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Abstract
Genome-wide dissection of the heat stress response (HSR) is necessary to overcome prob-

lems in crop production caused by global warming. To identify HSR genes, we profiled gene

expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and

Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5– 4 h at

45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Ken-

shin. The most enriched GO (Gene Ontology) items included ‘response to heat’, ‘response

to reactive oxygen species (ROS)’, ‘response to temperature stimulus’, ‘response to abiotic

stimulus’, and ‘MAPKKK cascade’. In both lines, the genes most highly induced by HT

encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as

HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed.

Other upstream HSR components were also up-regulated: ROS-scavenging genes like glu-
tathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among

heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580,
Bra006382) can be applied to B. rapafor basal thermotolerance (BT) and short-term

acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is

involved in the dehydration response in Arabidopsis, was associated with membrane leak-

age in both lines following HS. Although many transcription factors (TF) genes, including

DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224(MYB41) and
Bra021735(a bZIP/AIR1[Anthocyanin-Impaired-Response-1]) were specific to Kenshin.

Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-

time PCR, and these assignments were further supported by promoter analysis. Although

some of our findings are similar to those obtained using other plant species, clear differ-

ences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

springboard for developing molecular markers of HS and for engineering HS tolerant B.
rapa.
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Introduction
Heat stress (HS) and high temperature (HT) disturb cellular homeostasis and can interfere
with various plant metabolic and physiological processes, including photosynthesis, growth,
development, pollen fertility, and productivity in both crop species and model plants [1–3].
Therefore, global warming will threaten food safety by reducing crop production [4]. Under-
standing the molecular mechanisms underlying the heat stress response (HSR) will be neces-
sary for the development of heat-tolerant crop plants capable of sustainable productivity in a
changing environment.

Plants can perceive HS in various ways, and they tolerate or acclimate to heat via activation
of signaling pathways, expression of stress proteins, and production of defensive materials. In
particular, the activation of HSR genes, such as heat stress transcription factors (Hsfs), heat
shock proteins (Hsps), and some other transcription factors (TFs), are very important for heat
tolerance [5–7]. The activation of HSR genes begins with the perception of HS by a plasma
membrane channel and various secondary messengers, such as calcium ions (Ca2+), nitric
oxide (NO), and hydrogen peroxide (H2O2). In addition, a histone sensor in the nucleus and
unfolded protein sensors present in the ER (endoplasmic reticulum) and cytosol play impor-
tant roles in the perception process. These signals are then transmitted to downstream compo-
nents, such as calmodulins, mitogen-activated protein kinases, Hsp90, and Hsfs. Finally the
signals induce expression of HSR transcription factors (TFs) like WRKY, Dehydration-
Responsive-Element Binding Factor (DREB), and bZIP [3,6–9]. Chaperones for protein
homeostasis, osmolytes, and secondary metabolites responsible for ROS detoxification and
osmoprotection are also important for thermotolerance [9].

Many Hsfs and Hsps play key roles in plant heat tolerance. The rapid accumulation of Hsps,
which is required to protect the cell against HS conditions, is primarily controlled by Hsfs
[10,11]. HsfA1s are major regulators in the HSR of tomato and Arabidopsis [12,13], HSfA2 is
another major HS regulator in plants [10,14], and HsfA4 acts as a sensor of the H2O2 signal
[15], whereas HsfA5 is a negative component of this pathway [16]. Hsps have been implicated
in numerous cellular processes including protein folding, assembly, translocation, and degra-
dation [17]. Hsps are classified according to their molecular weights into six major families:
Hsp100 (Clp), Hsp90, Hsp70 (DnaK), Hsp60 (chaperonin and GroEL), Hsp40 (DnaJ), and
Hsp20 (small HSP; sHsp). Chaperone functions prevent protein aggregation and misfolding,
and are mainly mediated by Hsp70s, Hsp90s, and Hsp60s, whereas Hsp20s and Hsp100s are
involved, respectively, in protection against protein aggregation and resolubilization of protein
aggregates [18,19].

Identification of HSR genes from suitable genotypes can provide a springboard to the devel-
opment of HS tolerance mechanisms. Omics approaches (genomics, transcriptomics, epige-
nomics, proteomics, and metabolomics) have been widely applied to investigations of plant
HSR, and these analyses have identified many HSR genes [9]. Genome-wide identification of
genes required for acquired thermotolerance have shown that expression of genes involved in
protection of proteins, translation, and limiting oxidative stress is elevated, whereas expression
of genes involved in programed cell death, basic metabolism, and biotic stress responses is
reduced [20].

Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important leafy vegetable
crops in Korea and other eastern Asian countries, including China. Two inbred lines of Chi-
nese cabbage, Chiifu and Kenshin, originated in different geographic regions: Chiifu originated
in temperate regions, and Kenshin in subtropical and tropical regions [21]. Therefore, Kenshin
has been traditionally used as breeding stock to develop heat-tolerant plants [22,23]. So far,
most studies of HS have focused on cereals and model plants. Transcriptomics studies of stress
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responses have been performed in B. rapa in recent years, but these have primarily focused on
cold, salt, and drought stresses [24–30]. Previously, the expression pattern of HSR genes in
Chinese cabbage had been analyzed using 24K microarray, which does not include enough
genes to cover the entire B. rapa genome [31]. In this study, we used version 3 microarrays
(Br135K) to analyze gene expression in the Chiifu and Kenshin lines. We identified differen-
tially expressed genes (DEGs), specifically expressed genes (SEGs), HSR genes, HS marker
genes, and membrane leakage-related (MLR) genes, and we discuss these genes in the context
of HS.

Materials and Methods

Plant materials and heat treatment
Seeds of two Chinese cabbage (Brassica rapa ssp. pekinensis) inbred lines, Chiifu and Kenshin,
were obtained from the Korea Brassica rapa Genome Resource Bank, and the plants were
grown for 4 weeks in a growth chamber at 22°C under a 16 h light/8 h dark photoperiod with a
photon flux density of 140 μmol m-2 s-1. For heat shock treatments, leaf discs (1 cm in diame-
ter) were incubated at 45°C for 0.5, 1, 2, 3, or 4 h by floating on a water bath. For control sam-
ples, the leaf discs were incubated at 22°C for 0.5h by floating on distilled water. Then, leaf
discs were blotted, frozen immediately in liquid nitrogen, and stored at -70°C.

Electrolyte leakage test
Immediately after treatment, electrolyte leakage from HS-treated and control plants was mea-
sured as previously described [32,33] with some modifications [28]. Briefly, five leaf discs were
randomly selected from mixed discs after excision from fully expanded leaves of six plants (10
discs/plant and mixed), and placed in a glass tube with 10 ml distilled water. The samples were
then incubated on an orbital shaker at 150 rpm for 30 min at room temperature, after which
the initial conductivity (I) was measured using a CON110 conductivity meter (Oakton Ins.
USA). The leaf discs were then kept in a boiling water bath for 10 min, after which they were
cooled to room temperature, and the final conductivity (F) was measured. The relative electro-
lyte leakage was calculated using the formula I/F ×100.

Construction of Br135K chips
The Br135K microarray (Brapa_V3_microarray, 30-Tiling microarray) is a high-density DNA
array prepared by NimbleGen (http://www.nimblegen.com/) using Maskless Array Synthesizer
(MAS) technology as described in Jung et al. [28]. Labeling, data processing, and background
correction were performed as described previously [28]. To assess the reproducibility of the
microarray analysis, we repeated the experiment using independently prepared total RNA
from two or three biological replicates. The complete raw microarray data have been deposited
in the Omics database of NABIC (http://nabic.rda.go.kr) with accession numbers NC-0023-
000001–NC-0023-000024.

Gene chip data analysis
Genes with adjusted P-value or false discovery rate (FDR) below 0.05 were collected and fur-
ther selected for those genes with expression greater than or less than in at least one treatment.
Multivariate statistical tests such as principal component analysis and multidimensional scal-
ing were performed with Acuity 3.1 (Molecular Devices, USA). Clustering analysis was carried
out using MultiExperiment Viewer version 4.9 (MeV4.9, http://www.tm4.org/mev.html). To
obtain insights regarding the putative biological functions and biochemical pathways of DEGs,
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we carried out enrichment analyses by searching Gene Ontology (GO) [34], agriGO [35], and
the Kyoto Encyclopedia of Genes and Genomes [36].

