
Using QIIME to Analyze 16S rRNA Gene Sequences from 
Microbial Communities

Justin Kuczynski1, Jesse Stombaugh2, William Anton Walters1, Antonio González3, J. 
Gregory Caporaso4, and Rob Knight2

1Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 
Colorado

2Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado

3Department of Computer Science, University of Colorado, Boulder, Colorado

4Department of Computer Science, Northern Arizona University, Flagstaff, Arizona

Abstract

QIIME (canonically pronounced “chime”) is a software application that performs microbial 

community analysis. It is an acronym for Quantitative Insights In to Microbial Ecology, and has 

been used to analyze and interpret nucleic acid sequence data from fungal, viral, bacterial, and 

archaeal communities. The following protocols describe how to install QIIME on a single 

computer and use it to analyze microbial 16S sequence data from nine distinct microbial 

communities.
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Introduction

A standard QIIME analysis begins with sequence data from one or more sequencing 

technologies, such as Sanger, Roche/454, Illumina, or others. Using QIIME to analyze data 

from microbial communities consists of typing a series of commands into a terminal 

window, and then viewing the graphical and textual output. Some fairly basic familiarity 

with a Linux-style command-line interface (i.e., the commands cd, ls, and the use of tab 

completion) is useful, though not required.

These protocols illustrate the use of QIIME to process data from a high-throughput 16S 

rRNA sequencing study, beginning with multiplexed sequence reads from a 454 sequencing 

instrument and finishing with taxonomic and phylogenetic profiles and comparisons of the 

samples in the study. Sequence data from Illumina and other platforms may be processed in 

a similar manner; see the Troubleshooting section of this unit for resources explaining the 

differences.
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Rather than listing the analysis steps in general terms, we use an example of data from a 

study of the response of mouse gut microbial communities to fasting (Crawford et al., 2009). 

To make this example run quickly on a personal computer, we use a subset of the data 

generated from 5 animals kept on the control ad libitum fed diet, and 4 animals fasted for 24 

hr before sacrifice. At the end of the basic protocols, we compare the community structure 

of control versus fasted animals, and, in particular, we compare taxonomic profiles of the 

microbial communities of both fasted and non-fasted mice, observe differences in diversity 

metrics within the samples and between the groups, and perform comparative clustering 

analysis to look for overall differences in the samples.

Basic Protocols 1-4 cover analysis of the mouse gut microbial communities described above. 

A Support Protocol covers installation of QIIME.

Basic Protocol 1

Acquiring an Example Study and Demultiplexing DNA Sequences

Basic Protocol 1 represents the first analysis steps typically performed on 16S DNA 

sequence data from microbial communities. Basic Protocol 1 consists of acquiring an 

example dataset, and assigning the DNA sequences in that study to the nine microbial 

communities included in the study. In typical usage, a researcher would substitute the data 

produced by a sequencing platform for the example data used here.

Necessary Resources—A functional installation of the QIIME VirtualBox is required; 

see Support Protocol for hardware requirements of the QIIME VirtualBox

1. Install the QIIME VirtualBox as described in Support Protocol, and start the 

VirtualBox.

2. First install a few files that are used when aligning 16S DNA sequences.

Inside the QIIME VirtualBox, click on the black box with a > symbol on the top 

of the screen, which will open a terminal window (see Fig. 1E.5.1). Then, install 

the greengenes 16S alignment and lanemask, which will be used later to align 

sequences and filter out hypervariable regions.

To do this, type:

wget http://greengenes.lbl.gov/Download/Sequence_Data/

Fasta_data_files/core_set_aligned.fasta.imputed

(on a single line, with a space only after “wget”). Hit Enter, and then execute the 

following command:

wget http://greengenes.lbl.gov/Download/Sequence_Data/

lanemask_in_1s_and_0s

3. Next acquire data from an example experiment. In the terminal window, type:

wget http://bmf.colorado.edu/QIIME/qiime_tutorial-v1.3.0.zip

unzip qiime_tutorial-v1.3.0.zip

Kuczynski et al. Page 2

Curr Protoc Microbiol. Author manuscript; available in PMC 2015 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/core_set_aligned.fasta.imputed
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/core_set_aligned.fasta.imputed
http://greengenes.lbl.gov/Download/Sequence_Data/lanemask_in_1s_and_0s
http://greengenes.lbl.gov/Download/Sequence_Data/lanemask_in_1s_and_0s
http://bmf.colorado.edu/QIIME/qiime_tutorial-v1.3.0.zip


cd qiime_tutorial-v1.3.0

The files present in this directory are examples provided by the QIIME 

developers; they include the following.

Sequences ( .fna): This is the 454-machine-generated FASTA file. Using the 

Amplicon processing software on the 454 FLX standard, each region of the PTP 

plate will yield a FASTA file of form 1.TCA.454Reads.fna, where 1 is 

replaced with the appropriate region number. For the purposes of this tutorial, we 

use the FASTA file Fasting_Example.fna.

