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Abstract

Biological systems are modular, and this modularity evolves over time and in different 

environments. A number of observations have been made of increased modularity in biological 

systems under increased environmental pressure. We here develop a quasispecies theory for the 

dynamics of modularity in populations of these systems. We show how the steady-state fitness in a 

randomly changing environment can be computed. We derive a fluctuation dissipation relation for 

the rate of change of modularity and use it to derive a relationship between rate of environmental 

changes and rate of growth of modularity. We also find a principle of least action for the evolved 

modularity at steady state. Finally, we compare our predictions to simulations of protein evolution 

and find them to be consistent.

I. INTRODUCTION

Biological systems have long been recognized to be modular. In 1942 Waddington presented 

his now classic description of a canalized landscape for development, in which minor 

perturbations do not disrupt the function of developmental modules [1]. In 1961 H. A. 

Simon described how biological systems are more efficiently evolved and are more stable if 

they are modular [2]. A seminal paper by Hartwell et al. firmly established the concept of 

modularity in cell biology [3]. Systems biology has since provided a wealth of examples of 

modular cellular circuits, including metabolic circuits [4, 5] and modules on different scales, 

i.e. modules of modules [6]. Protein-Protein interaction networks have been observed to be 

modular [7–9]. Ecological food webs have been found to be modular [10]. The gene 

regulatory network of the developmental pathway exhibits modules [11, 12], and the 

developmental pathway is modular [13]. Modules have even been found in physiology, 

specifically in spatial correlations of brain activity [14, 15].

The modularity of a biological system can change over time. There are a number of 

demonstrations of the evolution of modularity in biological systems. For example, the 

modularity of the protein-protein interaction network significantly increases when yeast is 

exposed to heat shock [16], and the modularity of the protein-protein networks in both yeast 

and E. coli appears to have increased over evolutionary time [17]. Additionally, food webs 

in low-energy, stressful environments are more modular than those in plentiful environments 

[18], arid ecologies are more modular during droughts [19], and foraging of sea otters is 
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more modular when food is limiting [20]. Other complex dynamical systems exhibit time-

dependent modularity as well. The modularity of social networks changes over time: stock 

brokers instant messaging networks are more modular under stressful market conditions 

[21], and socio-economic community overlap decreases with increasing stress [22]. 

Modularity of financial networks changes over time: the modularity of the world trade 

network has decreased over the last 40 years, leading to increased susceptibility to 

recessionary shocks [23], and increased modularity has been suggested as a way to increase 

the robustness and adaptability of the banking system [24]. Much of the research on 

modularity has suggested that gene duplication, horizontal gene transfer, and changes in the 

total number of connections may all play a role in the evolution of modularity [25–27].

In an effort to proceed further with these observations, we here present a quasispecies theory 

for the evolutionary dynamics of modularity. This analytical theory complements numerical 

models that have investigated the dynamics of modularity [27–30]. We assume that 

modularity can be quantified in the system under study. We further assume that modularity 

is a good order parameter to describe the state of the system. That is, we project the 

dynamics onto the slow mode of modularity, M. In section II we introduce the quasispecies 

description for the dynamics of modularity. The details of the sequence level evolutionary 

dynamics are what, when projected out, define the fitness function f(m) introduced in this 

section. In section III we show how the steady-state fitness in a randomly changing 

environment can be computed from the time-dependent average fitness starting from random 

initial conditions. In section IV we derive a fluctuation dissipation theory for the dynamics 

of modularity. In section V we derive a relationship between rate of environmental change 

and rate of growth of modularity. In section VI we find the evolved, steady-state value of 

modularity by a principle of least action. In section VII we compare some of the predictions 

to simulations of protein evolution. We conclude in section VIII.

II. THE QUASISPECIES THEORY FOR DYNAMICS OF MODULARITY

Quasispecies theory captures the basic aspects of mutation and evolutionary selection in 

large, evolving populations [31, 32]. These models have been widely used in the physics 

literature to describe evolutionary biology [33]. A series of papers showed how these models 

could be solved in the steady-state limit, first by a mapping to an inhomogeneous Ising 

model [34–38] and later by solution with functional integral techniques [39–41]. A 

Hamilton-Jacobi approach has been used to derive dynamical predictions in these models 

[42]. Quasispecies theory has been extended to larger alphabets [43] and to describe the 

effects of horizontal gene transfer [44–46] and finite populations [47, 48].

