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Improving prediction of secondary
structure, local backbone angles,
“and solvent accessible surface
s area of proteins by iterative deep
o o learning

- Rhys Heffernan*, Kuldip Paliwal*, James Lyons*, Abdollah Dehzangi*?, Alok Sharma®3,
. Jihua Wang*, Abdul Sattar>5, Yuedong Yang® & Yaoqi Zhou*®

Direct prediction of protein structure from sequence is a challenging problem. An effective approach
is to break it up into independent sub-problems. These sub-problems such as prediction of protein
secondary structure can then be solved independently. In a previous study, we found that an iterative
use of predicted secondary structure and backbone torsion angles can further improve secondary
structure and torsion angle prediction. In this study, we expand the iterative features to include
solvent accessible surface area and backbone angles and dihedrals based on Ca atoms. By using a
deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure
prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible
surface area, 19° and 30° for mean absolute errors of backbone ¢ and 1 angles, respectively, and 8°
and 32° for mean absolute errors of Cai-based 6 and t angles, respectively, for an independent test
dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but

: much higher than those of model structures from current state-of-the-art techniques. This suggests

. the potentially beneficial use of these predicted properties for model assessment and ranking.

Three-dimensional structures for most proteins are determined by their one-dimensional sequences of
. amino acid residues. How to predict three-dimensional structures from one-dimensional sequences has
© been an unsolved problem for the last half century'. This problem is challenging because it demands an
. efficient technique to search in astronomically large conformational space and a highly accurate energy
function to rank and guide the conformational search, both of which are not yet available. As a result,
it is necessary to divide the structure prediction problem into many smaller problems with the hope that
solving smaller problems will ultimately lead to the solution of the big problem.
: One of those smaller or sub-problems is the prediction of one-dimensional structural properties of
: proteins from their sequences. The most commonly predicted one-dimensional structural property of a
© protein is secondary structure. Secondary structure describes each amino residue in a number of discrete
states® for which three state description (helix, sheet and coil) is the most common. In recent years, there
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has been a slow but steady improvement of secondary structure prediction to above 81% when homolo-
gous sequences are not utilised for training (ab initio prediction)**. The steady improvement is due to a
combination of improved machine-learning algorithms, improved features and larger training datasets.
Other methods have also been developed to go beyond 81% by including homologous sequences in train-
ing®®. Secondary structure directly predicted from sequence was shown more accurate than secondary
structure of the models predicted by protein structure prediction techniques for template-free modelling
targets in critical assessment of structure prediction (CASP 9)*.

Secondary structure, however, is a coarse-grained description of local backbone structure because
ideal helical and strand conformations do not exist in protein structures and the boundary between coil
states and helical/strand states is not well defined'’. This leads to development of backbone torsion angle
prediction (¢ and 1) in discontinuous'"'? and in real, continuous values'*-!>. More recently, a method
for predicting angles based on Co atoms (the angle between Coy_,—Co;—Caoyy; (0) and a dihedral
angle rotated about the Coy,—Cayy, bond (1)) was also developed'®. These local structure descriptors are
complementary with each other because torsion angles (¢ and 1), Coo—atom based angles (6 and ), and
secondary structure involve amino acid residues at different sequence separation: neighbouring residues
for ¢ and 1, 34 residues for 0 and T, and 4 for 3,, helix, 5 for a-helix, and an undefined number of
residues for sheet residues.

Another important one-dimensional structure property is solvent Accessible Surface Area (ASA).
ASA measures the level of exposure of an amino acid residue to solvent (water) in a protein. This is an
important structural property as active sites of proteins are often located on their surfaces. Multistate
prediction of earlier methods'’~'° have been replaced by continuous real value prediction'*2-23,

One interesting observation is that predicted secondary structure is often utilized to predict other
one-dimensional structural properties but rarely the other way around. Several studies, however, indi-
cated that other predicted structural properties can be utilized to improve secondary structure predic-
tion such as predicted torsion angles*'® and predicted solvent accessible surface area?’. In particular, we
have shown that the accuracy of secondary structure and torsion angle prediction can be substantially
improved by iteratively adding improved prediction of torsion angles and secondary structure®.