RNA extraction, RT-PCR, and qRT-PCR analysis
Total RNA was treated with RNase-free DNase I (Promega, USA) to remove genomic DNA
contamination. First-strand cDNA synthesis was carried out using the Ace-α kit (Toyobo,
Osaka, Japan). RT-PCR was performed using 25 ng of cDNA from plants exposed to HS treat-
ments. The gene-specific primers for the stress-responsive genes are listed in S1 Table. Reac-
tions were performed in 0.2 mL PCR tubes containing 10 pmol of each primer, 150 μM of each
dNTP, 1.2 U of Taq polymerase, and 1X Taq polymerase buffer; double-distilled water was
added to a total volume of 20 μL. The PCR cycle consisted of pre-denaturation at 94°C for 5
min, followed by 25 cycles of denaturation at 94°C for 30 s, annealing at 58°C for 30 s, and
extension at 72°C for 45 s, followed by an additional extension step for 5 min at 72°C. PCR
products were electrophoresed on 1.5% agarose gels. For qRT-PCR, pre-denaturation was per-
formed at 95°C for 30 seconds, followed by a 40-cycle three-step reaction (5 seconds at 95°C,
20 seconds at 60°C, and 15 seconds at 72°C) with the primer sets shown in S2 Table.

Analysis of enriched conserved cis-elements
HSR genes were subjected to the Short Time-series Expression Miner (STEM) [37], and 1,000
bp upstream sequences of DEG start codons were analyzed for the presence of plant cis-acting
elements (PLACE) [38]. The occurrences of these motifs were compared with their frequencies
among all promoters represented in the 135K microarray. A P-value was then calculated for
each motif and profile combination, based on the hypergeometric distribution [39]. Motifs
with P-values below 10-4 were considered to be significantly enriched.

Results and Discussion

Membrane leakage test
Along with survival percentage, lipid peroxidation, and peroxidase (POD) activity, electrolyte
leakage was considered to be a good indicator of thermotolerance in Brassica species [40].
Therefore, we measured leakage during HT exposure of two inbred Chinese cabbage lines,
Chiifu and Kenshin. As shown in Fig 1, the two lines exhibited similar electrolyte leakage after
1 h exposure to 45°C, but a significant difference was observed after 2 h. On the basis of this
result, we concluded that Kenshin is more resistant to> 2 h exposure to HT at 45°C, exactly
the reverse of the two strains’ relative tolerance to freezing temperatures [28]. The major
parameters used to phenotype thermotolerance of crop plants include viability, pollen develop-
ment and fertility, photosynthetic rate, and germination [41]. However, breeders and farmers
of the leafy vegetable B. rapa pay much more attention to leaf defense against pathogens,
growth, and the heading process, complicating the choice of good marker for thermotolerance.
Our results indicate that electrolyte leakage could be a useful marker for temperature sensitivity
in B. rapa.

Microarray analysis to identify HSR genes
To identify HSR genes, we identified DEGs under HS from among 41,173 genes represented
on Br135K microarrays (S3 Table). After removing genes with PI (Probe Intensity) values
below 500 for all samples (usually it’s hard to detect the gene expression level using RT-PCR
under 25 cycles condition), DEGs were defined as genes with> 2-fold changes in at least one
time point. A large number of genes, 4,008 for Chiifu and 2,611 for Kenshin, were up-regulated
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(Fig 2A and 2B, S4 and S5 Tables). Among these, 729 and 654 genes in Chiifu and Kenshin,
respectively, were up-regulated> 2-fold during HS treatments of 0.5–4 h, suggesting that
about 20% of HS up-regulated genes (18.2% in Chiifu; 25% in Kenshin) were expressed more
strongly during HSR (Fig 2A and 2B, S4 and S5 Tables). In addition, many genes were down-
regulated by HS (4,164 in Chiifu and 3,158 in Kenshin) (Fig 2C and 2D, S6 and S7 Tables).
Among these, 1,413 and 881 genes in Chiifu and Kenshin, respectively, maintained> 2-fold
down-regulation during HS treatments of 0.5–4 h; thus, HS suppressed about 30% of HS-
down-regulated genes at all-time points used (Fig 2C and 2D, S6 and S7 Tables). The propor-
tion of DEGs under HS was similar to that obtained in an analysis of the tomato transcriptome
(2,203 genes, 9.6%) [13], but higher than the 2% reported by other studies [42–44].