Quality Scores ( .qual): This is the 454-machine-generated quality score file, 

which contains a score for each base in each sequence included in the FASTA 

file. Like the FASTA file mentioned above, the Amplicon processing software 

will generate one of these files for each region of the PTP plate, named 1.TCA.

454Reads.qual, etc. For the purposes of this tutorial, we use the quality scores 

file Fasting_Example.qual.

Mapping File (Tab-delimited .txt): The mapping file is generated by the user. 

This file contains all of the information about the samples necessary to perform 

the data analysis. At a minimum, the mapping file should contain the name of 

each sample, the barcode sequence used for each sample, the linker/primer 

sequence used to amplify the sample, and a Description column. In general, you 

should also include in the mapping file any metadata that relates to the samples 

(for instance, health status, or sampling site) and any additional information 

relating to specific samples that may be useful to have at hand when considering 

outliers (for example, what medications a patient was taking at time of 

sampling). Of note: the sample names may only contain alphanumeric characters 

( A-z, 0-9) and the dot (.). Full format specifications can be found in the 

Documentation (File Formats).

The Mapping file here is named Fasting_Map.txt. The contents of the 

mapping file are shown in Figure 1E.5.2. A nucleotide barcode sequence is 

provided for each of the nine samples, as well as metadata related to treatment 

group and date of birth, and general run descriptions about the project.

4. Check the mapping file.

Before beginning with QIIME, you should ensure that your mapping file is 

formatted correctly with the check_id_map.py script. Type:

check_id_map.py -m Fasting_Map.txt -o mapping_output

This module will display a message indicating whether or not problems were 

found in the mapping file. Errors and warnings will the output to a log file, which 

are present in the specified ( -o) output directory. Errors will cause fatal 

problems with subsequent scripts and must be corrected before moving forward. 

Warnings will not cause fatal problems, but it is encouraged that you fix these 

problems, as they are often indicative of typos in your mapping file, invalid 

characters, or other unintended errors that will impact downstream analysis. A 
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corrected_mapping.txt file will also be created in the output directory, 

which will have a copy of the mapping file with invalid characters replaced, or a 

message indicating that no invalid characters were found.

5. Assign multiplexed reads to biological samples.

The next task is to assign the multiplexed reads to samples based on their 

nucleotide barcode. Also, this step performs quality filtering based on the 

characteristics of each sequence, removing any low quality or ambiguous reads. 

The script for this step is split_libraries.py. A full description of 

parameters for this script are described in the Documentation. For this tutorial, 

we will use default parameters (minimum quality score = 25, minimum/

maximum length = 200/1000, error-correcting Golay of 12 nucleotide barcodes, 

no ambiguous base calls, and no mismatches allowed in the primer sequence).

Type:

split_libraries.py -m Fasting_Map.txt -f

Fasting_Example.fna -q Fasting_Example.qual -o

split_library_output

This invocation will create three files in the new directory 

split_library_output/:

split_library_log.txt: This file contains the summary of splitting, 

including the number of reads detected for each sample and a brief summary of 

any reads that were removed due to quality considerations.

histograms.txt: This tab-delimited file shows the number of reads at regular 

size intervals before and after splitting the library.

seqs.fna: This is a FASTA-formatted file where each sequence is renamed 

according to the sample it came from. The header line also contains the name of 

the read in the input FASTA file and information on any barcode errors that were 

corrected.

A few lines from the seqs.fna file are shown below:

>PC.634_1 FLP3FBN01ELBSX orig_bc=ACAGAGTCGGCT 

new_bc=ACAGAGTCGGCT bc_diffs=0

CTGGGCCGTGTCTCAGTCCC…

>PC.634_2 FLP3FBN01EG8AX orig_bc=ACAGAGTCGGCT 

new_bc=ACAGAGTCGGCT bc_diffs=0

TTGGACCGTGTCTCAGTTCCAATGT….

>PC.354_3 FLP3FBN01EEWKD orig_bc=AGCACGAGCCTA 

new_bc=AGCACGAGCCTA bc_diffs=0

TTGGGCCGTGTCTCA…
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Basic Protocol 2

Picking OTUs, Assigning Taxonomy, Inferring Phylogeny, and Creating an OTU Table

Basic Protocol 2 consists of picking Operational Taxonomic Units (OTUs) based on 

sequence similarity within the reads, and picking a representative sequence from each OTU. 

The protocol also assigns taxonomic identities using reference databases, aligns the OTU 

sequences, creates a phylogenetic tree, and constructs an OTU table, representing the 

abundance of each OTU in each microbial sample. Basic Protocol 2 requires demultiplexed 

sequences such as those generated in the seqs.fna file from Basic Protocol 1.

Necessary Resources—A functional installation of the QIIME VirtualBox is required; 

see Support Protocol for hardware requirements of the QIIME VirtualBox

1. Run the pick_otus_through_otu_table.py workflow, which performs a 

series of small steps by calling a series of other scripts automatically.