Artificial neural networks have been widely employed in predicting structural properties of proteins
due to the availability of large datasets®. Deep neural networks?, referring to artificial neural networks
with more than two hidden layers, have been explored in prediction of local and nonlocal structural
properties of proteins?’-*. For example, Qi et al.? developed a unified multi-task, local-structure pre-
dictor of proteins using deep neural networks as a classifier. They trained a single neural network using
sequential and evolutionary features to predict a number of protein properties including protein sec-
ondary structure and solvent accessibility. Spencer et al.*® developed an iterative deep neural network
for protein secondary structure prediction. The method utilized one deep neural network to predict sec-
ondary structure by using physicochemical and evolutionary information in their first step and another
deep neural network to predict their final secondary structure prediction based on predicted secondary
structures in addition to the same input used in the first step. These methods achieved secondary struc-
ture prediction with accuracy that is slightly higher than 80%.

The goal of this paper is to develop an iterative method that predicts four different sets of structural
properties: secondary structure, torsion angles, Co.—atom based angles and dihedral angles, and solvent
accessible surface area. That is, both local and nonlocal structural information were utilized in iterations.
At each iteration, a deep-learning neural network is employed to predict a structural property based on
structural properties predicted in the previous iteration. We showed that all structural properties can be
improved during the iteration process. The resulting method provides state-of-the-art, all-in-one accu-
rate prediction of local structure and solvent accessible surface area. The method (named SPIDER?2) is
available as an on-line server at http://sparks-lab.org.

Methods

This section describes the dataset employed and parametric details of the algorithm used as follows:

Datasets. We employed the same training and independent test datasets developed for the prediction
of Cc based angles (0) and dihedral angles (t)'°. Briefly, a non-redundant (25% cutoff), high resolution
(<2.0A) structures of 5789 proteins were obtained from the sequence culling server PISCES*! and fol-
lowed by removing obsolete structures. We then randomly selected 4590 proteins as the training set
(TR4590) and the remaining 1199 proteins as an independent test (TS1199). In addition, we downloaded
the targets from critical assessment of structure prediction technique (CASP 11, 2014, http://www.pre-
dictioncenter.org/caspl1/index.cgi). After removing the proteins with inconsistent sequences and the
proteins with >30% sequence identities between each other and to the training and test sets (TR4590
and TS1199), we obtained a set of 72 proteins (CASP11) out of original 99 proteins. This set contains
17382 amino acid residues. A list of 72 proteins is provided in the Supplementary material.

Deep neural-network learning. Here, we employed the same deep learning neural network as we
have employed for prediction of Ca-based 6 and t angles prediction by SPIDER'. Briefly, the deep
artificial Neural Network (ANN) consists of three hidden layers, each with 150 nodes. Input data was
normalized to the range of 0 to 1. Weights for each layer were initialized in a greedy layer-wise manner,
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Figure 1. The general architecture of the parallel multi-step iterative algorithm. Black arrows indicate
that position-specific scoring matrix (PSSM) and physical chemical properties (PP) are presented as
input in every neural network predictor. There is no connection between each network.

using stacked sparse auto-encoders which map the layer’s inputs back to themselves® and refined using
standard backward propagation. The learning rate for auto encoder stage was 0.05 and the number of
epochs in auto encoder stage was 10. The learning rates for backward propagation were 1, 0.5, 0.2, and
0.05, respectively, with 30 epochs at each learning rate. In this study, we used the deep neural network
MATLAB toolbox, implemented by Palm*. Linear activation function was used for the hidden layers of
auto encoder training whereas sigmoid activation function was employed at the stage of back propaga-
tion. All these hyper parameters were obtained by a few initial studies of a single fold (90% for training
and 10% for test), randomly selected from the training TR4590 dataset.

Parallel multi-step iterative algorithm. Figure 1 shows the parallel, multi-step iterative algorithm
for predicting secondary structure (SS), angles (backbone torsion angles, Ca-based angles) and ASA at
the same time. In the first iteration, only seven representative physical chemical properties of amino acid
residues® and Position Specific Scoring Matrix (PSSM) from PSIBLAST®* were employed to predict SS,
angles, and ASA, separately. The seven physicochemical properties (PP) of the amino acids employed
are steric parameter (graph shape index), hydrophobicity, volume, polarizability, isoelectric point, helix
probability, and sheet probability properties of the amino acids. PSSM was obtained by three iterations of
searching against 90% non-redundant (NR90, ftp://toolkit.genzentrum.lmu.de/pub/HH-suite/databases/
nr90.tar.gz) protein data bank with a cut off value (so called E-value) set to 0.001. PSSM represents the
substitution probability of a given amino acid based on its position in the protein sequence with all 20
amino acids.