Next, we functionally analyzed HSR genes by GO enrichment using agriGO [35], based on
information about Arabidopsis homologs. All Arabidopsis counterparts of our microarray
probes were used as background references, and significantly represented GO items were
defined as FDR values below 0.05. At a significance of< 0.05 FDR, 63 and 106 GO items were
significantly enriched among the up-regulated genes in Chiifu and Kenshin, respectively (S8
Table). On the other hand, 126 and 145 GO items in Chiifu and Kenshin, respectively, were sig-
nificantly enriched among the down-regulated genes (S9 Table). The most enriched GO items
among the up-regulated genes in both genotypes were associated with HS: response to heat
(GO:0009408), response to ROS (GO:0000302), response to temperature stimulus
(GO:0009266), response to abiotic stimulus (GO:0009628), MAPKKK cascade (GO:0000165),
etc. (S8 Table). Some GO terms exhibited genotype-specific up-regulation: for Chiifu, response
to water deprivation (GO:0009414), and for Kenshin, calcium-mediated signaling
(GO:0019722), protein targeting to membrane (GO:0006612), and respiratory burst
(GO:0045730) (S8 Table).

To determine the association of HSR genes with specific pathways, we placed the Arabidop-
sis counterparts of the identified DEGs on KEGG pathway maps. This analysis identified 126
pathways (S10 Table), including plant hormone signal transduction, starch and sucrose

Fig 1. Electrolyte leakage of two DH lines, Chiifu and Kenshin, subjected to treatment at 45°C.
Leakage is expressed as the ratio (%) of the conductivity of the initial (I) and final (F) solution. Error bars
represent SD of six replicates.

doi:10.1371/journal.pone.0130451.g001
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metabolism, plant–pathogen interaction, glutathione metabolism, and so on. Most genes
related to the RNA degradation pathway were up-regulated by HS in both Chiifu and Kenshin.
Most of genes related to cyanoamino acid metabolism and the N-glycan biosynthesis pathways
were down-regulated by HS in both Chiifu and Kenshin. We identified no pathway specific for
the HS response in Chiifu or Kenshin.

Intrinsic transcriptome differences between Chiifu and Kenshin prior to
HT treatment
Because previous reports suggested that plant HS tolerance was largely due to constitutive
expression of many genes prior to stress treatment [45,46], we compared the intrinsic differ-
ences between two Chinese cabbage inbred lines. Intrinsic genes were selected by fold change
on the basis of PI values. A large number of genes, 522 genes for Chiifu and 205 genes for Ken-
shin (S11 Table), exhibited a> 4-fold change compared to the other, but the functions of most
genes exhibiting high levels of expression could not be associated with HS. Many unknown
genes (including orphan genes) were in this category, suggesting that they play roles in the
HSR. To analyze the expression patterns of SEGs in each inbred line, we selected some of the
top-ranking genes from S11 Table and subjected them to qRT-PCR analysis (Fig 3). None of
these genes have yet been functionally characterized, but expression of all of them except
Bra026915 was reduced upon HS treatment. To isolate the candidate genes which may work
for the heat tolerant in Kenshin, we isolated genes with intrinsically expressed in Kenshin and

Fig 2. Distribution of genes up- or down-regulated by heat. A, Distribution of genes up-regulated by heat
in Chiifu;B, Distribution of genes up-regulated by heat in Kenshin. Gray number means the stepwise priming
up-regulated genes.C, Distribution of heat down-regulated genes in Chiifu; D, Distribution of heat down-
regulated genes in Kenshin. Black numbers indicate the genes down-regulated at a single time point or
continuously.

doi:10.1371/journal.pone.0130451.g002
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Fig 3. qRT-PCR analysis of several SEGs from either Kenshin or Chiifu.Relative expression was normalized against BrActin. Two biological repeats
were performed, and error bars represent SD. HS, heat shock.

doi:10.1371/journal.pone.0130451.g003
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showed up-regulation in Keshin after heat treatment at the same time. In the end, 14 genes,
including one Hsf gene (Bra029292, HSFB2A), one methionine sulfoxide reductase
(Bra019187, PMSR4), three orphan genes (Bra039796, Bra016685, and Bra028606), were
identified.

To obtain functional clues about the genes in this category, we carried out GO annotation
on the basis of the Arabidopsis homolog data (Table 1). Genotypic SEGs included those encod-
ing kinases, TFs, and factors involved in response to stress, response to abiotic or biotic stimu-
lus, transferase activity, hydrolase activity, and signal transduction. Noteworthy categories
include cellular respiration, unsaturated fatty acid biosynthesis, and Hsf genes, which were
over-represented in Kenshin relative to Chiifu. For instance, 5 Hsf genes, Bra013409,
Bra029292 (HSFB2A), Bra029291 (HSFB2A), Bra004272 (HSFA8), and Bra000557 (HSFA2)
were highly intrinsic expressed in Kenshin. Otherwise, only one Hsf gene, Bra012828
(HSFA7A), showed highly intrinsic expressed in Chiifu. We also carried out KEGG pathway
analysis to reveal differences between the two genotypes (S12 Table). In total, 100 and 86

Table 1. GO annotation of intrinsically expressed genes. One gene can be associated with two or more
GO terms. NA, no Arabidopsis homologs.