This workflow consists of the following stages:

a. Picking OTUs (for more information, refer to pick_otus.py).

b. Picking a representative sequence set, one sequence from each OTU (for 

more information, refer to pick_rep_set.py).

c. Assigning taxonomy to the representative sequence set (for more 

information, refer to assign_taxonomy.py).

d. Aligning the representative sequence set (for more information, refer to 

align_seqs.py).

e. Filtering the alignment prior to tree building and removing positions 

which are all gaps, or not useful for phylogenetic inference (for more 

information, refer to filter_alignment.py).

f. Building a phylogenetic tree (for more information, refer to 

make_phylogeny.py).

g. Building an OTU table (for more information, refer to 

make_otu_table.py).

Using the output from split_libraries.py (the seqs.fna file), run the 

following command:

pick_otus_through_otu_table.py -i split_library_output/

seqs.fna -o otus

The results of pick_otus_through_otu_table.py are in otus/, and a 

description of the steps performed and the results follow.

2. Inspect the results of taxonomy assignment.

QIIME has performed a series of analysis stages, following the 

pick_otus_through_otu_table.py command from step 1. In this step we 
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inspect the results of stage (c), but first describe stages (a) through (c), as defined 

under step 1.

At stage (a), all of the sequences from all of the samples are clustered into 

Operational Taxonomic Units (OTUs) based on their sequence similarity. OTUs 

in QIIME are clusters of sequences, frequently intended to represent some degree 

of taxonomic relatedness. For example, when sequences are clustered at 97% 

sequence similarity with uclust, each resulting cluster is typically thought of as 

representing a species. This model and the current techniques for picking OTUs 

are inherently limited, however, in that 97% of OTUs do not match what humans 

have called species for many microbes. Determining exactly how OTUs should 

be defined, and what they represent, is an active area of research.

pick_otus_through_otu_table.py assigns sequences to OTUs at 97% 

similarity by default. Further information on how to view and change default 

behavior is discussed later.

Since each OTU may be made up of many related sequences, at stage (b) QIIME 

picks a representative sequence from each OTU for downstream analysis. This 

representative sequence will be used for taxonomic identification of the OTU and 

phylogenetic alignment. QIIME uses the OTU file created above and extracts a 

representative sequence from the FASTA file by one of several methods.

In the otus/rep_set/ directory, QIIME has created two new files—the log file 

seqs_rep_set.log and the FASTA file seqs_rep_set.fasta containing 

one representative sequence for each OTU. In this FASTA file, the sequence has 

been renamed by the OTU, and the additional information on the header line 

reflects the sequence used as the representative:

>0 PC.636_424 CTGGGCCGTATCTCAGTCCCAATGTGGCCGGTCGACCTCTC….

>1 PC.481_321 TTGGGCCGTGTCTCAGTCCCAATGTGGCCGTCCGCCCTCTC….

A primary goal of the QIIME pipeline is to assign high-throughput sequencing 

reads to taxonomic identities using established databases. Stage (c) provides 

information on the microbial lineages found in microbial samples. By default, 

QIIME uses the Ribosomal Database Project (RDP) classifier to assign 

taxonomic data to each representative sequence from stage (b).

In the directory otus/rdp_assigned_taxonomy/, there will be a log file and a 

text file. The text file contains a line for each OTU considered, with the RDP 

taxonomy assignment and a numerical confidence of that assignment (1 is the 

highest possible confidence). For some OTUs, the assignment will be as specific 

as a bacterial species, while others may be assignable to nothing more specific 

than the bacterial domain.

Inspect the first few lines of the taxonomy assignment file by entering the 

command:
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head otus/rdp_assigned_taxonomy/

seqs_rep_set_tax_assignments.txt

The first few lines of the text file should resemble those shown in Figure 1E.5.3.

3. Inspect the phylogenetic tree.

To infer the phylogenetic relationships relating the sequences, QIIME aligns the 

sequences in stage (d). Alignments can either be generated de novo using 

programs such as MUSCLE (Edgar, 2004), or through assignment to an existing 

alignment with tools like PyNAST (Caporaso et al., 2010). For small studies such 

as this tutorial, either method is possible. However, for studies involving many 

sequences (roughly, more than 1000), the de novo aligners are very slow and 

alignment with PyNAST is preferred. Since this is one of the most 

computationally intensive bottlenecks in the pipeline, large studies benefit 

greatly from parallelization of this task (described later). When using PyNAST as 

an aligner (the default), QIIME must know the location of a template alignment. 

Most QIIME installations use the greengenes file 

core_set_aligned.fasta.imputed by default.

After aligning the sequences, a log file and an alignment file are created in the 

directory otus/pynast_aligned_seqs/.

Before inferring a phylogenetic tree relating the sequences, it is beneficial to 

filter the sequence alignment to remove columns composed of only gaps and 

locations known to be excessively variable. Most QIIME installations use a 

lanemask file named either lanemask_in_1s_and_0s.txt or 

lanemask_in_1s_and_0s by default. Filtering is stage (e), and after filtering, a 

filtered alignment file is created in the directory otus/

pynast_aligned_seqs/.

In stage (f), the filtered alignment file produced in the directory otus/

pynast_aligned_seqs/ is then used to build a phylogenetic tree using a tree-

building program.