In the second iteration, PSSM/PP plus predicted SS, angles, and ASA from the first iteration were
employed to predict SS, angles, and ASA, separately. Additional iterations can be followed by using SS,
angles, and ASA from the previous iteration in addition to PSSM and PP. We found three iterations are
sufficient for achieving the best predictive power. Thus, each iteration has three separate predictors. Each
predictor utilizes one stacked auto-encoder deep neural network as described above.

Input. We employed a window size of 17 amino acids (8 amino acids at each side of the target amino
acid). For the residues on terminal ends of a protein sequence, we simply repeat the residue type of the
first (or last) residue to fill the window. This led to a total of 459 input features (17 x (20 PSSM + 7PP))
for a given amino acid residue in the first iteration. This window size was optimized by 10-fold cross
validation. The dependence on window size is small. For example, the accuracy of secondary structure
prediction for the first iteration is 80.4-80.5% for the window size of 13, 15, 17, 19, and 21.

Output. For output nodes, the SS predictor has three output nodes representing helix, strand, and
coil, respectively; the ASA predictor has only one output node, and the angle predictor has eight output
nodes representing sin(0), cos(0), sin(t), cos(t), sin(d), cos(d), sin(), and cos(), respectively. Sine
and cosine were employed to remove the effect of angle periodicity. Predicted sine and cosine values are
converted back to angles by using the equation o= tan~![sin(a)/cos(c)]. In the second iteration, the
number of inputs for each predictor is 663 (=17 x (20 PSSM + 7 PP+ 3 SS+ 1 ASA + 8 Angles)). Only
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Figure 2. The accuracy of secondary structure (Q3), ASA (correlation coefficient), ¢ (Mean absolute
error, MAE), {) (MAE), 6 (MAE) and t (MAE) at four different iterations. Open and filled bars denote
results from 10 fold cross validation and independent test, respectively.

sin(0), cos(B), sin(t), cos(t), sin(¢), cos(d), sin(), and cos(1) are utilised in the input for angles. The
same number of inputs was employed for additional iterations.

Ten-fold cross validation and independent test. The method was first examined using ten-fold
cross validation where TR4590 was randomly divided into 10 folds. Nine folds were used in turn for
training and the remaining one for test until all 10 folds were tested. In addition, we tested our method
for the independent test sets TS1199 and CASP11 by using TR4590 as the training set.

Performance measure. For secondary structure, we use the fraction of correctly predicted secondary
structure elements for accuracy measurement (Q3)*. The accuracy of predicted angles was measured by
a Mean Absolute Error (MAE), the average absolute difference between predicted and experimentally
determined angles. The periodicity of an angle was taken care of by utilizing the smaller value of the
absolute difference di(:|AiPred — AP | and 360 — d; for average. For ASA, we report both MAE and
the Pearson correlation coefficient between predicted and actual ASA.

Results
The overall accuracy for all six structural properties (secondary structure, ASA, ¢, 1, 6, and 1) as a
function of iterations is shown in Fig. 2. The improvement is clear at the second iteration and converged
at the third iteration, regardless if it is 10 fold cross validation or independent test. Thus, we stopped
the iteration at the third iteration. Three iterations led to about 1% improvement in Q3. In Table 1, we
monitored the accuracy of each amino acid residue for secondary structure prediction. We found that
for 17 of 20amino acids, the accuracy improves in all three iterations. This confirms the robustness of
improvement by iterations.