GO Term Kenshin-up Chiifu-up

Kinase 173 322

Response to stress 167 320

Response to abiotic or biotic stimulus 154 302

Transferase activity 110 220

Hydrolase activity 110 189

Signal transduction 66 161

Transcription factors 61 103

Organelle membrane 70 61

Vacuole 60 53

Zinc ion binding 39 71

Oxidation-reduction process 39 67

Response to salicylic acid stimulus 22 71

Carbohydrate catabolic process 38 31

Response to water deprivation 25 43

Response to ethylene stimulus 19 43

Response to auxin stimulus 17 30

Response to heat 13 29

Photosynthetic membrane 24 16

Chlorophyll binding/metabolic process 14 12

Photosynthesis 14 10

Heat acclimation 3 15

Heat shock protein 5 13

Proline transport 10 6

Respiration 9 7

Water transport 8 7

Sugar transmembrane transporter activity 5 8

Cellular respiration 8 2

Unsaturated fatty acid biosynthetic process 6 2

Heat shock transcription factor 5 1

Unclassified 292 465

NA 203 196

doi:10.1371/journal.pone.0130451.t001
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pathways were represented by the up-regulated genes in Chiifu and Kenshin, respectively. Met-
abolic pathways were most prominent in both genotypes, suggesting that a metabolomics
approach will be required in future studies.

Analysis of some HSR genes
As a first step toward identifying putative regulatory genes for thermotolerance, we identified
several genes exhibiting very high levels of expression or specific expression changes, and
confirmed them by RT-PCR (Fig 4, S1 Fig, and S13 Table). The top ten genes induced by HS
in both genotypes included genes encoding small Hsps, chaperones, kinases, and unknown
proteins. Many of these are well-known genes involved in thermotolerance in plants
[3,19,47]. Among these, Bra002538 (HSP18.2) exhibited the strongest induction in both
genotypes,> 410-fold at 0.5 h and > 630-fold at 1 h, and maintained its level thereafter. An
unknown gene (Bra033343, AT1G02700) exhibited a peculiar pattern of expression upon HS
treatments: in Chiifu, 1,213-fold induction at 0.5 h and 217-fold induction at 1 h, but in Ken-
shin, 1,573-fold at 0.5 h, 2,462-fold at 1 h, and 176-fold at 2 h. These patterns are similar to
Hsp90 and Hsp70 expression, as expected for the HSR. Several genes were specifically induced
in either genotype. Among them, Kenshin SEGs (Bra028923, Bra029764, Bra014525,
Bra027662, and Bra034336) could be good targets for thermotolerance studies in Chinese
cabbage because Kenshin has been traditionally used as a breeding stock to develop heat-tol-
erant plants [22,23].

Fig 4. Heat map of genes induced/repressed by HS treatment.

doi:10.1371/journal.pone.0130451.g004
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Hsfs and Hsps
Many Hsfs and Hsps play important roles in plant heat tolerance. In the Br135K microarray,
38 Hsf- and 206 Hsp-encoding genes (Hsp100/ClpB, Hsp90, Hsp70, Hsp60, Hsp40, and sHsp)
are represented (S14 Table). Among them, 49 genes (including 11Hsf genes) exhibited very
low levels of expression (PI values< 500 of in all samples). Upon 1 h HS treatment, however,
10 and 13Hsf genes were up-regulated> 2-fold in Chiifu and Kenshin, respectively. Among
these, nineHsf genes were up-regulated in both genotypes:HsfA2 (Bra000557),HsfA4A
(Bra020988),HsfA7A (Bra012828, Bra033468),HsfB2A (Bra029292, Bra029291, Bra010049),
HsfB2B (Bra000749), and HsfB3 (Bra000235). Up-regulated expression of some genes was con-
firmed by RT-PCR (S2 Fig). In particular, oneHsfA2 and twoHsfA7As were up-regulated
over 4-fold in both genotypes, whereas oneHsfB2A (Bra029292) was induced over 20-fold
only in Chiifu. The expression levels of threeHsfB2As in Kenshin (Bra010049, Bra029291, &
Bra029292) were relatively high under normal growth conditions and increased further upon
HS treatment, whereas the levels of twoHsfB2As in Chiifu (Bra029291, Bra010049) exhibited
similar patterns upon HS treatment but were lower than those in Kenshin. This result suggests
that BrHsfB2A (Bra029292) plays an important regulatory role in heat tolerance in Kenshin. In
tomato, HsfA1a, HsfA3,HsfB1, andHsfB2a are most abundant and exhibit only minor changes
in response to heat. On the other hand, expression of low-abundance genes, such as HsfA1b,
HsfA1e,HsfA2,HsfA4b, and HsfA6a, increase upon HS treatment [13]. Some Chinese cabbage
Hsfs (HsfB1,HsfB2A) exhibited expression profiles similar to those observed in tomato,
whereas others did not, indicating the presence of distinct regulatory mechanisms in different
plant species.