The Newick format tree file is written to rep_set.tre, which is located in the 

otus/ directory. This file can be viewed in a tree visualization software, and is 

necessary for UniFrac diversity measurements and other phylogenetically aware 

analyses (described below).

To view the Newick-formatted tree as text, type:

less otus/rep_set.tre

type q when finished.

The tree obtained can also be visualized with programs such as FigTree (http://

tree.bio.ed.ac.uk/software/figtree/), which was used to visualize the phylogenetic 

tree obtained from rep_set.tre in Figure 1E.5.4.

4. View statistics of the OTU table.
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Using taxonomic assignments (stage c) and the OTU map (stage a), QIIME 

assembles a readable matrix of OTU abundance in each sample with meaningful 

taxonomic identifiers for each OTU.

The result of this step is otu_table.txt, which is located in the otus/ 

directory. The first few lines of otu_table.txt are shown below (OTUs 1 to 

9), where the first column contains the OTU number, the last column contains the 

taxonomic assignment for the OTU, and 9 columns between are for each of our 9 

samples. The value of each i, j entry in the matrix is the number of times OTU i 

was found in the sequences for sample j.

To view the number of sequence reads that were assigned to each biological sample 

in the OTU table ( otus/otu_table.txt), type:

per_library_stats.py -i otus/otu_table.txt

The output shows that there are relatively few sequences in this tutorial example, 

but the sequences present are fairly evenly distributed among the 9 microbial 

communities. The output is shown below:

Num samples: 9

Seqs/sample summary: Min: 146

Max: 150

Median: 148.0

Mean: 148.111111111

Std. dev.: 1.4487116456

Median Absolute Deviation: 1.0

Default even sampling depth in core_qiime_analyses.py (just a suggestion): 146

Seqs/sample detail:

PC.355: 146

PC.481: 146

PC.636: 147

PC.354: 148

PC.635: 148

PC.593: 149

PC.607: 149

PC.356: 150

PC.634: 150.

5. View a heatmap of the OTU table.
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The QIIME pipeline includes a useful utility to generate images of the OTU table. 

The script is make_otu_heatmap_html.py. Type:

make_otu_heatmap_html.py -i otus/otu_table.txt -o otus/

OTU_Heatmap/

An html file is created in the directory otus/OTU_Heatmap/. In the menu bar at 

the top of the VirtualBox window, select Places: Home Folder, navigate to 

qiime_totorial-v1.3.0/otus/OTU_Heatmap, and double-click 

otu_table.html. You will be prompted to enter a value for “Filter by Counts per 

OTU.” Leave the filter value unchanged, click the Sample ID button, and a graphic 

will be generated. For each sample, you will see in a heatmap the number of times 

each OTU was found in that sample. Mouse over any individual count to get more 

information on the OTU (including taxonomic assignment). Within the mouseover, 

there is a link for the terminal lineage assignment, so you can easily search Google 

for more information about that assignment (see Fig. 1E.5.5).

Only OTUs with total counts at or above the threshold specified by Filter by 

counts OTU will be displayed. The OTU heatmap displays raw OTU counts per 

sample, where the counts are colored based on the contribution of each OTU to 

the total OTU count present in that sample (blue: contributes low percentage of 

OTUs to sample; red: contributes high percentage of OTUs).

Alternatively, you can click on one of the counts in the heatmap and a new pop-up 

window will appear. The pop-up window uses a Google Visualization API called 

Magic-Table. Depending on which table count you clicked on, the pop-up window 

will put the clicked-on count in the middle of the pop-up heatmap (Fig. 1E.5.6).

On the original heatmap Web page, click the Taxonomy button: you will generate a 

heatmap keyed by taxon assignment, which allows you to conveniently look for 

organisms and lineages of interest in your study. Again, mousing over an individual 

count will show additional information for that OTU and sample (Fig. 1E.5.7).

6. View taxonomic summary information for each community. Next, group OTUs by 

different taxonomic levels (division, class, family, etc.) with the workflow script 

summarize_taxa_through_plots.py. Note that this process depends directly 

on the method used to assign taxonomic information to OTUS (see Assign 

Taxonomy above). In the (black) terminal, type:

summarize_taxa_through_plots.py -i otus/otu_table.txt -o 

wf_taxa_summary -m Fasting_Map.txt

The script will generate a new table grouping sequences by taxonomic 

assignment at various levels, for example the phylum level table at 

wf_taxa_summary/Taxa_Charts/otu_table_L3.txt.

The value of each i, j entry in the matrix is the count of the number of times all 

OTUs belonging to the taxon i (for example, Phylum Actinobacteria) were 

found in the sequences for sample j.
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To view the resulting charts, again go to Places: Home Folder in the menu bar, 

navigate to qiime_tutorial-v1.3.0/wf_taxa_summary, and open the 

area_charts html file located in the taxa_summary_plots/ folder. The area 

chart (Fig. 1E.5.8) shows the taxa assignments for each sample as an area chart; the 

same information is available as a bar chart (Fig. 1E.5.9). Mouse over the plot to 

see which taxa are contributing to the percentage shown.