In addition to improvement in secondary structure prediction, there is a 2% improvement in ASA
correlation coefficient, 1°, 2°, 0.5° and 2° improvement in ¢,1, 6, and T, respectively. Improvement in
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A 21477 8.27 82.3 | 834 | 83.8 | 83.6
(¢} 3557 1.37 744 | 753 | 76.3 | 76.6
D 15271 5.88 80.8 | 81.9 | 82.4 | 82.1
E 17413 6.71 81.5 | 83.0 | 83.5 | 83.3
F 10457 4.03 783 | 79.3 | 79.9 | 80.2
G 18723 7.21 80.6 | 81.8 | 82.1 | 82.0
H 5942 2.29 77.3 | 78.1 | 78.1 | 78.8
I 14577 5.61 82.2 | 83.4 | 84.0 | 83.8
K 15216 5.86 79.7 | 81.2 | 81.7 | 814
L 23835 9.18 81.7 | 83.3 | 83.6 | 83.4
M 5615 2.16 80.2 | 81.5 | 81.8 | 82.1
N 11306 4.35 79.8 | 80.8 | 80.8 | 80.9
P 11860 4.57 81.1 | 82.6 | 83.2 | 828
Q 9927 3.82 79.7 | 81.7 | 81.0 | 81.3
R 13307 5.12 79.6 | 81.0 | 81.2 | 81.5
S 15363 5.92 77.3 | 78.6 | 79.0 | 78.7
T 14445 5.56 77.8 | 789 | 79.0 | 79.1
v 18270 7.04 82.0 | 83.4 | 83.6 | 83.5
w 3828 1.47 76.7 | 78.3 | 79.4 | 78.8
Y 9273 3.57 76.8 | 78.4 | 79.0 | 79.0
Overall 259662 100.0 80.2 | 81.4 | 81.8 | 81.7

Table 1. The accuracy of predicted secondary structure for each amino acid residues for TS1199 for 4
iterations.

angles is the most significant, representing 5%-6%, relative improvement. At the third iteration, Q3 for
the secondary structure is 81.6% for 10 fold cross validation and 81.8% for the independent test. The
correlation coefficient between predicted and measured ASA is 0.751 for 10 fold cross validation and
0.756 for independent test. This is the correlation coefficient for un-normalized ASA. For normalized
ASA (rASA), the correlation coefficient is slightly lower (0.731 for the independent test set). The mean
absolute error for rASA is 0.145. The mean absolute errors of the angles for 10 fold cross validation
(or independent test) are 19.2° (19.2°) for ¢, 30.1° (29.9°) for 1, 8.15° (8.03°) for 0, 32.4° (32.2°) for T.
Similar accuracy between 10 fold cross validation and independent test indicates the robustness of the
method being developed.

It is of interest to know if this improvement in angle MAE also translates into improvement in large
angle errors. Reducing large angle errors is essential for sampling in the correct conformational space
when used as restraints. Because both ¢ and  have two peaks in their distributions, they can be
divided into two states associated with the two peaks. Here we define [0° to 150°] and the rest angle
range [(150° to 180°) and (—180° to 0°)] for two states in ¢, and [—100° to 60°] and the rest angle range
[(—180° to —100°) and (60° to 180°)] for two states in 1. We found that for the independent test set, the
two-state accuracy for ¢ only increases marginally from 96.4%, 96.5% to 96.6% from the first to the third
iteration. The two-state accuracy for 1 increases by a significant 1% from 85.3% , 86.4% to 86.8%. This
significant increase confirms the usefulness of iterative learning. By comparison, SPINE-X*® was trained
for two-state prediction and achieved two state accuracy of 96.4% for ¢ and 85.6% for 1.

Once ¢ and ¥ or 6 and T are known protein backbone structure can be constructed. Fragment
structures of a length L are derived from predicted angles with a sliding window (1 to L, 2 to L+ 1, 3
to L+ 2, and etc.). For L= 15, a total of 229,681 fragments are constructed. For ¢/1{> derived fragments,
each fragment structure was built by standard bond lengths and angles and w=180°. For 6/t derived
fragments, each fragment structure was built by the standard Ca-Ca distance of 3.8 A. The accuracy of
a fragment structure can be measured by root-mean-squared distance (RMSD) from the corresponding
native fragment. The accuracy of fragment structures either from ¢ and ¥ (Fig. 3A) or from 0 and t
(Fig. 3C) improves during iterations (from 3.37 to 3.09A for ¢/1 derived fragments and from 3.22
to 2.95A for 0/t derived fragments. Perhaps, not surprisingly, the consistency between ¢/1 and 0/t
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Figure 3. The improvement of fragment structures of 15 residues for the TS1199 dataset : (A) RMSD
between the native fragments and the fragments generated from predicted ¢ and 1 for three iterations I1,
12, and I3 and the result from SPINE X (in grey bar). (B) RMSD between the native fragments and the
fragments generated from predicted 6 and 7 for three iterations I1, 12, and I3. (C) The consistency between
fragments from predicted ¢ and 1 and fragments from predicted 6 and T for three iterations I1, 12, and I3.

