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Abstract

To obtain a very fast solution for finite element models used in surgical simulations low order 

elements such as the linear tetrahedron or the linear under-integrated hexahedron must be used. 

Automatic hexahedral mesh generation for complex geometries remains a challenging problem, 

and therefore tetrahedral or mixed meshes are often necessary. Unfortunately the standard 

formulation of the linear tetrahedral element exhibits volumetric locking in case of almost 

incompressible materials. In this paper we extend the average nodal pressure tetrahedral element 

proposed by Bonet and Burton for a better handling of multiple material interfaces. The new 

formulation can handle multiple materials in a uniform way, with better accuracy, while requiring 

only a small additional computation effort. We discuss some implementation issues and show how 

easy an existing TLED (Total Lagrangian Explicit Dynamics) algorithm can be modified in order 

to support the new element formulation. The performance evaluation of the new element shows 

the clear improvement in reaction forces and displacements predictions compared to the average 

nodal pressure element in case of models consisting of multiple materials.
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1 Introduction

Finite element models needed in surgical simulation must be both fast and accurate. In order 

to be fast, they must use low order elements that are not computationally intensive, such as 

the linear tetrahedron or the linear under-integrated hexahedron. In order to be accurate, the 

generated mesh should approximate well the real geometry, so that the boundary conditions 

can be imposed accurately. Many algorithms are now available for fast and accurate 

automatic mesh generation using tetrahedral elements, but not for automatic hexahedral 

mesh generation [1–3]. Therefore, in order to automate the simulation process, tetrahedral or 

mixed meshes are more convenient. Unfortunately, the standard formulation of the 
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tetrahedral element exhibits volumetric locking, especially in case of soft tissues such as the 

brain, that are modeled as almost incompressible materials [4–10].

There are a number of improved linear tetrahedral elements already proposed by different 

authors [11–14]. The average nodal pressure (ANP) tetrahedral element proposed by Bonet 

and Burton in [11] is computationally inexpensive and provides much better results for 

nearly incompressible materials than the standard tetrahedral element. Nevertheless, one 

problem with the ANP element and its implementation in a finite element code is the 

handling of interfaces between different materials. In this paper we extend the formulation 

of the ANP element so that all elements in a mesh are treated in a similar way, requiring no 

special handling of the interface elements.

When organs such as the brain are meshed using a mixed mesh, most of the tetrahedral 

elements are situated at the interface between the different parts of the brain (ventricle, 

tumor, white matter, gray matter), as these irregular sections are harder to mesh using only 

hexahedral elements. Therefore the correct handling of the interface between different 

materials is very important.

We will show how this element formulation can be easily programmed in an existing finite 

element code [15] and present a deformation example that proves the increased 

performances of this element over the standard linear tetrahedron and the ANP elements.

The paper is organized as follows: the new element formulation is presented in Section 2, 

the integration in an existing finite element code is presented in Section 3, a computational 

example demonstrates the efficiency of the improved element in Section 4 and the 

conclusions are presented in Section 5.

2 Improved Average Nodal Pressure Element Formulation

2.1 Existing ANP Formulation

We will start the development of the improved ANP (IANP) element by briefly presenting 

the standard ANP formulation developed in [11]. The volume attached to a node a is 

computed by adding the contributions from elements e = 1,…, ma surrounding node a:

(1)

The Jacobian over an element e is the ratio between the current and initial element volumes, 

and also represents the volumetric part of the deformation gradient F:

(2)

The isochoric component of the deformation gradient is therefore given by:
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(3)

The existence of a total elastic energy function is assumed, given as:

(4)

where Ψ is the strain energy density function with an isochoric component Ψ̂ and a 

volumetric component U. The volumetric component U can only be a function of the 

volumetric ratio J, with the simplest and most commonly used form incorporating the bulk 

modulus κ of the material:

(5)

The element pressure is defined as:

(6)

The volumetric virtual work for the standard linear tetrahedron is expressed as:

(7)

where δv are the virtual velocities and m is the number of elements in the mesh.

The volumetric components of the element internal nodal forces can be derived from the 

volumetric virtual work as:

(8)

with Na the shape functions of the element.

The ANP formulation is obtained by assuming that the volume ratio J remains constant over 

the volume attached to each node, therefore reducing the number of incompressibility 

constraints. The average nodal volumetric ratio is defined in terms of the current and initial 

nodal volumes, given by (1), as:

(9)

and the volumetric strain energy is approximated by summing the contribution of all the n 

nodes in the mesh:
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(10)

If only one material is considered, the average nodal pressure can be defined as:

(11)

By differentiating the volumetric strain energy given by (10) in the direction of the virtual 

velocities, the volumetric internal virtual work is obtained:

(12)

Therefore the average element pressure can be defined as:

(13)

The difference between the ANP element and the standard linear tetrahedral element is the 

usage of the average nodal pressure (13) instead of the element pressure (6) in the 

expression of the volumetric internal virtual work (and therefore in the computation of the 

volumetric components of the internal nodal forces).

