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Abstract

The tumor response to most therapeutic agents in cancer is highly unpredictable. Cancer models 

which can adequately represent tumor heterogeneity and predict in vivo drug sensitivity are intense 

areas of investigation. Cancer cell lines and patient-derived xenograft models are the most 

frequently used models in cancer research and anticancer drug screening. Recently, cancer 

“organoid” culture conditions have been developed to establish in vitro growth of patient-derived 

samples at higher efficiency and they are very promising for large scale drug screening and 

fundamental cancer biology research. Here, we leverage our experience in prostate cancer to 

discuss the advantages and limitations of these cancer models and summarize the development of 

cancer organoid culture—a development which may provide a new path towards personalized 

medicine in the future.

Introduction

The current drug development paradigm where all patients afflicted with a particular cancer 

type are enrolled without biomarker selection has an unacceptable failure rate. In many 

“failed” trials that did not show a statistically significant benefit to the overall trial 

population, a small subset of patients derived significant clinical benefit. This is best 

illustrated by the FDA withdrawal of approval for gefitinib—the first clinically tested EGFR 

inhibitor—after its failure to improve overall survival in unselected patients with advanced 

lung cancer [1]. After identification of EGFR mutations as a predicative biomarker for 

tumor response, multiple positive trails in this subset of patients have led to the approval and 

use of EGFR inhibitors [2-5]. Following this important concept, subsequent trials of 
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molecularly-defined patient subsets (e.g., crizotinib in ALK and ROS1 rearranged lung 

cancer) were highly encouraging [6,7].

With the rapid development of multiple therapies with specific molecular targets, the 

identification of molecular biomarkers of drug sensitivity is a critical step. In order to 

discover therapeutic biomarkers, the tumor models must recapitulate the original tumor, 

predict the in vivo treatment response in the patient, and suit to high-throughput screening. 

In this review, we discuss recent advances in in vitro culture technology and their 

applicability to precision medicine.

Cancer cell lines

Ever since the HeLa cell line was successfully developed [8], cancer cell lines have been 

invaluable for the mechanistic study of tumorigenesis as well as the identification of markers 

of therapeutic response. There are several advantages of using cancer cell lines. First, they 

grow indefinitely; second, the maintenance of cell lines is straightforward; third, screening 

of a large repertoire of cell lines can identify biomarkers of drug sensitivity. Indeed, studies 

initiated using cell lines have led to the discovery of predictive biomarkers to targeted 

agents, including EGFR inhibitors, BRAF and MEK inhibitors, and PARP inhibitors [9-13]. 

Currently, there are ∼1,500 cancer cell lines available worldwide. Large-scale efforts led by 

the Broad Institute and the Sanger Institute aim to combine genetic characterization of these 

lines and high throughput drug testing to identify potential molecular biomarkers of 

therapeutic response [9,14].

However, the currently available cancer cell lines have a number of limitations. Foremost, 

most cancer types generate cell lines with a very low efficiency and the established lines 

represent a selection of particular subsets of tumor that can grow in vitro. This selection 

process results in cancer cell lines that do not represent the diversity of human cancer. 

Prostate cancer represents the most extreme example—despite being the most common 

cancer in men, only seven lines have been established. Second, extensive passaging 

commonly results in lost heterogeneity during adaption to the culture conditions in vitro by 

epigenetic or genetic mechanisms [15] (Table 1). Cancer cells lose their differentiation 

characteristics with increased proliferation capacity, and gene expression profiles change 

within several passages. For example, the gene expression profiles of MIN-6 cell have 

global changes between the low passage and high passage cells [16]. Third, most lines were 

derived from a time when germline DNA and clinical annotation was unavailable, making 

identification of somatic mutations and correlation with patient disease course and 

therapeutic responses difficult.