Basic Protocol 3

Alpha Diversity within Samples and Rarefaction Curves

Basic Protocol 3 consists of computing the within community diversity (alpha diversity) for 

each of the 9 microbial communities, and generating rarefaction curves (graphs of diversity 

versus sequencing depth). Basic Protocol 3 requires an OTU table and phylogenetic tree 

such as those produced in Basic Protocol 2.

Necessary Resources—A functional installation of the QIIME VirtualBox is required; 

see Support Protocol for hardware requirements of the QIIME VirtualBox.

1. Run the alpha diversity workflow.

Community ecologists use a variety of techniques to describe the microbial 

diversity within their study. This diversity can be assessed within a community 

(alpha diversity) or between a collection of samples (beta diversity). Here, we 

will determine the level of alpha diversity in our samples with QIIME. To 

perform this analysis, we will use the alpha_rarefaction.py workflow 

script. This script performs the following stages:

a. Generate rarefied OTU tables (for more information, refer to 

multiple_rarefactions.py).

b. Compute measures of alpha diversity for each rarefied OTU table (for 

more information, refer to alpha_diversity.py).

c. Collate alpha diversity results (for more information, refer to 

collate_alpha.py).

d. Generate alpha diversity rarefaction plots (for more information, refer to 

make_rarefaction_plots.py).

Although we could run this workflow with the (sensible) default parameters, this 

provides an excellent opportunity to illustrate the use of custom parameters.

To see what measures of alpha diversity will be computed by default, type:

alpha_diversity.py -h

You should see, among other information:

-m METRICS, --metrics=METRICS
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This represents the alpha-diversity metric(s) to use. A comma-separated list 

should be provided when multiple metrics are specified. [default: 

PD_whole_tree, chao1, observed_species].

To also use the shannon index (an alpha diversity measure derived from 

information theory), create a custom parameters file by typing:

echo “alpha_diversity:metrics shannon, PD_whole_tree, chao1, 

observed_species” > alpha_params.txt

Then run the workflow, which requires the OTU table ( -i) and phylogenetic tree 

( -t) from the section above, and the custom parameters file we just created:

alpha_rarefaction.py -i otus/otu_table.txt -m 

Fasting_Map.txt -p alpha_params.txt -t otus/rep_set.tre -o 

wf_arare/

Descriptions of the steps involved in alpha_rarefaction.py follow:

The directory wf_arare/rarefaction/ will contain many text files named 

rarefaction_##_#.txt; the first set of numbers represents the number of 

sequences sampled, and the last number represents the iteration number. If you 

opened one of these files—created in stage (a)—you would find an OTU table 

where for each sample the sum of the counts equals the number of samples taken.

The rarefaction tables are the basis for calculating diversity metrics, which reflect 

the diversity within the sample based on the abundance of various taxa within a 

community. The QIIME pipeline allows users to conveniently calculate more 

than two dozen different diversity metrics. The full list of available metrics is 

available here. Every metric has different strengths and limitations—technical 

discussion of each metric is readily available online and in ecology textbooks, 

but is beyond the scope of this document. By default, QIIME calculates three 

metrics:

a. Chao1 metric estimates the species richness

b. The Observed Species metric is simply the count of unique OTUs found in 

the sample.

c. Phylogenetic Distance (PD_whole_tree) is the only phylogenetic metric 

used. It requires a phylogenetic tree, which is frequently generated earlier 

in the analysis (see Basic Protocol 2).

d. In addition, alpha_params.txt specified above adds the shannon index 

to the list of alpha diversity measures calculated by QIIME. The shannon 

index is the information entropy of the observed OTU abundances, and 

accounts for both richness and evenness.

The result of stage (ii) produces several text files with the results of the alpha 

diversity computations performed on the rarefied OTU tables. The results are 

located in the wf_arare/alpha_div/ directory.
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The output directory wf_arare/alpha_div/ contains one text file 

alpha_rarefaction_##_# for every file input from wf_arare/

rarefaction/, where the numbers represent the number of samples and 

iterations as before. The content of this tab delimited file is the calculated metrics 

for each sample. To collapse the individual files into a single combined table, the 

workflow [in stage (iii)] used the script collate_alpha.py.

In the newly created directory wf_arare/alpha_div_collated/, there will 

be one matrix for every alpha diversity metric used. This matrix will contain the 

metric for every sample, arranged in ascending order from lowest number of 

sequences per sample to highest.

QIIME creates plots of alpha diversity versus simulated sequencing effort, 

known as rarefaction plots, using the script make_rarefaction_plots.py, in 

stage (iv). This script takes a mapping file and any number of rarefaction files 

generated by collate_alpha.py and creates rarefaction curves. Each curve 

represents a sample and can be colored by the sample metadata supplied in the 

mapping file.