We here develop quasispecies theory for the dynamics of modularity. We consider a 

population of systems, where each system is characterized by a specific connection matrix, 

from which the modularity can be calculated. Evolution occurs within each system by 

mechanisms such as point mutation or horizontal gene transfer. Horizontal gene transfer is 

not allowed between systems, because such events would violate the assumption that the 

fitness of each system depends only on the modularity of that system. Competition occurs 

both within and between systems. The evolutionary dynamics of this population of systems 

is fully specified by the rate at which each system reproduces, f, termed “fitness,” and the 
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rate at which changes of modularity arise, μ. Since the state of each system is specified by 

the slow modularity variable, M, the fitness is a function of the modularity, f = f(M). The 

f(M) function is from a detailed calculation, numerical simulation, or experimental 

observation of the competitive evolutionary dynamics within each system with a given value 

of modularity. Thus, the rate at which a system with modularity M replicates, f(M), is an 

input to the theory to be derived here. The present theory predicts how modularity in the 

population of systems will evolve, given the replication rates and mutation rates.

The fitness function f(M) fundamentally characterizes an evolving network. With this f(M), 

the dynamics of modularity can be calculated. For example, the f(M) could be deduced for 

the evolution of the protein-protein interaction network in E. coli, showing the evolutionary 

advantage of modularity for this system [17]. The f(M) is the driving force for spontaneous 

emergence of modularity in a protein network [27]. The f(M) quantifies the benefit of 

modularity to a system, and we will show that modularity evolves to a finite modularity at 

steady state in a population of systems.

Modularity is defined on a network of nodes and edges. Thus, the fundamental object 

describing each system is the connection matrix, with the ij element of the connection matrix 

representing the value of edge ij. The connection matrix gives the links between the nodes of 

the network. For example, in the protein-protein interaction network, the nodes are the 

proteins and the links tell one whether protein i interacts with protein j. Modularity of each 

system is calculated directly from the connection matrix of that system, and rearrangement 

of the connections within this matrix changes the modularity of a given system.

The connection matrix, Δij, is a binary matrix that denotes whether nodes i and j interact (Δij 

= 1) or not (Δij = 0). The detailed dynamics of the system may well have non-trivial 

couplings between nodes [27], and the connection matrix is the projection of the non-zero 

couplings. We allow each node to be connected to C other nodes on average. The number of 

nodes is denoted by L. Rearrangement of the entries within this matrix changes the 

modularity of the matrix. For simplicity, we assume that the modules which form are of size 

l. There are two ways to view the fixed partitioning that we consider. First, this partitioning 

results from modularity that is induced by horizontal gene transfer of segments with fixed 

length l, as was previously shown [17, 27]. Second, biological modules are often of roughly 

fixed size, so it is not too much of a simplification to say the module size is constant for all 

modules. A fixed partitioning is a subset of all possibilities; in this work, we consider only 

this fixed partitioning. Thus a modular system will have an excess of connections along the l 

× l block diagonals of the connection matrix. In other words, the probability of a connection 

is C0/L outside the block diagonals when ⌊i/⌋ ≠ ⌊j/l⌋ and C1/L inside the block diagonals 

when ⌊i/l⌋ = ⌊j/l⌋, with C = C0 + (C1 − C0)l/L. Modularity is defined by the excess of 

connections in the block diagonals, over that observed outside the block diagonals: M = (C1 

− C0)l/(LC).

Modularity changes because the entries in the connection matrix change. There are several 

possible models for how the connection matrix may reorganize. We here consider the model 

in which connections may independently reorganize. This model is biologically appropriate 

when connections between nodes are governed by independent pieces of structure in each 
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node. We are not specifically considering “hub” nodes that connect to a very large number 

of other nodes. A model of this effect would be hierarchical. We are here considering one 

level of this hierarchy in the present model. Thus, we here consider a simple model in which 

each of these connections has a rate μ to rewire. That is, we define μ to be the rate at which 

any given 1 in the Δ matrix hops to another random location. In a typical biological system 

there are a finite number of connections per site, even for a large matrix, and so we consider 

the limit of C finite and L large, i.e. a dilute matrix of connections. Thus, the entries in the 

connection matrix each have rate μ to independently move to a new position in the 

connection matrix, and collisions between connections do not significantly affect the 

dynamics in the dilute limit.