Patient-derived xenograft

Patient-derived xenograft (PDX) models are derived from tumor chunks directly implanted 

into immunocompromised mice without dissociation. Recently, the development and 

characterization of PDX models has become an increasing interest for cancer research. The 

main advantage of PDX models is that they retain the donor tumor heterogeneity and remain 

stable across passages in vivo [17] (Table 1). These models have been proven to be 

predictive of clinical outcomes and are being used for preclinical drug testing and 
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personalized medicine strategies [18,19]. Although the development of PDX cancer models 

brings some improvement compared to the cancer cell line models, the PDX models still 

have important limitations that hinder their use in targeted cancer therapy. First, the 

engraftment failure is still very high for some cancer types, such as prostate cancer [20] and 

estrogen receptor positive breast cancer [21]. Second, in most of the PDX models, 

engraftment relies on large quantities of surgical tumor tissues, and needle biopsies are often 

insufficient. Third, the engraftment and drug validation time in mice usually requires over 6 

months. This time delay limits the applicability of PDX models for real-time patient 

treatment. Fourth, while PDX models may be suitable for a limited number of drug 

combinations, they are not amenable to high throughput screening. Finally, PDX models are 

not amenable to genetic manipulation, such as introduction of transgenes or knockdown or 

knockout studies.

Conditional reprogrammed cells

Recently, several groups have investigated novel culture methods to address the current 

limitations. These work started with the goal of culturing normal benign cells. Historically, 

when normal cells are cultured in traditional serum-containing media, they divide for a 

limited number of passages prior to reaching “senescence”, a phenomenon known as the 

“Hayflick limit” [22].

Recently, Alison McBride and Richard Schlegel's laboratories have developed serum-free 

conditions that employ the combination of the Rho kinase (ROCK) inhibitor, Y-27632, and 

irradiated fibroblast feeder cells. Using these conditions, a number of different normal 

epithelial cell types, including keratinocytes, prostate, breast, and lung cells can propagate 

indefinitely without acquisition of genetic defects. These cells harbor a stem-like phenotype 

in vitro but maintain the capability to differentiate and have been termed “conditional 

reprogrammed cells” or CRCs. CRCs activate endogenous telomerase [23,24]. CRCs have a 

number of potentially important applications. In genetic disease, CRCs can theoretically be 

isolated from an affected patient, the defective gene can be corrected in vitro, and the 

corrected cells can be reintroduced into the patient. In cancer, cells can be isolated and tested 

for chemosensitivity. In a proof of principle experiment, Schlegel and colleagues isolated 

tumor CRCs from a patient with respiratory papillomatosis, identified that the cells were 

sensitive to the histone deacetylase inhibitor, vorinostat, and treated the patient resulting in a 

15 month disease stabilization [25]. Using CRC technology, Engelman and colleagues 

established cell culture models from non-small cell lung cancer patients who have 

progressed on EGFR and ALK kinase inhibitors to discover patient-specific resistance 

mutations [26*].

Benign organoid cultures

Over the past 5 years, Hans Clevers and colleagues developed 3D culture conditions where 

single epithelial stem cells grow to form the physiological architecture of the organ. After 

the observation that intestinal epithelial stem cells require active WNT pathway signaling 

for survival and that they express the LGR5 receptor which further amplify WNT signaling. 

The group first grew intestinal organoids using serum-free media supplemented with 

WNT3a, and R-spondin, the ligand of LGR5. Amazingly, single LGR5 positive stem cells 
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were found to form organoids with the correct crypt-villus structure with all of the 

component cell types, including stem cells, goblet cells, transiently amplifying cells, and 

villus cells. Like normal intestinal tissue, cell division is restricted to the crypt and the 

differentiating cells move up the villi, eventually sloughing off [27**]. Because these 3D 

epithelial structures recapitulate the histology and differentiation of the intestinal epithelium 

in vivo, they were termed “organoids.” Lancaster and Knoblich defined an organoid as 

containing several cell types that develop from stem cells or organ progenitors and self-

organize through cell sorting and spatially-restricted lineage commitment, similar to the 

process which occurs in vivo [28].

