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Mycobacterial glycolipids di-O-acylated
trehalose and tri-O-acylated trehalose
downregulate inducible nitric oxide synthase
and nitric oxide production in macrophages
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Abstract

Background: Tuberculosis (TB) remains a serious human health problem that affects millions of people in the
world. Understanding the biology of Mycobacterium tuberculosis (Mtb) is essential for tackling this devastating
disease. Mtb possesses a very complex cell envelope containing a variety of lipid components that participate in
the establishment of the infection. We have previously demonstrated that di-O-acylated trehalose (DAT), a non-
covalently linked cell wall glycolipid, inhibits the proliferation of T lymphocytes and the production of cytokines.

Results: In this work we show that DAT and the closely related tri-O-acylated trehalose (TAT) inhibits nitric oxide
(NO) production and the inducible nitric oxide synthase (iNOS) expression in macrophages (MØ).

Conclusions: These findings show that DAT and TAT are cell-wall located virulence factors that downregulate an
important effector of the immune response against mycobacteria.
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Background
Tuberculosis (TB) remains a serious health problem,
with 8.8 million new cases and 1.4 million deaths re-
ported in 2013 [1]. An understanding of disease patho-
genesis could lead to a rational strategy to fight TB.
Along with the prolonged coevolution with man, the ba-
cillus has developed the ability to neutralize the macro-
phages (MØ), which are usually very efficient to kill
intracellular microbes. The adaptive capacity of myco-
bacteria resides mainly in the cell wall, a structure of
high complexity composed of a covalently linked
arabinogalactan-peptidoglycan backbone with covalently
attached mycolic acids, as well as abundant non-
covalently linked lipid components [2]. It is known that
several of these lipids are capable of blocking the anti-
mycobacterial host responses. Indeed, virulence of Mtb
isolates has been associated with the cell wall lipid
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components. For instance, the high pathogenicity of W/
Beijing isolates seems to be related to cell wall lipids that
upregulate a TH2 immune response that favors the in-
fection [3]. Once delipidated, the mycobacteria lose the
ability to block the fusion of the phagosome with the
lysosome, and total extractable lipids inhibit T-cell and
MØ functions [4]. Peptidoglycan inhibits the macro-
phage response to IFN-γ at a transcriptional level [5].
Among the cell wall glycolipids, excels the effects on im-
mune response caused by trehalose-6,6-dymicolate (cord
factor), which promotes pro-inflammatory cytokine pro-
duction, influences the persistence of mycobacteria
within MØ and retards phagosome maturation [6]. Also
important is the lipoarabinomannan, as it regulates
phagosome maturation and inhibits acquired immunity
[7]. We have shown previously that di-O-acylated trehal-
ose (DAT), a non-covalently attached mycobacterial cell
wall glycolipid, downregulates the proliferation of T cells
and the production of cytokines, two essential features of
adaptive immunity [8]. In this work, we show that DAT
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and its more heavily lipidated homologue, tri-O-acylated
trehalose (TAT), downregulates the inducible nitric oxide
synthase (iNOS) expression and nitric oxide (NO) produc-
tion in MØs, which are effector components that are im-
portant in the immune response against mycobacteria.