In case of multiple material interfaces, the nodal pressure can not be computed using (11), as 

it is not clear what bulk modulus κ should be used. For each material type i converging at 

node a, a different nodal volume is defined as:

(14)

where ma
(i) represents the number of elements of material type i sharing node a. A different 

nodal pressure is then evaluated for each material as:

(15)

When the pressures are averaged over an element, only those corresponding to the right 

element material are used.

2.2 Improved ANP Formulation

The different treatment of elements having different material types at the interface nodes 

leads to:
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• implementation problems, as not all elements in the mesh are treated in the same 

manner;

• a weaker enforcement of the incompressibility constraints for the nodes belonging 

to material interfaces (the elements of different material type are treated 

separately).

We will now demonstrate how both these problems can be eliminated. We start with the 

definition of the volumetric strain energy for one of the nodes a belonging to an interface 

between multiple materials:

(16)

where ka represents the number of different material types converging to node a.

Instead of considering different nodal pressure for the different material types, as given by 

(15), we will make the assumption that the nodal pressure is constant over the nodal volume. 

This assumption derives from the relation that exists between pressure and stress (p = −σii/3) 

[16] and from the fact that at the interface between two different materials the stress in the 

materials should be the same.

Therefore, the nodal pressure for such a node is expressed as:

(17)

This can be transformed to:

(18)

The volumetric internal virtual work for node a will be given by:
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(19)

By replacing (14) in (19), and considering, from [12], that:

(20)

we obtain:

(21)

Comparing (21) with (12) we observe that the volumetric internal virtual work for node a is 

computed in the same manner, and therefore the element pressure will be defined by relation 

(13). The only difference between the standard ANP element and the improved ANP 

element consists in the computation of nodal pressure.

In case of a node surrounded by elements made of the same material, the nodal pressure 

given by (18) can be reduced to:

(22)

and the pressure for the standard ANP element is obtained. Therefore, the standard and the 

improved ANP elements behave differently only for elements situated at an interface 

between different materials.

3 Implementation Considerations

3.1 The modified deformation gradient

The only difference between the (standard or improved) ANP element and the linear 

tetrahedral element consists in the way the pressure is computed. The internal forces derived 

from the isochoric component of the strain energy are the same for all these elements. These 

forces depend only on the isochoric part of the deformation gradient.
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The volumetric components of the internal forces depend on the element pressure, as given 

by (8), while the element pressure depends only on the volumetric part of the deformation 

gradient (6).

We consider an existing implementation for a linear tetrahedral element, with the internal 

forces computed based on the volumetric and isochoric components of the deformation 

gradient. In order to obtain the internal forces corresponding to the ANP elements, the 

volumetric part of the deformation gradient can be modified in such a way that the desired 

pressure (corresponding to the ANP elements) is obtained. This pressure, given by (13), can 

therefore be replaced in (6) to obtain the modified volumetric part for the deformation 

gradient:

(23)

The modified deformation gradient:

(24)

has the same isochoric part as the deformation gradient of the element, but the volumetric 

part is modified in such a way that the pressure computed from it will correspond to the 

ANP element.

The computation of the internal nodal forces (or stiffness matrix) can now be done in the 

usual manner, but using the modified deformation gradient instead of the normal 

deformation gradient for defining the strains. This way the existing material law 

implementation can be used, as demonstrated in the next section.

It is worth noting that if the standard ANP element is used, the modified volumetric part for 

the deformation gradient becomes, after replacing in (23) the average element pressure from 

(13) and the average nodal pressure from (11):

(25)

Therefore the computation of pressure is no longer needed for such an implementation.

3.2 Integration in the Total Lagrangian Explicit Dynamic (TLED) Algorithm

The TLED algorithm is a very efficient explicit algorithm based on the Total Lagrangian 

formulation that can be used for surgical simulation. The basic algorithm is presented in 

[17]. The modified algorithm that can use the IANP element presented in this paper is 

presented bellow. The additional steps required are marked with a (+).

Pre-computation stage

1. Load mesh and boundary conditions
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2. For each element compute the determinant of the Jacobian det(J) and the spatial 

derivatives of shape functions ∂h (notation from [18] is used, where the left 

superscript represents the current time and the left subscript represents the time of 

the reference configuration - 0 when Total Lagrangian formulation is used).