This step generates a wf_arare/alpha_rarefaction_plots/

rarefaction_plots.html that can be opened with a Web browser, in 

addition to other files. The wf_arare/alpha_rarefaction_plots/average 

plots/ folder contains the average plots for each metric and category and the 

alpha_rarefaction_plots/html_plots/ folder contains all the images 

used in the html page generated.

2. View the rarefaction plots. Open wf_arare/alpha_rarefaction_plots/

rarefaction_plots.html in a Web browser by double-clicking on it. Once the 

browser window is open, select the metric PD_whole_tree and the category 

Treatment, to reveal a plot like Figure 1E.5.10. Turn on/off lines in the plot by 

(un)checking the box next to each label in the legend, and experiment with clicking 

on the triangle next to each label in the legend to see all the samples that contribute 

to that category.

Below each plot is a table displaying average values for each measure of alpha 

diversity for each group of samples the specified category.

Basic Protocol 4

Eta Diversity Between Samples and Beta Diversity Plots

Basic Protocol 4 consists of computing the between community diversity (beta diversity) for 

each of the nine microbial communities, and generating Principal Coordinates Analysis 

(PCoA) plots and distance histograms representing the relationships among the nine 

microbial communities (for background, see, e.g., Legendre and Legendre, 1998). Basic 

Protocol 4 requires an OTU table and phylogenetic tree such as those produced in Basic 

Protocol 2.
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Necessary Resources—The OTU table and Phylogenetic tree produced in Basic 

Protocol 2, and the mapping file from Basic Protocol 1.

1. Run the beta diversity workflow.

Beta diversity represents the explicit comparison of microbial (or other) 

communities based on their composition. Beta-diversity metrics thus assess the 

differences between microbial communities. The fundamental output of these 

comparisons is a square matrix where a “distance” or dissimilarity is calculated 

between every pair of community samples, reflecting the dissimilarity between 

those samples. The data in this distance matrix can be visualized with analyses 

such as Principal Coordinate Analysis (PCoA) and hierarchical clustering. Like 

alpha diversity, there are many possible metrics which can be calculated with the 

QIIME pipeline. Here, we will calculate beta diversity between our 9 microbial 

communities using the default beta diversity metrics of weighted and unweighted 

unifrac, which are phylogenetic measures used extensively in recent microbial 

community sequencing projects.

For this analysis we use the script jackknifed_beta_diversity.py, which 

performs a series of analyses consisting of the following stages:

a. Compute the beta diversity distance matrix from the full OTU table (and 

tree, if applicable) (for more information, refer to beta_diversity.py).

b. Build UPGMA tree from full distance matrix; (for more information, refer 

to upgma_cluster.py).

c. Build rarefied OTU tables (for more information, refer to 

multiple_rarefactions.py).

d. Compute distance matrices for rarefied OTU tables (for more information, 

refer to beta_diversity.py).

e. Build UPGMA trees from rarefied distance matrices (for more 

information, refer to upgma_cluster.py).

f. Compare rarefied UPGMA trees and determine jackknife support for tree 

nodes (for more information, refer to tree_compare.py and 

consensus_tree.py).

g. Compute principal coordinates on each rarefied distance matrix (for more 

information, refer to principal_coordinates.py).

h. Compare rarefied principal coordinates plots from each rarefied distance 

matrix (for more information, refer to make_3d_plots.py and 

make_2d_plots.py).

To run the analysis, type the following:

jackknifed_beta_diversity.py -i otus/otu_table.txt -t otus/

rep_set.tre -m Fasting_Map.txt -o wf_jack -e 110

2. Create a jackknife supported tree, and view the result.
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Unweighted Pair Group Method with Arithmetic mean (UPGMA) is a type of 

hierarchical clustering method using average linkage and can be used to interpret 

the distance matrix produced by beta_diversity.py. Stages (a) and (b) 

produced a Newick-formatted tree relating the samples, at wf_jack/

unweighted_unifrac/otu_table_upgma.tre.

To measure the robustness of this result to sequencing effort, QIIME performs a 

jackknifing analysis, wherein a smaller number of sequences are chosen at 

random from each sample, and the resulting UPGMA tree from this subset of 

data is compared with the tree representing the entire available data set. This 

process is repeated with many random subsets of data, and the tree nodes that 

prove more consistent across jackknifed datasets are deemed more robust [stages 

(c) through (f)].

First the jackknifed OTU tables were generated, by subsampling the full 

available data set. In this tutorial, each sample initially contained between 146 

and 150 sequences. To ensure that a random subset of sequences is selected from 

each sample, select 110 sequences from each sample (75% of the smallest 

sample, though this value is only a guideline), which was designated by the -e 

option when running the workflow script above.

More jackknife replicates provide a better estimate of the variability expected in 

beta diversity results, but at the cost of longer computational time. By default, 

QIIME generates 10 jackknife replicates of the available data. Each replicate is a 

simulation of a smaller sequencing effort (110 sequences in each sample, as 

defined below).