ASA (CC) - 0.74 - - 0.76
MAE: ¢(°) - 20.2 - - 19.2
MAE: {(°) - 33.7 - - 29.9
MAE: 6(°) - - - 8.6 8.0
MAE: T(°) - - - 33.6 32.2

Table 2. Accuracy comparison between our technique and several techniques for secondary structure,
ASA and angle prediction for the independent test set (TS1199). 66 proteins of TS1199 that are not in
the training set for SCORPION.

derived fragments has the largest improvement during iterations (from to 2.54 A to 1.92 A). Results for
other sizes of fragments follow similar trend. This further confirms the power of iterative learning.

Our method is further applied to the most recent CASP targets (CASP11, 2014). It achieves 80.8% in
secondary structure, 0.74 for correlation coefficient between measured and predicted ASA, 19.7° MAE
for ¢, 30.3° for 1, 8.2° for 6, 32.6° for 1. The prediction accuracy for most structural properties is reduced
somewhat from the independent test set to CASP 11 set. This type of reduction for CASP sets was
observed previously*. This is in part due to a smaller number of targets (72 proteins) and in part because
CASP targets were a carefully selected set for challenging structure prediction techniques.

Tables 2 and 3 compare our method with several techniques for secondary structure (PSIPRED3.3%,
SCORPION?, SPINE-X*), ASA (SPINE-X*), backbone torsion angles (SPINE-X*) and backbone Ca
angles and dihedral angles (SPIDER'®) for TS1199 and CASPI11 test datasets. We noted that TS1199 is
not necessarily independent test set for other methods. In fact we found that the majority of TS1199 (all
but 66 proteins) are contained in the training set for SCORPION. The accuracy for secondary structure
predicted by our method is more accurate than that predicted by PSIPRED and SPINE-X and is compa-
rable to SCORPION for the full TS1199 dataset. However, for the 66 proteins not trained by SCORPION,
it achieves an accuracy of 82.4%, compared to 83.3% by our method. For ASA prediction, our technique
continues to make an improvement over SPINE-X despite its high accuracy. The best improvement over
previous methods is angle prediction. For example, there is almost 4° degree improvement (>10% in
relative improvement) over SPINE-X in 1 prediction. It is important to know the statistical significance
of the difference among different methods. The p-values for the pair t-test in secondary structure of this
work to SCORPION, PSIPRED, and SPINE X are 0.036, 0.00006, and 0.00009, respectively. That is, the
improvement from this work over previous methods is statistically significant (<0.05).

SCIENTIFIC REPORTS | 5:11476 | DOI: 10.1038/srep11476 6



www.nature.com/scientificreports/

Method PSIPRED SPINE-X SCORPION SPIDER | This Work
SS (Q3) 78.8% 78.8% 79.9% 80.8%
ASA (CC) - 0.72 - - 0.74
MAE: ¢(°) - 20.7 - - 19.7
MAE: 4(°) - 346 - - 303
MAE: 6(°) - - - 8.7 82
MAE: 1(°) - - - 34.1 326

Table 3. Accuracy comparison between our technique and several techniques for secondary structure,
ASA and angle prediction for the independent CASP11 set.
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Figure 4. (A) The accuracy of helical, sheet and coil residues predicted by PSIPRED, SPINE X, SCORPION
and the present study for the CASP 11 dataset. (B) The misclassification errors between helix and coil,
between sheet and coil and between helix and sheet for the four methods as labelled for the CASP11 dataset.

In Fig. 4A we compare the accuracy of secondary structure prediction for helix, coil and sheet given
by four methods for the CASP11 dataset (PSIPRED, SPINE X, SCORPION and present study). Our
method provides the highest accuracy for sheet (76.4%) but lower accuracy in helical prediction (83.7%)
than SPINE X (85.5%) and lower accuracy in coil prediction (80.8%) than PSIPRED (85.4%). PSIPRED
is significantly more accurate in coil prediction because it over-predicts coil residues®.

Figure 4B further compares misclassification errors associated with different methods. This confirms
that our method gives lower error in misclassification between helix and sheet. It gives a comparable
error to SCORPION between sheet and coil and to SPINE X between helix and coil.

It is of interest to know how the predicted values are compared to those of models in CASP 11.
Methods compared are Zhang-server®, BAKER-ROSETTA®, FFAS*, myprotein-me (http://mypro-
tein.me), nns*?, 3D-Jigsaw®, RaptorX*, Quark*, TASSER*, and Fusion/MULTICOMY. Figures 5A,B
shows that the MAE of predicted ¢ and t angles are 14% and 10% smaller than the lowest MAEs from
BAKER-ROSETTA* and Zhang Server®, respectively. Figure 5C further shows that predicted relative
ASA values are also 12% better than those of model structures.