The Arabidopsis genome contains 21Hsf genes that can be categorized into three classes (A,
B, and C) [10,48]. HsfA1a is a master regulator of the HSR [10,12,13,49]. However, given the
low expression level of HsfA1 following HS, our data imply that other Hsfs could serve as the
major TFs in B. rapa.HsfA4a and HsfA8 are sensors of reactive oxygen species (ROS), which
are produced as a secondary stress signal during the HSR [50,51]. In particular, HsfA4 acts as a
sensor of the H2O2 signal [15], whereas HsfA5 acts as a negative regulator of this pathway [16].
In our microarrays, both genes were highly expressed. Although the expression of HsfA4
increased slightly upon HS, the expression of HsfA5 decreased slightly (S14 Table). All these
results suggest that heat tolerance in B. rapamight be primarily regulated at the protein level,
with only minor regulation at the transcriptional level. Alternatively, heat tolerance might
involve key regulators that are different from those Arabidopsis, as proposed in Wang et al.
[52].

Like Hsfs, Hsps also play important roles in heat tolerance in plants, especially in protein
folding, assembly, translocation, and degradation [17]. In our microarrays (S14 Table), most
Hsp70, Hsp90, andHsp101 genes were constitutively and highly expressed in all samples. How-
ever, small Hsps encoded by genes such as Hsp18.2,Hsp20,Hsp22, and Hsp23.6 exhibited
strong induction (15–656-fold) by HS treatment in both genotypes. We confirmed the expres-
sion of some genes by RT-PCR (S2 Fig). These results are similar to those in tomato, in which
the majority of HS-induced chaperone genes belong to the sHsp family [13].

In Arabidopsis, HS-associated 32 kD protein (HSA32) (AT4G21320), an Hsp, is essential
for acquired thermotolerance during long-term recovery after acclimation treatment [53] and
in rice [54]. B. rapa does not contain ortholog of this gene, providing further evidence for the
existence of different HSRs among plants. Recently, Wang et al. [52] reported that different key
genes and regulatory mechanisms are involved in abiotic stress responses in B. rapa and
Arabidopsis.
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Upstream components of the HSR, including ROS
Upstream events of the HSR include perception and signal transduction of HS. Jia et al. [55]
demonstrated that Hsf activity and Hsp production involved in thermotolerance are a result of
cross-talk among H2O2, nitric oxide (NO), Ca

2+ channels, and calmodulin (CaM). In particu-
lar, CaM activates Hsfs, protein kinase, phosphatase, and cyclic nucleotide-gated ion channels.
Among these, ROS including H2O2 are considered to be the first signaling components pro-
duced by HS [15,56,57]. The ROS signal can then be recognized by histidine kinases and Hsfs
(HsfA4 and HsfA8) [19,50,51]. Hsf sensing activates multiple TFs (Zat family, WRKY, and
MBF1c) through the MAPK signal pathway [19].