Results
Isolation of DAT and TAT from mycobacterium fortuitum
M. fortuitum has been used as an alternative source of
acyl trehaloses, which belong to a lipid family featuring
virulent Mtb strains [9]. Non-mycoloyl fatty acylated tre-
haloses occur in virulent strains of the Mtb complex but
are either absent or minimally represented in avirulent
members of the complex, such as the H37Ra Mtb isolate
or the vaccine strains M. bovis BCG and SO2 [9]. How-
ever, DAT and TAT have been described in M. fortuitum
[10] and, taken from this source, they have been found
to mimic both antigenicity and immunoregulation activ-
ities of the Mtb native compounds [8, 11]. Thin-layer-
chromatography analyzes of crude lipid extracts are
shown in Fig. 1. Acid/anthrone reagent was used to dis-
play sugar-containing lipids, which developed as blue
spots, allowing the identification of two medium-polarity
glycosyl-containing lipids in M. fortuitum (Fig. 1a). Ac-
cording to their mobility in chloroform-methanol (80:20,
vol/vol) onto the silica gel layer, glycolipids with Rf
values of 0.37 and 0.64-0.68 were tentatively identified as
DAT and TAT, respectively (Fig. 1b). After their purifica-
tion by column chromatography on Florisil and silica-gel
solid-phase extraction, the isolated glycolipids were fur-
ther characterized by Fourier Transform Infra-Red
(FTIR) spectroscopy, (Fig. 1c). Both spectra share char-
acteristic bands of glycosylated lipids, as expected. The
Fig. 1 Purification and chemical characterization of DAT and TAT. Thin-laye
showing TAT and DAT locations (a). Thin-layer chromatography of isolated
(solid line) and TAT (dotted line) (c)
characteristic band at 3320 and 3350 cm−1 indicates the
presence of an oxygen-hydrogen bond in hydroxyl
groups(-OH) in the sugar moieties of DAT y TAT, re-
spectively. Absorption bands at 2922 cm−1 and 2853
cm−1 were assigned to the symmetric stretch of methy-
lene (-CH2-) and methyl (-CH3) groups of aliphatic
chains, respectively. The peak located at 1647 cm−1 in-
dicates the presence of carboxyl ester groups (-CO-O-).
Finally, the characteristic FTIR fingerprint of mycobac-
terial acylated trehaloses is shown in the region from
about 1500 to 500 cm−1, due to all manner of bending
vibrations of these molecules, the so-called mycosides F
[10]. The concentration of endotoxin was measured by
the Lymulus assay test and was undetectable.

DAT and TAT inhibit no production by Murine MØs
To analyze the effects of DATand TAT on NO production
in bone marrow-derived MØs, we first established the op-
timal conditions to carry out the assay. The MØs activated
with 500ng of LPS released 23.4 μM/ml of NO in 24 h.
When 20 ng of TAT were added to the cells, NO produc-
tion was reduced by 59.52 % (Fig. 2a, b). Interestingly, the
inhibitory effects of TAT on NO production induced by
IFN-γ were higher (up to 90.9 %) (Fig. 2a, b). As for the
effects of DAT, the inhibition of the production of NO
induced by LPS was almost total and up to 78.2 % in cells
activated with IFN-γ (Fig. 2c, d).

DAT and TAT inhibit the inos expression in Murine MØ
In view of the involvement of iNOS in the regulation of
NO production, we studied the effects of DAT and TAT
on iNOS expression induced either by LPS or IFN-γ in
bone marrow-derived MØs (Fig. 3). These assays showed
r chromatography of M. fortuitum ATCC 6841 unfractionated lipids
TAT and DAT (b). Fourier Transform Infra-Red spectroscopy of DAT



Fig. 2 DAT and TAT downregulate NO production induced by LPS and IFN-γ in bone marrow-derived MØs. The isolated TAT or DAT were
dissolved in hexane/methanol and placed in the wells. After solvent evaporation 1 × 106, MØs were added to the wells. Afterward LPS (500ng) or
IFN-γ (250ng) were added to the cells. After 24 h, the culture medium was collected, and NO was measured by the Griess reaction (a, c). The
percent inhibition of NO production induced by TAT (b) and DAT (d) are shown. Results of four experiments are presented. Data regarding LPS
against DAT/LPS was analyzed using an unpaired t-test with Welch’s correction to assess the statistical significance *p < 0.05
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that TAT reduced up to 39.18 % the expression of iNOS
in cells activated with LPS. Similarly, the expression of
iNOS in cells activated with IFN-γ was downregulated
by TAT in 32.6 % (Fig. 3a, b). DAT also inhibited the ex-
pression of iNOS in 31.2 % after activation with LPS and
39.5 % when the cells were stimulated with IFN-γ
(Fig. 3d, e). Western blot analyzes also showed a de-
creased expression of iNOS after exposure of MØs to
acyl-trehaloses. However, this technique indicated a
more pronounced effect on the di-O-acylated molecule
(Fig. 3c, f ).

