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Quantitative estimates of past temperature changes are a cornerstone of paleoclimatology. For a number
of marine sediment-based proxies, the accuracy and precision of past temperature reconstructions depends
on a spatial calibration of modern surface sediment measurements to overlying water temperatures. Here,
we present a database of 1095 surface sediment measurements of TEX86, a temperature proxy based on
the relative cyclization of marine archaeal glycerol dialkyl glycerol tetraether (GDGT) lipids. The dataset is
archived in a machine-readable format with geospatial information, fractional abundances of lipids (if
available), and metadata. We use this new database to update surface and subsurface temperature
calibration models for TEX86 and demonstrate the applicability of the TEX86 proxy to past temperature
prediction. The TEX86 database confirms that surface sediment GDGT distribution has a strong relationship
to temperature, which accounts for over 70% of the variance in the data. Future efforts, made possible by
the data presented here, will seek to identify variables with secondary relationships to GDGT distributions,
such as archaeal community composition.
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Background & Summary
The reconstruction of past changes in ocean temperatures allows us to understand the behavior of the
Earth’s climate system, including internal and external drivers of oceanic variability, climate sensitivity,
and ocean-atmosphere interactions. A number of techniques are available to infer past temperatures from
ocean sediment archives, some employing the inorganic chemical composition of calcified fossils1,2, and
others the distribution of fossil lipids, or ‘biomarkers’, produced by specific organisms3,4. The latter
category includes the TEX86 (TetraEther indeX of 86 carbons) proxy, based on the relative cyclization of
isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) produced by marine archaea. GDGTs are cell
membrane lipids, and archaea alter the composition of these lipids in response to environmental
temperature in order to optimize membrane packing and fluidity5–7. Mesocosm experiments demonstrate
that marine archaea produce relatively more lipids with a greater number of rings at higher
temperatures8,9.

TEX86 is an index designed to quantify the relative degree of cyclization4. It is defined as:

TEX86 ¼ GDGT - 2þ GDGT - 3þ cren0

GDGT - 1þ GDGT - 2þ GDGT - 3þ cren0
ð1Þ

where GDGTs 1–3 are compounds containing 1–3 cyclopentyl moieties, respectively, and cren' denotes
the regioisomer of crenarchaeol, a characteristic lipid for Thaumarchaeota10. By definition, values of the
TEX86 index span 0–1. Fig. 1a shows the structures of these compounds. GDGTs are analyzed via High-
Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS); Fig. 1b shows their typical
appearance in a HPLC-MS chromatogram.

Pelagic, nitrifying Thaumarchaeota are believed to be the primary10,11, but likely not exclusive12

producers of GDGTs in the marine environment. These organisms typically inhabit the upper
water column, but may reside anywhere in the epi- or meso-pelagic zone13–15. The strong empirical
relationship between TEX86 and sea-surface temperatures (SSTs)4,16–19 has led to the widespread
use of TEX86 to reconstruct past SSTs on both recent20 and ancient timescales21. However, in
environments with steep thermoclines and nutriclines, Thaumarchaeota may reside deeper in the water
column (e.g., 50–200 meters depth) and record subsurface temperature variability11,19,22–25. Therefore,
TEX86 may be used to reconstruct either SST or subsurface temperatures, depending on the
oceanographic conditions.

Calibration of the TEX86 index to temperatures relies on a collection of modern surface sediments, for
which overlying water temperatures are known from historical observations4,16–18. Modern surface data
are continuously published in disparate journals, making aggregation of the data for calibration purposes
difficult. Here, we present a database of 1095 surface sediment TEX86 measurements, which may be used
to calibrate the TEX86 proxy and investigate relationships between TEX86 and other environmental
variables. We also present updated versions of the BAYSPAR (Bayesian, Spatially-Varying Regression)18

calibration for TEX86 based on this new data collection, including both surface temperature (SST) and
subsurface temperature (Sub-T) models.
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Figure 1. Molecular structures and HPLC detection of GDGTs. (a) Structures of the isoprenoidal GDGTs that

comprise the TEX86 proxy, along with Crenarchaeol, a diagnostic lipid for Thaumarchaeota10. (b) A typical

HPLC-MS trace of the isoprenoidal GDGTs and corresponding TEX86 value.
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Methods
Data aggregation
TEX86 data (n= 1095) were collated from the literature and from direct contact with individual researchers
(Fig. 2). Our collection includes data represented in previous global calibration efforts16–18, data published
as part of regional surface sediment studies24,26–42, surface sediment data produced as part of a
sedimentary TEX86 timeseries43–48, and previously unpublished data. The TEX86 measurements in this
database were reported by the original authors and contributors to be modern or at the least, late Holocene
in age, and therefore generally representative of present-day temperatures. All TEX86 data entries are
accompanied by geospatial information. In some cases, authors archived the relative abundances of
individual compounds. We compiled this information when available (see Data Records below).