The workflow then calculated the distance matrix for each jackknifed dataset, but 

now in batch mode, which resulted in two sets of 10 distance matrix files written 

to the wf_jack/unweighted_unifrac/rare_dm/ and wf_jack/

weighted_unifrac/rare_dm/ directories. Each of those was then used as the 

basis for hierarchical clustering with UP-GMA, written to the wf_jack/

unweighted_unifrac/rare_upgma/ and wf_jack/weighted_unifrac/

rare_upgma/ directories.

UPGMA clustering of the 10 distance matrix files results in 10 hierarchical 

clusters of the 9 mouse microbial communities, with each hierarchical cluster 

based on a random sub-sample of the available sequence data.

This compares the UPGMA clustering based on all available data with the jack-

knifed UPGMA results. Three files are written to wf_jack/

unweighted_unifrac/upgma_cmp/ and wf_jack/weighted_unifrac/

upgma_cmp/:

master_tree.tre, which is virtually identical to 

jackknife_named_nodes.tre but each internal node of the UPGMA 

clustering is assigned a unique name

jackknife_named_nodes.tre
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jackknife_support.txt, which explains how frequently a given internal 

node had the same set of descendant samples in the jackknifed UPGMA clusters 

as it does in the UPGMA cluster using the full available data. A value of 0.5 

indicates that half of the jackknifed data sets support that node, while 1.0 

indicates perfect support.

jackknife_named_nodes.tre can be viewed with FigTree or another tree-

viewing program. However, as an example, we can visualize the bootstrapped 

tree using QIIME's make_bootstrapped_tree.py, as follows.

Type:

make_bootstrapped_tree.py -m wf_jack/unweighted_unifrac/

upgma_cmp/master_tree.tre -s wf_jack/unweighted_unifrac/

upgma_cmp/jackknife_support.txt -o wf_jack/

unweighted_unifrac/upgma_cmp/jackknife_named_nodes.pdf

Open the resulting pdf by typing:

gnome-open wf_jack/unweighted_unifrac/upgma_cmp/

jackknife_named_nodes.pdf

Figure 1E.5.11 shows the tree with internal nodes colored, red for 75% to 

100% support, yellow for 50% to 75%, green for 25% to 50%, and blue for 

<25% support. Although PC.354 and PC.593 cluster together, we do not have 

high confidence in that result. However, there is excellent jackknife support for 

all fasted samples ( PC.6××) clustered together, separate from the non-fasted 

samples.

3. Inspect the jackknife-supported PCoA plots.

The jackknifed replicate PCoA plots created in stages (g) and (h) can be 

compared to assess the degree of variation from one replicate to the next. QIIME 

displays this variation by displaying confidence ellipsoids around the samples 

represented in a PCoA plot.

Navigate to wf_jack/unweighted_unifrac/3d_plots/ and open 

pcoa_unweighted_unifrac_rarefaction_110_0_3D_PCoA_plots.html.

Scroll down the top right corner of the window that appears to select 

Treatment_unscaled.

Example results are shown in Figure 1E.5.12. By default, the script will plot the 

first three dimensions in your file. Other combinations can be viewed using the 

“Views:Choose viewing axes” option in the KiNG viewer. The first 10 

components can be viewed using “Views:Parallel coordinates” option or typing 

“ /”.
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Support Protocol

Installing QIIME VIA VirtualBox

QIIME can be run in many environments, from a laptop running Windows to a high-

performance computer cluster. It includes parallelization of many of the computationally 

complex steps, so if an analysis is taking unacceptably long, or requires more resources than 

are present on a single machine, it is likely worth investigating the use of QIIME on 

Amazon EC2, or installing QIIME natively on a compute cluster. In this protocol we discuss 

a simple way of installing QIIME via the VirtualBox for use on a single computer.

Necessary Resources—You will need a computer with a 64-bit processor and the 

capability of running a 64-bit operating system as a VirtualBox guest OS. Most modern 

personal computers running Windows, MacOS X, or Linux operating systems qualify. You 

will also need about 10 GB of free storage, and approximately 2 GB of memory.

1. Download and install the VirtualBox (VB) version for your machine from http://

www.virtualbox.org/.

2. Download the 64-bit QIIME Virtual Box from http://bmf.colorado.edu/QIIME/

QIIME-1.3.0-amd64.vdi.gz.

This file is large (>1 GB) so it may take between a few minutes and a few hours 

depending on your Internet connection speed. You will need to unzip this file, 

which you can typically do by double-clicking on it.

3. Launch VirtualBox, and create a new machine (press the New button).

4. A new window will appear. Click Next or Continue.

5. In this screen type QIIME as the name for the virtual machine. Then select Linux 

as the Operating System, and Ubuntu (64 bit) as the version. Click Next or 

Continue.

6. Select the amount of RAM (memory). You will need at least 1024 MB, but the best 

option is based on your machine. If you are unsure, select 1024 MB. After selecting 

the amount of RAM, click Next or Continue.

7. Select “Use existing hard drive,” and click the folder icon next to the selector (it 

has a green “up” arrow). In the new window click Add, and locate the virtual hard 

drive that was downloaded in step 2. Click Select and then click Next or Continue.