Discussion
NO is a bioactive gas produced by MØs activated with
INF-γ through the catalytic action of iNOS [12]. The
production of NO is an important host defense mechan-
ism in Mtb infection. Mice with disrupted iNOS genes
are highly susceptible to TB and develop progressive dis-
ease [12]. In murine models of tuberculosis, NO is
known to enhance the phagosomal maturation, thus
promoting macrophage killing of the bacilli [12, 13]. The
relevance of NO for controlling the bacilli in humans re-
mains controversial. However, various data support that
the NO/iNOS system plays a role in tuberculosis disease.
For instance, Mtb triggers the production of NO and
iNOS in MØs from both healthy and tuberculous indi-
viduals [14, 15]. Patients with active pulmonary tubercu-
losis exhale NO, which is associated with increased
production of iNOS by alveolar macrophages [16].
Moreover, histopathologic studies have shown that iNOS
is expressed in human tuberculous granulomas [17].
Recently, our group demonstrated the expression of
iNOS in MØs and multinucleated Langhans-type giant
cells, as well as extensive MØs nitrosylation within bo-
vine tuberculosis granulomas [18]. Finally, some iNOS
polymorphisms seem to be associated with an increased
susceptibility to TB in humans [19].
At high concentration, NO kills Mtb very efficiently

in vitro while, at lower doses, it exhibits a bacteriostatic
and hormetic effects [20]. The cell damage induced by
NO may result in DNA mutations and strand breaks or
nitrosylation of key proteins, including enzymes that
may lose activity [21]. The ability of Mtb to survive and
replicate within the MØs, even in the presence of adverse
factors such as NO, seems essential for the development
of the infection. The identification of mechanisms used by
mycobacteria to evade nitrosative damage is an important
goal since it could help to develop strategies for treating
or preventing TB. For instance, there are Mtb genes
known to be involved in resistance to the damage induced



Fig. 3 DAT and TAT downregulate iNOS expression. MØs were treated with the glycolipids and activated with LPS or IFN-gamma as described
for Fig. 2. The expression of iNOS was analyzed by flow cytometry with permeabilized cells (a,d). The percent inhibition of iNOS is shown (b,e).
After 24 h, the MØs were obtained, lysed and the proteins were electrophoresed and transferred to a PVDF membrane for Western blot with a
monoclonal antibody to iNOS (c,f). Results of four experiments are shown. Data regarding LPS against DAT/LPS and INF-γ against DAT/IFN- γ,
were analyzed with a paired t-test to assess the statistical significance *p < 0.05
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by nitric oxide [22]. The results reported in this study
show that the structurally related TAT is to be considered
a potential virulence factor of mycobacteria as well. TAT
is highly recognized by serum antibodies in individuals
with active tuberculosis [11], a fact that was once attrib-
uted to cross-reactivity of TAT to anti-DAT antibodies.
More recently, structural studies of Mtb glycolipids have
evidenced the presence of TAT in both clinical isolates
and typical strains [23, 24]. To the best of our knowledge,
this is the first report dealing with a biological activity of
TAT on antimycobacterial immune response. Further
studies will be needed to clarify whether the fatty acyl
structural differences between species may account for the
effects herein described.

Conclusions
We show that DAT and TAT, two glycolipids located on
the cell wall behave as virulence factors engaged in the
downregulation of NO and iNOS, therefore representing
a potential weapon of the mycobacteria against the in-
nate immune response.

Methods
Ethics statement
Use of animals and experimental procedures were
reviewed and approved by the Bioethics Committee of
our Institute following established protocols.
Isolation of glycolipids
M. fortuitum ATCC 6841 was used to isolate DAT and
TAT, which are similar in M. fortuitum and Mtb. Non-
covalently linked lipids were extracted from live bacilli
using CHCI3/CH3OH (1:2, vol/vol) and CHCI3/CH3OH
(2:1, vol/vol). Pooled extracts were dried and suspended
in CHCl3/CH3OH/H2O (4:2:1, vol/vol/vol). After that,
crude lipid extracts were dissolved in chloroform and
applied to a Florisil column (Biotecna Corp., Miami, FL,
USA). The elutions were performed with chloroform
and methanol and fractionation of lipids was monitored
by thin-layer chromatography (TLC) on silica gel-60
F254 coated plates (E. Merck, Darmstadt, Germany) de-
veloped with: CHCl3/CH3OH (9:1, vol/vol) as solvent I;
CHCI3/CH3OH (8:2, vol/vol), as solvent II; or CHCI3/
CH3OH/H2O (60:12:1, vol vol/vol), as solvent III. The
sugar-containing compounds were visualized by spraying
plates with 2 % anthrone in concentrated H2SO4

followed by heating at 110 °C. Acylated trehaloses ap-
peared as anthrone-positive lipids (blue spots) with a Rf
value of 0.37 for DAT and a Rf value of 0.64 - 0.68 for
TAT. A final purification was carried in a TLC on silica
gel-60 coated plates with a thickness of 0.5 mm (E.
Merck, Darmstadt, Germany). The lipids were recov-
ered from the plates and examined as mentioned be-
fore. The fractions with purified DAT were pooled,
dried and subjected to the Lymulus test to verify
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endotoxin contamination. A similar procedure was
followed to purify TAT.