When the population of systems is large, the probability distribution to have a connection 

matrix with modularity m obeys (see Appendix A)

(1)

where m takes values −l/(L−l), (−l+1/C)/(L−l), (−l+2/C)/(L−l),…, 1. The average fitness is 

given by

(2)

The average modularity as a function of time is given by M(t) = ΣmmPm(t).

III. THE STEADY-STATE FITNESS IN A RANDOMLY FLUCTUATING 

ENVIRONMENT

We here consider how to describe the effect of environmental change on the evolution of 

modularity. We characterize the environmental changes by their magnitude and frequency. 

We denote the magnitude of environmental change by p. If p = 0, the environment does not 

change at all, and if p = 1, the environment is completely different before and after the 

change. Although the environmental change is random, on average a fraction p of the 

environment’s effect on the fitness of the system is modified by the change. This model is 

used to describe evolution of influenza viruses, where p is defined as above [49, 50]. In 

application to data on influenza vaccines, p is termed pepitope and serves as an accurate order 

parameter to characterize how effective a vaccine against one strain will be in protecting 

against another strain that is distance pepitope away [51–53]. Here we consider these 

environmental changes to occur with a frequency, which we denote by 1/T. In particular, we 

consider that the environmental changes occur every T timesteps. This characterization of 

environmental change by magnitude and frequency, p and 1/T, has been used extensively in 

the past [17, 18, 23, 27, 54].
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A changing environment will put pressure on the system to have an efficient response 

function. As the environment changes, the favorable niches for the system change, and the 

system must adapt to the changing landscape. The more rapidly the environment changes or 

the more dramatically the environment changes, the more pressure there is on the system to 

be adaptable. As noted above, it has been widely observed that systems under pressure tend 

to become more modular. The mean fitness of the systems a time T after an environmental 

change will depend on the magnitude of the change, p, as well as the modularity. We denote 

this value by fp,T (M). We can derive this function fp,T (M) for any p and T from the average 

fitness as a function of time, starting from random initial conditions, which we denote as 〈g〉

(t), with 〈g〉(0) = 0. See Fig. 1 for a depiction of the hierarchy of evolutionary timescales. 

The observable 〈g〉(t), Fig. 1c, is an input to the theory presented here and comes from a 

detailed calculation, numerical simulation, or experimental observation of the competitive 

evolutionary dynamics. The change of environment decreases the fitness by 1−p on average 

[54], and the time of evolution in each environment is T. These two conditions imply fp,T 

(M) = 〈g〉(t*) where t* is defined by

(3)

The function fp,T (M) tells us the average, evolved fitness of the system at the end of each 

environmental change. This function can be considered to be the fitness when the 

environmental change is integrated out. This fp,T (M) is the fitness function that goes into 

Eq. (1).

Evolution of modularity depends on how the response function fp,T (M) of the system varies 

with the parameters of environmental change, p and T. Since systems under stress tend to 

become more modular, an interpretation is that the average fitness for a modular system is 

greater than that for a non-modular system, at least for small T or large p where stress is 

large. This behavior has been observed in a model of systems evolving in a changing 

environment, when horizontal gene transfer is included [27]. We have recently proved this 

canonical behavior for a Moran model of population evolution in a glassy, modular fitness 

landscape [55]. Glassy evolutionary dynamics has been noted a number of times [56, 57]. 

Conversely, at long time, the less modular system should have a higher fitness, because 

modularity is a constraint on the optima that can be achieved.

In Eq. (1), we here take this function f(m) as input. We assume only that the population 

averages for large M and small M look like the dashed and solid curves in Fig. 2a. Putting 

these points together, the quasispecies theory presented here quantitatively describes the 

emergence of modularity at small p or large T, as shown in Figs. 3 and 2b.

IV. A FLUCTUATION DISSIPATION THEOREM

There is a fluctuation dissipation relation for the rate of change of modularity. Multiplying 

Eq. (1) by m and summing, we find that the rate of change of modularity satisfies
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(4)

This equation is a type of continuous-time Price equation [58]. This equation implies a type 

of useful fluctuation-dissipation theorem. Expanding f(m), we can alternatively write this 

fluctuation dissipation relation describing the evolution of modularity as

(5)

Here M = 〈m〉 is the average modularity of the system, and  is the variance of 

the modularity, where m is the modularity for any particular system in the population.