8. In the new window, click Finish.

9. Double-click on the new virtual machine created (it will be called QIIME) to boot 

it for the first time.

Commentary

Background Information

Sequence-based microbial ecology studies, which encompass whole metagenome shotgun 

metagenomics, metatranscriptomics, and amplicon (e.g., 16S rRNA) sequencing, are 
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increasingly prevalent and increasingly large in scale. The usefulness of a powerful analysis 

pipeline is thus apparent. However, given the rapid ongoing progression of sequencing 

technologies (Quail et al., 2008; Schwartz and Waterman, 2010), as well as the increase in 

our understanding of how microbial communities are structured and how they differ across 

habitats and times (Arumugam et al., 2011; Caporaso et al., 2011), the development of 

computational tools must keep pace with a continually and quickly changing set of 

objectives. Speaking to this, one of the key design decisions in the development of QIIME 

was the choice to use existing implementations of algorithms—tools such as FastTree for 

heuristic based maximum-likelihood phylogeny inference (Price et al., 2010), the RDP 

classifier for the assignment of taxonomic data using a naïve bayesian classifier (Wang et 

al., 2007), and others. This allows QIIME, which continues to undergo development, to 

easily and relatively quickly adapt novel stand-alone tools, and thus improve in step with 

advances in the field of microbial community ecology.

QIIME includes broad workflow scripts to abstract out some of the complexity of the 

analysis of microbial sequence analysis. QIIME scripts have sensible default values for most 

parameters of interest, thus allowing users to obtain reasonable results without requiring 

detailed decision making at each step of the (typically) long analysis process. However, 

researchers with unique needs, or preferences for alternative approaches (e.g., different 

measures of between community beta-diversity, or different reference databases for 

taxonomic identification), are easily able to customize the behavior of QIIME, simply by 

modifying settings away from their default values. QIIME, while a powerful and by 

necessity somewhat complex analysis pipeline, also performs straightforward analyses with 

a minimum of user intervention, while making clear the default protocols that have been 

performed.

Critical Parameters

The data used in these protocols is intentionally limited, to allow for faster execution times. 

However, many analyses will contain significantly more sequences, and thus will benefit 

significantly from the parallelization of many analysis steps.

Most of these steps can be run using the workflow scripts, some of which were mentioned 

above. To run the workflow scripts in parallel, pass the -a option to each of the scripts, and 

optionally the -O option to specify the number of parallel jobs to start. If running on a quad-

core computer, one can set the number of jobs to start as 4 for one of the workflow scripts as 

follows:

pick_otus_through_otu_table.py -i split_library_output/seqs.fna -

o otus -a -O 4

Troubleshooting

All scripts it QIIME have built-in help, accessible by typing script_name.py -h. In 

addition, documentation exists at http://www.qiime.org, and the help forum at http://

forum.qiime.org is typically quite active and useful.
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Figure 1E.5.1. 
A screenshot of the QIIME VirtualBox, with the terminal icon indicated, and a terminal 

window open.

Kuczynski et al. Page 19

Curr Protoc Microbiol. Author manuscript; available in PMC 2015 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1E.5.2. 
Contents of the mapping file ( Fasting_Map.txt). Note that the SampleIDs contain only 

letters, numbers, and period characters.

Kuczynski et al. Page 20

Curr Protoc Microbiol. Author manuscript; available in PMC 2015 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1E.5.3. 
The first few lines of the taxonomy assignment file, showing on each line the OTU 

identifier, the representative sequence identifier, the taxonomy assigned to that sequence, 

and the confidence in that assignment.
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Figure 1E.5.4. 
A visualization of the phylogenetic tree using FigTree. The tips are unlabeled here, but can 

be inspected interactively.
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Figure 1E.5.5. 
An OTU table heatmap, showing the relative abundance of each OTU within each microbial 

community.

Kuczynski et al. Page 23

Curr Protoc Microbiol. Author manuscript; available in PMC 2015 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1E.5.6. 
Magic-Table visualization of the OTU table heatmap.
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Figure 1E.5.7. 
An OTU table heatmap showing taxonomy assignment for each OTU.
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Figure 1E.5.8. 
An area chart showing the relative abundance of each phylum within each microbial 

community.
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Figure 1E.5.9. 
A bar chart of phylum level abundance within communities, similar to Figure 10.7.8.
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Figure 1E.5.10. 
A Web browser window displaying rarefaction plots. The vertical axis displays the diversity 

of the community, while the horizontal axis displays the number of sequences considered in 

the diversity calculation. Each line on the figure represents the average of all microbial 

belonging to a group within a category: here the green line represents all fasted mouse 

communities, and the blue line represents the control communities.
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Figure 1E.5.11. 
A visualization of bootstrap-supported hierarchical clustering of the 9 microbial 

communities under investigation. Note that the fasted mouse communities ( PC.6××) cluster 

together, and the result is supported by jackknife tests (red implies > 75% support).
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Figure 1E.5.12. 
A Principal Coordinates plot of the 9 communities, showing jackknife-supported confidence 

ellipsoids. The first two principal axes are shown.
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