Analytical determination of TEX86
Although the data in this collection derive from multiple publications and laboratories, TEX86 values
were determined using the same HPLC-MS analysis method49. Briefly, extracts of sediment material
containing GDGTs were dissolved in a mixture of hexane and isopropanol, injected into a HPLC, then
separated on a Prevail Cyano column using a gradient spanning hexane:isopropanol (99:1) to hexane:
isopropanol (98.2:1.8). The solvent stream is then sent to a mass spectrometer operated in single-ion
monitoring (SIM) mode, scanning only target compound mass-to-charge ratios. The type of mass
spectrometer (e.g., single quadrupole, ion trap) may be different between laboratories, but previous
research has shown that there is no bias in TEX86 associated with different types of mass spectrometers50.
TEX86 is calculated from integrating peak areas of the target compounds. Within a single laboratory,
analytical error is typically 0.004 TEX86 units or better50,51, or about 0.3 °C when calibrated.
Interlaboratory uncertainties are nearly an order-of-magnitude larger (0.03 TEX86 units

50,51), equivalent
to about 2–3 °C.

BAYSPAR calibration model
We have previously developed a Bayesian, spatially-varying regression (BAYSPAR) model18 for the
calibration of TEX86. The adoption of this model was motivated by observations that the TEX86 response
to temperature varies across different oceanic basins and environments26,35, the existence of strong spatial
trends in the residuals of previous calibration models18,19, and the need to fully propagate uncertainties
into resulting temperature predictions.

BAYSPAR assumes the regression parameters are constant within 20° by 20° latitude-longitude grid
boxes, but imposes a spatial model on the intercepts (the vector α) and slopes (β) that forces nearby grid
boxes to feature similar parameter values, with the degree of similarity controlled by a data-informed
spatial decorrelation length scale. This hierarchical approach produces a calibration that is a data-
determined compromise between a globally constant calibration and a set of independent local
calibrations52,53. The calibration model is specified via the following set of equations:

P ¼ MαþMCβþ E; ð2Þ
E�Nð0; τ2IÞ; ð3Þ

α�N μα1; σ
2
αRðν;ϕÞ

� �
; ð4Þ

β�N ½0;1Þ μβ1; σ
2
βRðν;ϕÞ

� �
; ð5Þ

The vector P consists of all core-top TEX86 observations; C is a diagonal matrix containing all
temperature observations; and M is a selection matrix of zeros and ones, with each row containing a

Figure 2. The distribution of sedimentary core top data in the global TEX86 database.
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single one, such that corresponding entries of the vectors MCβ and P are at the same location in space. α
and β are, respectively, vectors of spatially varying intercept and slope terms; along with the error
variance, τ2 (I denotes the identity matrix), they are the parameters of primary interest in calibrating the
TEX86–temperature relationship. Spatial dependence arises from the specification of both α and β as
stationary and isotropic Gaussian processes in space, defined on the centroids of 20° by 20° grid boxes,
and with constant means given by μα and μβ, respectively. N ½0;1Þ indicates a truncated normal, defined
on the positive half of the real line, reflecting the a priori assumption of a positive relationship between
TEX86 and temperatures. Finally, R denotes the Matérn correlation function53, defined by a smoothness
parameter ν, which we set to 3/2, and an inverse spatial range parameter, ϕ, that measures the strength of
the spatial dependence. To provide mathematical closure, priors are required for all scalar parameters of
the calibration model. With the exception of ϕ, which can be challenging to estimate54–56, we use proper
but weakly informative priors.