Like CRC, the intestinal organoids grow indefinitely without senescence and can be 

genetically manipulated. The power of this technology in genetic diseases was illustrated 

when Hans Clevers' group showed that intestinal organoids derived from patients with cystic 

fibrosis can be isolated, and the mutant CFTR gene can be repaired using CRISPR/Cas9 

system, and normal secretory function can be restored [29].

Remarkably, basal organoid conditions with tissue-specific modifications can be used to 

generate organoids from almost any epithelial organ, including the colon [30*], stomach 

[31], liver [32], kidney [33-35], thyroid [36], inner ear [37], retina [38], pituitary gland [39], 

brain [40] prostate [41**] and pancreas [42**].

Organoid culture can also further identify stem cell compartments and lineage plasticity. For 

example, the prostate epithelium is comprised of two layers, a basal layer and a luminal 

layer (Figure 1A). The lineage hierarchy of the prostate epithelium has been controversial: 

some data suggests stem cells reside only in the basal layer and differentiate into luminal 

cells (analogous to the basal cells of the epidermis) [43] while other data suggests that 

luminal and basal layers are self-sustaining lineages and have independent stem cells 

[44,45]. Using FACS sorting to isolate single basal and luminal cells, Karthaus and 

colleagues succeeded in establishing prostate organoids from both prostate basal and luminal 

progenitor cells [41**]. This was the first reported in vitro propagation of luminal cells and 

confirmed the coexistence of basal and luminal stem cells.

Cancer organoid cultures

The new CRC and organoid conditions that allow indefinite propagation of multiple benign 

epithelial lineages has led to great excitement in that they may allow for generation of novel 

in vitro patient-derived cancer models. Currently, multiple efforts are underway in a number 

of different cancer types, including colorectal, pancreas, and lung cancer. Recently, Tuveson 

and colleagues used organoid conditions to establish benign and cancer organoids from 

patients and mouse models [42**]. These organoids can be cultured indefinitely and grafted 

into immunocompromised mice. Here, we will focus on our published work on prostate 

cancer organoid cultures. In order to maximize the utility of these models, it is critical that 

they are clinically and molecularly annotated, including information on patient prior and 

future treatment response and model mutational and transcriptional profiles.
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Prostate cancer organoids

Prostate cancer is the second leading cause of cancer death in western men. Prostate cancer 

has proven very difficult to culture in vitro, with only seven publically available cell lines. 

Furthermore, many recently identified recurrent genetic lesions in prostate cancer, such as 

SPOP mutation, FOXA1 mutation TMPRSS2-ERG interstitial deletion, and CHD1 deletion 

are not represented in the available prostate cancer cell lines. These genetic lesions are also 

highly specific to prostate cancer and are not found in other malignancies. This limits both 

mechanistic studies of these genetic lesions and determination of their role in therapeutic 

response.

Recently, using the organoid culture system optimized for benign prostate epithelial cells 

[41], we succeeded in establishing seven organoid cultures derived from biopsies of 

metastatic prostate cancer and from circulating tumor cells (Figure 2). The cultures were 

annotated with detailed clinical history, including initial tumor histology, grade, stage, and 

treatment course.

These seven organoid lines were molecularly characterized in detail, including whole exome 

sequencing of germine and organoid DNA to identify somatic mutations, array comparative 

genomic hybridization to determine copy number alterations, and paired-end RNA-

sequencing to determine the transcriptional landscape and identify fusion transcripts. 

Remarkably, in 3D culture, the organoid lines adapted a histology which was highly 

reminiscent of the tumor histology (Figure 1B). Overall, the organoid lines harbor a low 

number of somatic mutations, but a large number of copy number alterations, both 

characteristic of prostate cancer. The seven lines harbor many recurrent genomic alterations 

typical of metastatic prostate cancer, including PTEN loss, TMPRSS2-ERG interstitial 

deletion, SPOP mutation, FOXA1 mutation, and CHD1 loss [46**]. Transcriptome analysis 

indicates that the seven lines are highly diverse, recapitulating the phenotypic diversity of 

castrate-resistant prostate cancer [47].