V. ENVIRONMENTAL CHANGE SELECTS FOR MODULARITY

We now derive a relationship between the rate of growth of modularity and the 

environmental pressure. We investigate the dynamics for small modularity, and we consider 

a Taylor series expansion of the fitness function: f(m) = f(0) + mΔf + o(m). The function Δf 

is time independent, depending on p, T, and other parameters of the evolution within each 

system that have been projected out. We investigate the growth of modularity from an 

initially non-modular state. We consider how the response function depends on p. If p = 0, 

the environment is not changing, t* → ∞ in the expression of Eq. (3), and the system will 

stay in the M = 0 state. This implies Δf = 0 when p = 0, as otherwise a non-zero modularity 

would emerge, see Eq. (15) below. For small p, the environment is changing only slightly, t* 

is large, and the system will evolve a small value of M. Expanding in a Taylor series for 

small p and T ≪ t*, Eq. (3) becomes

(6)

where the last two relationships arise because  is small and because  is large and 

m is small. Thus, Δf = limm→0[f(m) − f(0)]/m = Δf(p/T). Expanding Δf to first order in p/T 

and taking m small, we find Δf = αp/T. When m is small, equation (4) becomes

(7)

Using the result above for Δf, we find , leaving out the small term 

proportional to M in Eq. (7). We, thus, find

(8)
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where pE = p/T is the environmental pressure, and . In this equation, , 

which as experimentalists have anticipated is related to replicate variability in experiments 

[59].

This Eq. (8) follows from the fluctuation dissipation relation in Eq. (4) and the response 

function of the modular system being greater than that of the non-modular system at short 

time. Equation (8) may be interpreted as a Taylor series expansion of dM/dt in allowed 

combinations of p and 1/T. Alternatively, Eq. (8) may be interpreted as the linear response 

of the modularity to the environmental pressure. The coefficient R is a measure of 

ruggedness of the evolutionary landscape within each system. This ruggedness slows down 

the evolutionary dynamics, and the selection for an effective response function provided by 

a changing environment implicitly selects for modularity when horizontal gene transfer is 

active [27]. Here, we are able to show that R is proportional to the variance of the 

modularity, which is expected to be related to the ruggedness of the landscape. It is the 

ruggeddness of the landscape that leads to non-trivial replicate variability.

For what forms of 〈gm〉(t) will the Δf(p/T) function be analytic in p/T? We first consider an 

exponential convergence of the fitness function: 〈gm〉(t) = g(∞) − am exp(−βmt), where we 

have left out the m depencence of g(∞) because we expect it to be higher order than linear 

in m. Eq. (6) becomes , and we find 

. We thus find mΔf = g(∞)(p/T)(1/β0− 1/βm), 

which is positive because we expect the modular system to converge faster, βm > β0. Thus, 

we find Eq. (8), with . Conversely, for a power law decay 〈gm〉(t) = 

g(∞) − amt−β, we find the fitness to be non-linear in p/T: fp,T (m) = g(∞) − 

am[(pg(∞)/(Tamβ)]β/(β+1). In this case, Eq. (8) is modified to be  on the left hand 

side, with . Finally, for a logarithmic decay [55] 

, we find the fitness to be non-analytic in p/T, since 

. This equation can be solved in terms of powers 

of the product logarithm, or Lambert W0 function. Performing an asymptotic analysis for 

small p/T, we find fp,T (m) ~ g(∞) − am ln−2/ν(T/p). In this case, Eq. (8) is modified to be 

1/(ln2 pE)1/ν on the left hand side, with α = −dam/dm|m=0.

Equation (8) is a description of how the evolvability of the system depends on the 

environmental change. That is, dM/dt is a measure of the evolvability of the system, with 

larger values indicating a greater rate of change of the measurable order parameter M. This 

measure of evolvability is greater for greater environmental pressures, pE. The drive for 

spontaneous emergence of modularity, large dM/dt, is also greater for landscapes that are 

more rugged, i.e. larger R, which can be estimated from variability of replicate experiments.

