Skip to main content
. 2015 May 4;43(11):5340–5351. doi: 10.1093/nar/gkv446

Table 1. Accuracy tests on 25 datasets.

RBscore SVM aaRNA RNABindRPlus BindN+_RNA BindN+_DNA
Cutoff = 3.5 Å wAUC mAUC tAUC wAUC mAUC tAUC wAUC mAUC tAUC wAUC mAUC tAUC wAUC mAUC tAUC wAUC mAUC tAUC
BindN_R107 0.850 0.847 0.866 0.878 0.898 0.943 0.827 0.828 0.877 0.907 0.884 0.936 0.897 0.893 0.925 0.761 0.765 0.815
PPRInt_R86 0.857 0.855 0.863 0.884 0.910 0.947 0.835 0.835 0.883 0.918 0.909 0.946 0.871 0.876 0.913 0.771 0.777 0.810
RNABindR_R144 0.860 0.849 0.868 0.849 0.865 0.921 0.828 0.827 0.877 0.894 0.865 0.922 0.819 0.828 0.882 0.737 0.753 0.801
RNABindR_R147 0.860 0.848 0.868 0.849 0.865 0.922 0.828 0.826 0.877 0.894 0.865 0.922 0.819 0.828 0.883 0.737 0.752 0.802
RNABindR_R44 0.862 0.863 0.869 0.810 0.819 0.844 0.817 0.822 0.845 0.763 0.770 0.800 0.784 0.792 0.822 0.754 0.764 0.790
RNABindR_R111 0.898 0.869 0.867 0.789 0.787 0.839 0.849 0.825 0.842 0.762 0.739 0.740 0.768 0.755 0.780 0.748 0.733 0.767
meta2_R44 0.862 0.863 0.869 0.810 0.819 0.844 0.817 0.822 0.845 0.763 0.770 0.800 0.784 0.792 0.822 0.754 0.764 0.790
aaRNA_R67 0.857 0.857 0.874 0.753 0.777 0.815 0.814 0.812 0.846 0.757 0.755 0.776 0.764 0.777 0.810 0.738 0.744 0.783
aaRNA_R141 0.875 0.858 0.836 0.814 0.811 0.848 0.834 0.820 0.835 0.846 0.836 0.854 0.780 0.781 0.792 0.736 0.739 0.731
aaRNA_R205 0.877 0.864 0.867 0.836 0.854 0.911 0.841 0.837 0.878 0.847 0.834 0.881 0.795 0.808 0.853 0.748 0.759 0.792
RBscore_R130 0.886 0.870 0.864 0.947 0.947 0.969 0.838 0.832 0.877 0.828 0.822 0.871 0.806 0.821 0.867 0.759 0.765 0.801
RBscore_R117 0.867 0.855 0.843 0.719 0.723 0.774 0.829 0.820 0.852 0.798 0.789 0.826 0.743 0.747 0.783 0.723 0.728 0.754
Sungwook_R267 0.865 0.848 0.837 0.874 0.865 0.886 0.830 0.811 0.824 0.808 0.796 0.808 0.797 0.783 0.815 0.744 0.741 0.742
Sungwook_R727 0.867 0.857 0.881 0.893 0.894 0.935 0.839 0.833 0.879 0.827 0.820 0.869 0.821 0.822 0.874 0.768 0.773 0.824
BindN_D62 0.909 0.897 0.864 0.776 0.787 0.787 0.881 0.875 0.862 0.787 0.788 0.786 0.822 0.826 0.838 0.944 0.938 0.944
Shandar_D140 0.900 0.893 0.878 0.765 0.772 0.780 0.852 0.855 0.857 0.778 0.778 0.760 0.820 0.821 0.832 0.834 0.855 0.852
Susan_D56 0.918 0.912 0.890 0.766 0.776 0.775 0.872 0.870 0.867 0.766 0.774 0.759 0.808 0.814 0.823 0.843 0.872 0.860
DBindR_D374 0.895 0.887 0.874 0.748 0.757 0.780 0.856 0.856 0.862 0.772 0.777 0.768 0.795 0.807 0.823 0.813 0.840 0.843
DISPLAR_D428 0.894 0.885 0.869 0.757 0.764 0.774 0.854 0.853 0.860 0.775 0.780 0.771 0.803 0.812 0.825 0.824 0.846 0.847
DNABINDPROT_D54 0.920 0.903 0.867 0.723 0.736 0.756 0.864 0.851 0.853 0.754 0.745 0.700 0.786 0.790 0.793 0.807 0.827 0.818
PreDNA_D224 0.896 0.889 0.873 0.748 0.747 0.759 0.857 0.857 0.859 0.764 0.768 0.758 0.794 0.800 0.812 0.802 0.819 0.823
RBscore_D381 0.895 0.884 0.875 0.748 0.742 0.758 0.852 0.844 0.854 0.761 0.764 0.768 0.797 0.795 0.806 0.796 0.805 0.810
metaDBSite_D232 0.898 0.889 0.872 0.753 0.744 0.761 0.858 0.856 0.858 0.769 0.769 0.763 0.798 0.799 0.812 0.804 0.818 0.821
metaDBSite_D316 0.898 0.885 0.878 0.755 0.756 0.772 0.853 0.851 0.859 0.770 0.770 0.769 0.799 0.802 0.818 0.809 0.829 0.834
SDCPred_D159 0.902 0.896 0.880 0.760 0.769 0.773 0.854 0.857 0.856 0.772 0.772 0.753 0.812 0.814 0.823 0.827 0.848 0.843

Datasets after BindN_D62 are DBP datasets. RBscore_R130 is the training set of RBscore and the SVM approach. See Materials and Methods for descriptions of the dataset.