeostatic proliferation on its head. The conditions of 

homeostatic proliferation could be used to cultivate CD8+ cells specific to tumor antigens, 

allowing for specific immunotherapy.66,67 This type of approach remains experimental in 

mouse models. But exploring the spectrum of homeostatic proliferation can improve our 

understanding of this important phenomenon, not only as it relates to transplantation but also 
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to HIV therapy and autoimmunity. The use of recombinant IL-7 in transplantation treatment 

of lymphopenia may be a tight rope to walk if this therapy skews repopulating T cells 

toward an effector memory phenotype capable of autoreactivity. Alternatively, targeted 

deletion of effector memory CD8+ cells upon transplantation—with depleting antibodies or 

cyclophosphamide—is an intriguing way to solve this problem, so long as these approaches 

do not increase the risks of infection unacceptably. Finally, the role of Tregs in controlling 

autoimmunity or alloreactivity following lyphodepletion merits further investigation. IL-2 

therapy may not adequately enhance Treg function to overcome the problems of homeostatic 

proliferation. A deeper understanding of Treg biology, however, may ultimately lead to 

Treg-specific therapies that ameliorate the EM-skewing induced by lymphodepletion.
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Abbreviations

EM Effector memory

HP homeostatic proliferation

GVHD Graft versus host disease

IL-2 Interleukin-2

IL-7 Interleukin-7

IL-15 Interleukin-15

Tmem memory T cell

rATG or ATG rabbit antithymocyte globulin

Treg regulatory T cell

TCR T cell receptor
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Key Points

• Repopulating lymphocytes can skew toward an effector memory type capable of 

inducing graft rejection, autoimmunity, or, in the case of allogeneic bone 

marrow transplantation, graft versus host disease.

• In the past year, we have gained new understandings of the mechanisms by 

which the cytokines Interleukin-7 (IL-7) and Interleukin-15 (IL-15) regulate this 

process. Recent studies have also explored the functions of non-cytokine and 

signaling molecules in lymphopnenia-induced proliferation.

• Additionally, we have seen the promise and limitations of several therapeutic 

approaches, including recombinant IL-7 therapy, CD8+-targeted antibodies, and 

peri-transplant cyclophosphamide, to treat post-transplant lymphopenia and 

reduce the risks of immune dysregulation following homeostatic proliferation.
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