Equation (8) says that an increase of environmental pressure should lead to the evolution of 

systems with increased modularity. A study of 117 species of bacteria showed that the 

modularity of the bacteria’s metabolic networks increased monotonically with variability of 

the environment in which the bacteria lived [60]. Metabolic networks of pathogens 
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alternating between hosts were found to be more modular than those of single-host 

pathogens [61].

VI. STEADY-STATE VALUES OF MODULARITY IN ONE ENVIRONMENT

A. Field Theory for the Dynamics of Modularity

Here we rewrite the dynamical equations of quasispecies theory in the language of field 

theory. We solve the field theory in the limit of large system sizes to determine the steady-

state modularity that emerges at long time. The theory is distinct from traditional 

quasispecies theory because the replication rate depends on the modularity rather than the 

Hamming distance from a wild-type strain. Nonetheless, we will show that the theory can 

still be solved exactly in the limit of a large system size.

For large values of L, for which the changes inM are nearly continuous, we here determine 

the average fitness implied by Eq. (1) at long time by techniques borrowed from quantum 

field theory [39, 41]. We write the dynamical equations in Eq. (1) in terms of raising and 

lowering operators. We then use coherent states to write this second quantization in terms of 

a Bosonic field theory, with fields , zij(t) representing density at Δij(t) at time t. The 

action of this field theory is

(9)

Note that the fitness depends on the modularity of the connection matrices of each state at 

each point in time in Eq. (9), just as it did in Eq. (1). Also note that Eqs. (1) and (9) are exact 

for arbitrary, non-linear fitness functions f(m). Here “in” means in the l × l block diagonals 

and “out” means outside these block diagonals. The quadratic terms can be integrated out 

(see Appendix B) [41], and we are left with an action expressed in terms of a modularity 

field, ξ, and its conjugate, ξ̄:

(10)

where the determinant is Q = [lC1(tf) + (L − l)C0(tf)]/(LC), where the vector C(t) = 

(C1(t),C0(t)) satisfies

(11)

where
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(12)

and C(0) = (C1,C0).

B. The Steady-State, Average Value of Modularity

The average modularity follows a dynamical trajectory away from an initial state to a final 

steady state value. For large L, this action becomes large, and a saddle point calculation can 

be used (see Appendix C). The remarkable result from this derivation is that the modularity 

which emerges at long time obeys a principle of least action:

(13)

The variance of the modularity is small, (1/L), and the modularity is determined by the 

solution of the implicit equation

(14)

Here fpop is the mean population fitness, i.e. Eq. (2) with t → ∞. Thus, a principle of least 

action gives the evolved modularity at steady state. Coexistence of populations with 

different modularity, i.e. bimodality in the distribution of modularity, is possible if the f(m) 

function is discontinuous [45].

C. Phase Diagrams for The Emergence of Modularity

While Eq. (13) is a general result, we can proceed further in the limit that evolved 

modularities are small. Expanding for small M, we find

(15)

Thus, as long as a modular system has a higher fitness, df/dM > 0, modularity will 

spontaneously emerge, M > 0, for large enough system sizes, L. Note also when M is small, 

that the steady state modularity calculated exactly from Eq. (13) is in agreement with the 

small M result in Eq. (15), as shown in Fig. 2b. Note that for large L/l, Eq. (7) combined 

with Eq. (15) implies that at steady state .

For fitness functions for which df/dM|M=0 = 0, more analysis is required. For example, if 

f(M) = kM2/2, there is a phase transition at μ*: For μ < μ* modularity emerges, whereas for μ 

> μ* the population remains in the non-modular phase. This phase transition is analogous to 
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the error catastrophe found in traditional quasispecies theory. Phase diagrams for a number 

of fitness functions are shown in Fig. 3.

VII. USING QUASISPECIES THEORY TO EXTRAPOLATE SIMULATION 

DATA ON SPONTANEOUS EMERGENCE OF MODULARITY

We use Eq. (1) to analyze M(t) data on spontaneous emergence of modularity in a 

simulation of an evolving protein network [27] to deduce df/dm and to derive f(M) by 

integration. For this system, we know the mutation rate, as two of the connections change 

per time step in the upper half of the connection matrix, and so we can use Eq. (1) at short 

time to determine df/dm. Alternatively we can determine df/dm if we know the variance of 

the modularity and M(t), c.f. Eq. (5). We assume f(M) is quadratic, and integrate the df/dm to 