Characterization of dat and tat by fourier transform
infrared spectroscopy
Fourier transform infrared spectroscopy (FTIR) analyses
of the lipids were recorded in a Vector 33 FTIR spec-
trometer (Bruker Corporation, Billerica, MA, USA),
equipped with an attenuated total reflection (ATR) mod-
ule. About 0.5 mg of the product was dissolved in 200 μl
chloroform-methanol (9:1, vol/vol) and placed into the
ATR cell. FTIR spectrum measurement was performed
in wave number range of 4000-450 cm−1.

Assays to study the effects of dat and tat on nitric oxide
production in macrophages
Six to seven week old Balb/c-J mice were used. To ob-
tain MØs, bone marrow cells were flushed from femurs
and tibias and cultured in RPMI 1640 with 20 % FBS,
supplemented with 1 % non-essential aminoacids, 1 % of
antibiotic-antimycotic and 1 % sodium pyruvate (Invitro-
gen, Eugene, OR, USA). Cells were grown at 37 °C with
5% CO2. At day 10, MØs were obtained, and the cell via-
bility was assessed with Trypan blue. In preliminary
experiments to determine the capacity of bone marrow-
derived MØs from Balb/c-J mice to produce NO, the
cells were treated with various amounts of LPS (E.coli
B55:05; Sigma Chemical Co, St Louis, MO, USA) or re-
combinant IFN-γ (BioLegend, San Diego, CA, USA).
The glycolipids were dissolved in hexane:ethanol (1:1, v/
v). To each well, 20μg glycolipid in 100 μl hexane:etha-
nol were added and allowed to evaporate to dryness;
control wells received solvent alone. Then, 1 × 106 MØs
were added to the wells and incubated for 24h at 37 °C
with 5 % CO2. Afterward, 500 μg LPS or 250ng IFN-γ
were added to the wells. Control wells with only hexa-
ne:ethanol, DAT or TAT were included. After 24 h the
isolated supernatants were mixed with an equal volume
of Griess reagent (1 % sulfanilamide, 0.1 % N-1-
naphthylethylenediamine dihydrochloride, and 2 % phos-
phoric acid) (Promega Co., Madison,WI, USA) and
incubated at room temperature for 10 min. Absorbance
was measured at 550 nm.

Western blot and flow cytometry to determine the
expression of iNOS in macrophages treated with DAT and
TAT
To investigate the expression of iNOS by MØs treated
with the glycolipids, the cells were lysed with RIPA buf-
fer and the proteins were separated in 7.5 % PAGE-SDS
gels, transferred to a PVDF membranes and incubated
overnight with a monoclonal antibody diluted 1:100 to
murine iNOS (BD Biosciences, San Diego, CA, USA).
Membranes were extensively rinsed with PBS and
incubated with a secondary antibody to mice IgG diluted
1:200, 2 h at room temperature. The reactive bands were
visualized by chemiluminescence with SuperSignal West
Dura kit (Pierce, Rockford, IL, USA) or with DAB/H2O2.
For flow cytometry, 5 × 105 cells were fixed with parafor-
maldehyde 1 %, permeabilized with saponin 0.05 % and
incubated 1 h with the monoclonal antibody diluted
1:200 to murine iNOS. The cells were rinsed and incu-
bated for 1 h with a secondary antibody labeled with
FITC. The cells were analyzed in a Beckton Dickinson
cytofluorometer (San Diego, CA, USA). As a control, a
monoclonal antibody of the same isotype was used.

Statistical analysis
Statistical analysis was performed using the standard
statistical software Prism version 5.0, GraphPad Soft-
ware, (San Diego, CA, USA). NO and iNOS production
by cells was expressed as inhibition percentages, where
LPS or IFN-γ induced levels, in the absence of mycobac-
terial lipids, were taken as 100 %.
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