Prediction of temperature conditional on an observed TEX86 value proceeds by a second application of
Bayes rule to invert Equation 2 for temperature in terms of TEX86. A prior distribution on the
temperature is also required, and, to propagate uncertainty, we integrate over the posterior distributions
of the calibration parameters. In practice, this is achieved by repeatedly sampling from the posterior
distributions of the calibration parameters, and then drawing from the posterior predictive distribution of
temperatures conditional on the TEX86 observation, the current draw of the calibration parameters, and
the prior on past temperature.

Under certain oceanographic conditions, TEX86 may be recording subsurface, rather than surface,
temperature variability11,19,22–24. Several subsurface calibrations have been proposed in the past16,23,25.
We therefore present separate calibrations of the BAYSPAR model using both modern SST climatologies,
and a modern climatology of sub-surface temperatures (Sub-T). The formalism is the same in each case,
except that, for the Sub-T calibration, the target temperatures are set as weighted averages of the 0–200
meters water depth, with weights given by the gamma probability density function (Fig. 3). We chose this
weighting function to approximate evidence from water column studies that GDGT production occurs
predominantly between 0–200 meters but likely reaches peak abundance in the shallow subsurface24,57,58.
Initial experiments using a simple average between 0–200 meters resulted in poor fit, especially in shallow
regions of the global ocean (not shown). In keeping with previous findings that TEX86 has a weak
relationship to temperatures in the high latitudes of the Arctic ocean18,35 we exclude data north of 70° N
in both calibration models.
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Figure 3. Gamma function probability distribution that represents the averaging scheme for the subsurface

temperature calibration. The gamma distribution parameters are a= 4.5 and b= 15.
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Data Records
The TEX86 surface sediment database is archived at the National Oceanic and Atmospheric
Administration's National Climatic Data Center for Paleoclimatology: http://www.ncdc.noaa.gov/paleo/
study/18615 in machine-readable ASCII format (http://www.ncdc.noaa.gov/data-access/paleoclimatol-
ogy-data/contributing). The database is also archived on Figshare (Data Citation 1). Each data entry
includes the following information:

1. Geospatial information, including latitude, longitude and (if available) recorded water depth at the
collection site.

2. Sediment core information, including the name of the core, type of core (e.g., gravity, piston), and
depth at which the TEX86 sample was taken.

3. TEX86 value and (if available) fractional abundances of the six main isoprenoidal GDGTs.
4. Overlying sea-surface temperatures and gamma-averaged (Fig. 3) subsurface temperatures derived

from the 1° × 1° World Ocean Atlas 2009 product59 (https://www.nodc.noaa.gov/OC5/WOA09/
pr_woa09.html) and sea-surface temperatures from the 0.25° × 0.25° NOAA daily Optimum
Interpolation Sea Surface Temperature (OISST) 1981–present climatology based on Advanced
Very-High Resolution Radiometer (AVHRR) measurements60 (http://www.ncdc.noaa.gov/oisst).

5. Name and DOI of the associated reference, if available.

The database includes all available sedimentary TEX86 data as of January 2015. This version of the
database and the accompanying calibrations is designed as version 1.0. The authors will update the
database, and the BAYSPAR calibrations, yearly with newly published sediment core top data; previous
versions of the database and calibrations will be archived at the NCDC for posterity.

Technical Validation
The new TEX86 data compilation shows a clear relationship with both SST and Sub-T (subsurface
temperatures), which respectively account for 72 and 73% of the variance in the TEX86 data (Fig. 4). The
relationship is not straightforwardly linear due to regional differences in the TEX86-temperature slope. In
particular, and in agreement with previous findings18,35, the TEX86-temperature relationship features a
lower slope at higher latitudes, and there is more scatter about the regression relationship in the Arctic
region (Fig. 4). The reasons for the poor relationship between TEX86 and temperatures in the Arctic
remain unclear. In some locations it may reflect interference from terrestrial or sedimentary
methanogenic/methanotrophic sources of GDGTs35 but could also plausibly indicate the presence of
different pelagic archaeal producers. Whatever the case, the scatter in the data and the subsequent
collapse in predictability18 justify their current exclusion from global calibration models.