determine the f(M). There are ND = 346 total connections in the upper half of the connection 

matrix and N0 = 22 connections in the upper half of the connection matrix when M = 0 for 

the parameters of [27]. Thus, we take C = 346 × 2/L = 5.77 and μ = 2/346. When M = 0, the 

population was prepared by four discrete time iterations of the mutation step, from a single 

initial configuration [27]. We find f(M) ~ 1.4M reproduces the data at small M. For the 

initial condition of M = 0.38, the configurations were taken from an ensemble [27], which 

we take to satisfy Eq. (1). We find f(M) = 1.4M − 1.31M2 approximately reproduces the 

data, as shown in Fig. 4. Equation (13) predicts a steady-state value of M = 0.45, toward 

which the computationally costly simulations appear to be heading.

VIII. CONCLUSION

The examples of environmental stress leading to modularity, ranging from metabolic 

networks of bacteria in different physical environment to simulations of emergence of 

protein secondary structure, can be quantified by quasispecies theory. The approximate 

relation RpE = dM/dt relates rate of growth of modularity to the ruggedness of the fitness 

landscape, R, and environmental pressure, pE, for small values of modularity. The present 

theory should allow the analysis of complex, evolving populations to go beyond a 

demonstration of the existence of modularity to a quantitative analysis of the dynamics of 

modularity. That is, the theory presented here should allow the determination of the f(M) 

function for these evolving populations, by using the predictions to determine the f(M) that 

best matches observation. Knowing the f(M) and μ that fundamentally characterize a 

population would then allow for out-of-sample predictions of dynamical modularity.
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IX. APPENDIX A

We here derive Eq. (1). The rate to increase modularity for a matrix with modularity m is rup 

= μnout(L/l)l2/L2. Recall we are in the dilute limit: C is finite, and L is large. Thus, collisions 

between entries in the connection matrix can be ignored. The rate to decrease modularity for 

a matrix with modularity m is rdown = μninL(L−l)/L2. Here the number of connections inside 

the l×l blocks is given by nin and the number of connections outside the l × l blocks is given 

by nout. We have the constraint nin + nout = CL. We also have by the definition of modularity 

m = [nin/l − nout/(L − l)]l/(CL), which shows modularity changes by discrete increments of 

±1/[C(L − l)]. Thus, we find rup(m) = μCl(L − l)(1 −m)/L and rdown(m) = μC(L − l)(Lm − lm 

+ l)/L. For non-zero modularity, to avoid collisions in the Δ matrix, we further require 〈nin〉 

≪ lL, i.e. C(l − lM + LM) ≪ lL. Alternatively, if this constraint is not satisfied, we can view 

Eq. (1) as a generalization to the case of integer occupation numbers of the Δ matrix with 

certain biased hopping probabilities, rup(m) and rdown(m), given above. The rate of change 

of Pm(t) due to replication is L[f(m)−〈f〉]Pm(t), where the second term ensures conservation 
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of probability, Σm Pm(t) = 1 ∀ t. This is the first term on the right hand side in Eq. (1). The 

rate of increasing Pm(t) due to an increase of modularity from m − 1/[C(L − l)] to m is rup[m 

− 1/(C(L − l))]Pm−1/[C(L−l)](t), which is the first μ-dependent term in Eq. (1). The rate of 

increasing Pm(t) due to a decrease of modularity from m + 1/[C(L − l)] to m is rdown[m + 

1/(C(L − l))]Pm+1/[C(L−l)](t), which is the second μ-dependent term in Eq. (1). The rate of 

decreasing Pm(t) due to modularity changing from m to m ± 1/[C(L −l)] is [rup(m) + 

rdown(m)]Pm(t), which is the third μ-dependent term in Eq. (1). Thus, we have derived Eq. 

(1).

X. APPENDIX B

We here calculate the determinant that comes from integrating out the  and zij fields in Eq. 