In tumors with sufficient tissue, we performed whole exome sequencing and RNA-

sequencing of tumor tissue from which the organoid lines were derived. This analysis 

showed that the lines harbored identical somatic mutations as the tumor after 3 months of in 

vitro passage and shared a similar transcriptome, confirming that the tumor organoids 

molecularly represented the tumor tissue in vivo.

One of the seven organoid lines was derived from circulating tumors cells (CTC). CTCs are 

rare cancer cells in the peripheral blood of patients with solid tumors. CTCs promise a non-

invasive real-time biomarkerfor diagnosis, prognosis and therapeutic response monitoring 

[48]. Using the “CTC-iChip” technology which efficiently removes the normal blood cells 

[49], Yu and colleagues successfully established six CTCs cell lines out of thirty six patient 

blood samples [50*]. Using the simple Ficoll-Paque with CD45 depletion cocktail to isolate 

CTCs, we successfully established one CTC organoid culture from a patient with metastatic 

prostate cancer [46]. While challenges remain, cancer organoid culture derived from CTCs 

may help predict the effective therapies for patients with a simple blood draw instead of 

invasive biopsies or imaging over the course of their disease progression.
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Using the seven organoid lines, we showed in proof of concept studies that they exhibit 

highly differential sensitivities to drugs that target the androgen receptor and the 

phosphoinositide-3-kinase pathways.

Future directions and unresolved questions

The clinical practice of oncology is changing rapidly towards precision medicine. The 

biopsy and molecular analysis of metastatic specimens has become a more common 

practice. At the same time, improvement of culture technology including organoid and CRC 

affords the opportunity to generate next generation well-annotated models at an 

unprecedented rate. This leads to exciting questions for the field to address.

First, what is the best culture technology? Organoids maintain a 3D structure more 

representative of human tumor, but whether organoid culturing leads to better assessment of 

therapeutic response is unknown. In addition, the culture conditions may significantly affect 

therapeutic response. Since conditions are rich in growth factors that allow growth of even 

normal cells, cancer cells may lose dependence on driver oncogenes. For example, the 

inclusion of EGF may affect response to EGFR inhibitors. Next, how representative is in 

vitro treatment response to actual clinical therapeutic response? This needs to be validated in 

a number of lines from patients with known treatment response. Third, will in vitro high-

throughput screening discover molecular markers of response? Given the diversity of each 

tumor type, a large number of lines with each genetic lesion are required to address the role 

of uncommon genetic lesions. This highlights the need for a large-scale effort to develop 

reagents and share reagents and lines. Finally, the optimal implementation of these culturing 

techniques is envisioned to involve the rapid generation of in vitro models from a patient, 

the testing of a number of drugs on these models, and use of these results to guide treatment 

for the individual patient.
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Figure 1. 
Examples of mouse prostate organoid and human prostate cancer organoid. A. Mouse 

prostate organoid (phase contrast)(I), mouse prostate organoid (II) and mouse prostate gland 

(III) immunofluorescent staining with cytokeratin 5 positive basal cells (Red) and 

cytokeratin 8 positive luminal cells (Green). B. H&E of MSK-PCa1 in situ tumor (I′), MSK-

PCa1 organoid (IT) and xenograft of MSK-PCa1 organoid (III′).
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Figure 2. 
Schematic diagram of cancer organoid cultures and drug sensitivity test. Isolate prostate 

cancer cells from freshly collected tissue biopsies or circulating tumor cells; seed the tumor 

cells into prostate organoid culture system; analyze the organoid cell at the histological, 

genomic and transcriptomic level; compare with the original tumor; predict potential 

therapeutic drugs using the information from genomic and transcriptional analysis; test the 

drug sensitivity using the organoid models.
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Table 1
Characteristics of prostate cancer cell lines, PDX models and 3D organoids

Drug screens

Genetic manipulation

2D culture cell lines Heterogeneity

Initiation efficiency Amenable High throughput

Low

PDX models Loss

Low

3D organoids Maintained Low throughput

High Not amenable

Maintained

Amenable

High throughput
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