3. Compute the diagonal (constant) mass matrix 0M.

4. (+) Compute the initial volumes associated with each node Va using (1).

Initialization

1. Initialize nodal displacement 0u = 0,−Δt u = 0, apply load for the first time step: 

forces or/and prescribed displacements:  or/and 

Time stepping

Loop over elements

1. Take element nodal displacements from the previous time step

2. Compute deformation gradient  and its determinant J

3. (+) Compute current element pressure using (6).

(+) Compute nodal pressure using (18).

Loop over elements

1. (+) Compute the average nodal pressure using (13).

2. (+) Compute the modified deformation gradient using (23) and (24).

3. Compute the 2nd Piola-Kirchoff stress (vector)  using the given material law 

(based on the modified deformation gradient).

4. Compute the element nodal reaction forces using Gaussian quadrature

Making a (time) step

1. Obtain net nodal reaction forces at time t, tT.

2. Explicitly compute displacements using central difference formula

(26)

where Mk is a diagonal entry in k-th row of the diagonalized mass matrix, Ri is an 

external nodal force, and Δt is the time step.

3.
Apply load for next step:  or/and .

The needed modifications are easy to implement and do not require major changes in the 

existing algorithm. The performances of the modified algorithm will be presented in the next 

section.
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4 Simulation Results

Because the only difference between the IANP element proposed in this paper and the 

standard ANP element consists in the way interfaces between different materials are 

handled, we designed a simulation experiment that highlights these differences. We 

considered a cylinder with a diameter of 0.1 m and a height of 0.2 m made out of alternating 

sections with two different material properties, as shown in Table 1. We used a neo-

Hookean material model for both materials.

Half of the nodes on the upper face of the cylinder were displaced in order to create a 

complex deformation field at the different material interfaces (Fig. 1.a).

Using the cylinder geometry we created a hexahedral mesh (13161 nodes and 12000 

elements) and a tetrahedral mesh (11153 nodes and 60030 elements). The behavior of the 

following elements was compared:

1. Fully integrated linear hexahedra, with selectively reduced integration of the 

volumetric term (Hexa), which should offer a benchmark solution [19];

2. Standard Average Nodal Pressure elements (ANP);

3. Improved Average Nodal Pressure elements (IANP), as developed in this paper;

4. Linear standard tetrahedron (Tetra).

All the computations were done using the TLED algorithm. Based on the displacement 

differences presented in Fig. 1 we note the fact that the usage of standard locking tetrahedral 

elements can lead to errors of up to 3.8 mm in the deformation field. The use of ANP 

elements reduces the maximum error to 2.3 mm while the use of IANP elements leads to a 

maximum error of 1.5 mm (all errors are considered relative to the results of the model that 

uses Hexa elements).

The reaction forces computed on the displaced face are presented in Fig. 2. The results 

obtained using the IANP elements are the closest to the benchmark results given by the 

Hexa elements. Therefore, the IANP elements offer the best performances both in terms of 

displacements and reaction forces.

5 Discussions and Conclusions

An improvement of the ANP element is presented in this paper. This improved formulation 

handles all the elements of the mesh in the same manner (regardless of the fact they may be 

at an interface between materials) and therefore the use of different materials and the 

implementation in an existing finite element code can be made without difficulties.

The performance of the proposed IANP element is evaluated using the TLED algorithm 

against the standard tetrahedral element and the ANP element. The IANP element offered 

the best performances both in terms of displacements and reaction forces.

In an explicit code, the critical time step value for the ANP element is double compared to 

the critical time step for the standard locking tetrahedron in the one-dimensional case [20]. 
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We observed a similar behavior for the ANP and IANP elements in the three-dimensional 

simulations. This means that we can use higher values for the time step in an explicit 

simulation using a mixed mesh, as the tetrahedral elements are usually the ones that impose 

the value of the critical time step. A higher critical time step leads to a reduction of the 

overall computation time.
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Figure 1. 
Deformation of a cylinder made out of section with different material properties: (a) the un-

deformed configuration and the nodal displacements are applied. The color bars show the 

difference in positions of the surface nodes, in mm, between models using hexahedral 

elements and models using; (b) locking tetrahedral elements; (c) ANP elements; and (d) 

IANP elements.
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Figure 2. 
Reaction forces on the displaced face: (a) in the y direction and (b) in the z direction.
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Table 1

Material properties

Property Material 1 Material 2

Young’s modulus E [Pa] 3 000 30 000

Poisson ratio ν 0.49 0.48

Density ρ [kg/m3] 1 000 1 000
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