(9). The probability of connections inside and outside the blocks have been taken initially to 

be Poisson in Eq. (9), with average probability of a connection per site to be C1/L inside the 

blocks and C0/L outside the blocks. The overall average number of connections per row is C 

= C0 + (C1 − C0)l/L. We here project the number of connections onto the constraint that 

there are LC total connections. As in [41], this constraint is enforced with a projection 

operator that leads to twisted boundary conditions. A modularity field ξ and conjugate field 

ξ̄ are defined, with ξ(t) as the argument of the fitness function in Eq. (9). We use a trotter 

factorization and define ε = tf/M and will take the limit M → ∞. We define δ = 1 if ⌊i/l⌋= 

⌊j/l⌋ and zero otherwise. The partition function becomes

(16)

Integrating out  and zij(0), the action remains the same except the start on sums over k 

are incremented by one, and the terms C1(0)z*(0) and C0(0)z*(0) become C1(1)z* (1) and 

C0(1)z*(1) with

(17)

Iterating the process of integrating out the z*(k) and z(k), we find that the vector C(t) = 

(C1(t),C0(t)) renormalizes according to Eq. (11). Finally, integrating out z*(M) and z(M), we 

find the final contribution to the partition function is

(18)

Performing the final integration over η, we find the final expression for the partition 

function to be
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(19)

Thus, the action in Eq. (10) is derived.

XI. APPENDIX C

Here we calculate the saddle-point solution to the action (10) at large time. For large L, this 

saddle point solution is exact. For large tf, Eq. (10) becomes

(20)

where

(21)

The larger eigenvalue of A is given by

(22)

Thus, the action tends to

(23)

Maximizing this over ξ̄, we find

(24)

Maximizing over ξ gives Eq. (13). Using that the partition function  grows at long time as 

exp(Lfpoptf) [41], we find Eq. (14).
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FIG. 1. 
a) Shown is the fitness of a single evolving system with a given modularity as a function of 

time. Positive fitness means growth of the system. The environment is repeatedly changed 

each T = 300 time steps. Shown in b) is the average of these responses during a time 0 to T 

after each environmental change, averaged over many environmental changes. Shown in c) 

is the average response function to p = 1 environmental changes, 〈g〉(t). The response 

function in b) follows from a master response function curve in c), being the t*−T to t*subset 

where 〈g〉(t*−T) = (1−p)〈g〉(t*). Here p = 0.3 and T = 300. The present theory applies once 

the curve in c) has been determined.
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FIG. 2. 
Shown is the fitness of an evolving system. a) The fitness of the non-modular (〈g0〉, solid) 

and block-diagonal (〈g1〉, dashed) system are shown, starting from a random initial 

configuration. These 〈g0〉 and 〈g1〉 are inputs to the theory. The modular system is taken to 

be more fit at short time and less fit at long time. b) The evolved, steady-state fitness of a 

system predicted by the theory in a changing environment (dot dashed), shown for varying T 

and p = 1. The fitness follows the high-modularity curve at rapid environmental changes, 

small T, and the low-modularity curve at slow environmental changes, large T. Since p = 1, 

the function fp=1,T (M) = 〈g(M)〉(t = T). The function 〈g(M)〉 is here taken for simplicity to 

be (1−M)〈g0〉(t)+M〈g1〉(t). Note the modularity tends to 1 and the fitness to 〈g1〉 for rapid 

environmental change (small T), and the modularity tends to 0 and the fitness to 〈g0〉 for 

slow environmental change (large T). The modularity calculated from theory, Eq. (13), is 

shown (dotted). Also shown is the theoretical result for small M, Eq. (15), to first order in l/L 

(short dashed). In this example L = 120, l = 10, μ = 0.01, and C = 5.77. For these particular 

〈g0〉 and 〈g1〉, the modularity emerges only for environmental changes that occur on a 

timescale T < tc ≈ 285.
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FIG. 3. 
The phase diagram for emergence of modularity. Below a critical mutation rate, modularity 

spontaneously emerges. Results are shown for f(M) = kM2/2 (solid), f(M) = kM3/2 (long-

dashed), f(M) = kM4/2 (short-dashed), f(M) = kM10/2 (dotted), and f(M) = ekM − kM − 1 (dot-

dashed). Results here are shown for l = 10,L = 120.
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FIG. 4. 
Shown is modularity versus time for a population that exhibits spontaneous emergence of 

modularity. The curves are from theory, Eq. (1), and the data (circles) are from [27]. Two 

different initial conditions are shown, M(0) = 0 and M(0) = 0.38. In this example the derived 

underlying fitness function is f(M) = 1.4M − 1.31M2, the mutation rate is μ = 2/346, and the 

average number of connections is C = 346 × 2/L = 5.77.
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