The significant improvement in fragment structures revealed in Fig. 3 leads to an interesting ques-
tion: can predicted angles be directly employed in building accurate protein structures? The direct
answer to this question is no because accumulation of errors in angles can lead to large deviation in
three-dimensional structures. On the other hand, there is a small chance for cancellation of errors. The
test dataset (1199 proteins) has 183924 40-mer fragments. The percentages of 40-mer fragments with a
RMSD below 2.5A by ¢/ and 6/t are 1.4% and 1.6%, respectively. In Fig. 6A, a 40-residue fragment
of a three helical bundle constructed based on predicted ¢/1 angles (Residues 174 to 213 from PDB
1131 chain A) is only 2.2A RMSD from the native structure. Figure 6B shows an example of a mixed
helix/strand fragment of 40 residues (Residues 77 to 116 from PDB 1jq5 chain A). The RMSD between
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Figure 5. (A) The mean absolute error (MAE) of predicted ¢ for the CASP 11 dataset compared to best
MAEs of ¥ angles in the models from eight most accurate methods in CASP 11. (B) as in (A) but for the
MAE of Ca based T angles. (C) as in (A) but for the MAE of relative assessable surface area (rASA).

predicted and native structure is 2.4 A. The two constructed structures show that helical structures are
more accurately reproduced than strands. What is most encouraging in Fig. 6A,B is well reproduced loop
and turn regions that permitted accurate reproduction of fragments.

Discussion

This paper developed an integrated sequence-based prediction of one-dimensional structural properties
of proteins by iterative learning in a parallel scheme. The structural properties include local backbone
structures represented by secondary structure, backbone torsion angle, and backbone Ca angles and
dihedral angles. These three backbone representations are complementary to each other: backbone tor-
sion angles are single residue properties, backbone Cow angles and dihedral angles involve three and four
residues, respectively, and secondary structures involve three or more residues in sequence-position sep-
aration. In addition, the method predicts a non-local property: solvent accessibility. We have shown that
the input of these predicted structural properties can improve the accuracy of these structural properties
iteratively (within three iterations).

The method provides current state-of-the-art prediction accuracy for various structural properties.
For secondary structure prediction, its accuracy reaches nearly 82% for the large test set of 1199 proteins.
For solvent accessible surface area, the correlation coefficient between predicted and actual ASA values is
0.76. For angles, MAEs for ¢, 1, 0, and T are 19.2, 29.9, 8.0 and 32.2 degrees, respectively. Application to
a small but more challenging dataset of CASP 11 targets leads to only slightly lower accuracy. All these
accuracies above are the best reported accuracies for test sets. Such an integrated collection of various
predicted structural properties in one server makes it convenient for their use for other applications.

One interesting question is that whether or not improvement from iterations is due to addition of
predicted secondary structures or other predicted structural information. Spencer et al.** showed that
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Figure 6. The structure (Red) constructed directly from ¢/ angles compared to native structure
(Green). (A) Residues 174 to 213 from PDB 1131 chain A and (B) Residues 77 to 116 from PDB 1jq5 chain

adding predicted secondary structures alone is sufficient to further improve secondary structure pre-
diction. We performed independent tests by removing other non-secondary-structural features and
achieved Q;=81.2% in the second iteration and Q;=81.2% in the third iteration, compared to 81.4% at
the second iteration and 81.8% at the third iteration with non-secondary-structural features. This indi-
cates that adding predicted secondary structures alone contributes a large portion of the improvement
whereas other features lead to additional improvement.

One obvious application is protein structure prediction. Previously, we have shown that predicted
secondary structures are more accurate than the models predicted by various current state-of-the-art
techniques*. Here we demonstrate that the same is true for backbone angles and solvent accessibility
(Fig. 5). Indeed, employing predicted torsion angles as restraints doubled the success rate in ab initio
structure prediction, compared to using predicted secondary structures®. This success was because con-
tinuous angles can capture not only non-ideal conformations of helical/strand residues but also essential
structural information of coil residues. Such structural information is essential for correct folding of a
three-dimensional structure as demonstrated in Fig. 6. Predicted angles and solvent accessibility were
also found useful in template-based structure prediction®®.
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