In agreement with our previous work18, both the SST and Sub-T (subsurface temperature) BAYSPAR
calibrations show spatial variation in the α (intercept) and β (slope) parameters that reflect the regional
differences in the TEX86 response to temperature variations (Fig. 5). Globally, for the SST (Sub-T) model,
β varies by 30% (22%) and α varies by 22% (10%). The relatively smaller variance of the parameters in the
Sub-T model, particularly in the case of α, may indicate a slightly less globally-variable TEX86 response
when calibrating to a deeper water temperature.
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Calibration uncertainties vary spatially as a function of data availability, and as a function of β, with
lower β values associated with higher uncertainties (Fig. 6). For the SST model, calibration uncertainties
vary between 1.2–10 °C with a median of 5 °C; for the Sub-T model, they vary between 1.4–9 °C with a
median of 5 °C. Unlike the existing least squares calibrations16,17,61, and in agreement with our previous
calibrations18, we do not detect any significant trends in the residuals as a function of latitude (for the SST
model, ρ=− 0.07, P= 0.11, while for the sub T model, ρ=− 0.05, P= 0.27, where ρ is the Spearman
correlation).

We provide an example application of the new BAYSPAR calibration, based on the updated TEX86

core top dataset, to demonstrate applicability and usage (Fig. 7). In this case, we apply the SST calibration
to predict SSTs for the past 25,000 years at a site in the eastern Mediterranean44. We find that the
predicted temperatures are in reasonable agreement with independent alkenone-based SST estimates
down core (Fig. 7a), indicating that the use of an SST model at this site is appropriate. One advantage of
our Bayesian approach is that predictions take the form of posterior probability distributions as opposed
to single time series with error bars (Fig. 7a). Probabilistic reconstructions of this form permit for a
statistically rigorous assessment of a much broader array of scientific issues62–65. For example, we can
estimate the probability that the late Holocene time period (0–4 ka) was the warmest period of the past
25,000 years by identifying the warmest time point in each ensemble member. We find that intervals
throughout the Holocene feature non-negligible probabilities of experiencing the warmest conditions,
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such that we cannot conclude at any reasonable level of significance that the late Holocene was the
warmest period (Fig. 7b). In addition, we can estimate the magnitude of the LGM-Holocene temperature
difference at this location that fully accounts for the uncertainties in the proxy estimates (Fig. 7c). The
posterior median for LGM cooling is −9.5 °C, with a 90% uncertainty interval of (−11.6, −7.9) °C.

The performance of our new BAYSPAR calibrations and their application demonstrate the general
ability of the new TEX86 database to provide predictions of past changes in both surface and subsurface
temperatures. The choice of whether to calibrate to surface or sub-surface temperatures is ultimately up

T
E

X
86

 S
S

T
PROB. SST

10

15

20

25

30 ALKENONE
MODERN SST

0 1

x 10−4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
R

O
B

. W
A

R
M

E
S

T

−15 −13 −11 −9 −7 −5
0

0.1

0.2

0.3

0.4

5%

50%

95%

LGM−LATE HOLOCENE TEMPERATURE

P
R

O
B

A
B

IL
IT

Y

YEAR BP

5,000 10,000 15,000 20,000 25,000

5,000 10,000 15,000 20,000 25,000

YEAR BP

Figure 7. An example application of the TEX86 BAYSPAR model. (a) Posterior SST probability densities,

derived from the application of the SST calibration to TEX86 data from the eastern Mediterranean44. Alkenone-

based SST estimates (in red) are shown for comparison, and the yellow dot denotes WOA09 modern mean

annual SST59. (b) Probability that each time point featured the warmest conditions over the time span of data,

binned by 500 year intervals. (c) Probability density of LGM-Late Holocene temperatures, showing 5th, 50th,

and 95th percentiles.

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150029 | DOI: 10.1038/sdata.2015.29 7



to the user, although we recommend that it be informed not only by the target variable that the user seeks
to predict but also an understanding of the oceanography of the location from which the data derive. As
previous investigations have shown22,28, a Sub-T calibration is likely the most suitable choice for regions
with steep thermoclines and nutriclines, such as upwelling zones. The database may also foster future
investigations into secondary influences on the distribution of isoprenoidal GDGTs in marine sediments,
such as lipid contributions from different archaeal communities12,66,67.

Usage Notes
Updated Matlab code that enables users to apply the latest BAYSPAR calibrations is available for
download at Figshare: http://dx.doi.org/10.6084/m9.figshare.1348830. The BAYSPAR calibration may
also be used online at http://www.whoi.edu/bayspar.
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