Regarding the expression of ROS-scavenging genes upon initiation of the HSR, two possibil-
ities exist: such genes could be induced in order to reduce levels of ROS produced by HS, or
they could be suppressed in order to maintain the levels of ROS involved in downstream signal-
ing. Among 170 PODs on the Br135K microarray, only seven were differentially expressed
upon HS treatment (S15 Table). Three genes were up-regulated in both genotypes: ascorbate
peroxidase 1 (APX1) (Bra031598), Fe-superoxide dismutase 3 (FSD3) (Bra026503), and Fe-
superoxide dismutase 2 (FSD2) (Bra029190). Previous work revealed APX1 as a central compo-
nent of the ROS gene network [58] and a key player in stress responses [59], whereas FSD2 and
FSD3 confer protection against oxidative stress [60,61]. Glutathione peroxidase 2 (GPX2)
(AT2G31570; Bra022853), which exhibits Kenshin-specific up-regulation, protects against
stress through activation of cytosolic superoxide dismutase [61]. Thus, BrGPX2 is a promising
candidate thermotolerance-related gene in Kenshin. In addition, one peroxidase superfamily
protein (Bra016930), which is also likely to be involved in ROS signaling, was down-regulated
upon HS in both genotypes.

Because calcium signaling can engage in cross-talk with ROS signaling to trigger thermoto-
lerance, we investigated the expression profiles of several calcium-related genes represented on
the Br135K chip: 24 calcium channels, 39 CaM, 31 calcium-dependent protein kinases
(CDPKs), five CaM-binding protein phosphatases, and 33 cyclic nucleotide-gated ion channels
(CNGCs) genes (S16 Table). Most calcium channel genes were highly expressed at all-time
points, suggesting that they are regulated at the protein level, if at all. In contrast to the nine
Arabidopsis CaM genes up-regulated by HS treatment [62], 14 BrCaM genes (with the excep-
tion of CaM8) exhibited high constitutive expression under most conditions. These data fur-
ther support the idea that the HSR is differentially regulated among species. Expression of
CDPK and CNGC genes exhibited no significant changes after HS treatment, with the excep-
tion of Bra001676, a homolog of Arabidopsis salt-induced CNG20 [63], which had Kenshin-
specific expression. Taken together, these data suggest that regulation of calcium-related pro-
teins in B. rapaHSR is exerted at the protein level.

ROS signaling recognized by histidine kinases must be transmitted to other kinases and
phosphatases. To obtain further insight into the HSR signaling pathway, we analyzed expres-
sion profiles of 2,110 kinase genes represented on the Br135K microarray. Several genes exhib-
ited differential expression in response to HS treatment: in total, we detected 13 up-regulated,
three down-regulated, five Kenshin-specific, and seven Chiifu-specific genes (S17 Table). The
13 up-regulated genes included receptor kinase 3 (RK3) (Bra001630, Bra040589, Bra038767,
Bra040589), mitogen-activated protein kinase kinase kinase 14 (MAPKKK14) (Bra018344), a
protein kinase superfamily (AT2G28940; Bra040931) (AT5G11410; Bra008964) (AT5G13290;
Bra008839), a U-box domain-containing protein kinase family (Bra024393), and somatic
embryogenesis receptor-like kinase 5 (Bra032128). The three down-regulated genes included
CBL-interacting protein kinase 13 (Bra021897), a receptor-like protein kinase-related family
(AT5G48540; Bra037480), and a leucine-rich repeat protein kinase family (AT1G51800;
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Bra030416). The five Kenshin-specific genes included with-no-lysine (K) kinase 4 (Bra024518),
a protein kinase superfamily (AT3G26700; Bra034245), a concanavalin A-like lectin protein
kinase family (Bra010340), a cysteine-rich receptor-like protein kinase (RLK) 36 (Bra029496),
and a leucine-rich repeat protein kinase family (AT5G59680; Bra020301). Finally, the seven
Chiifu-specific genes included wall-associated kinase 5 (Bra025886), phosphoglycerate kinase 1
(Bra034729), receptor serine/threonine kinase (AT4G18250; Bra008687), a leucine-rich repeat
protein kinase family protein (AT5G59670; Bra006700), a cysteine-rich RLK 39 (Bra017552),
and a protein kinase superfamily (AT3G46930; Bra018183). High expression of most kinase
genes under all conditions suggested that these factors are primarily regulated at the protein
level.

Although most phosphatase genes were highly expressed in all samples (S18 Table), three
were differentially expressed: two were up-regulated genes upon HS (AT3G51470; Bra036796,
AT4G29690; Bra011129), and one was expressed specifically in Kenshin (probable apyrase 5,
Bra019669). The functions of these genes have not yet been determined. As with the kinases,
the expression patterns suggest that most phosphatases function at the post-transcriptional
level.

Transcription factors (TFs)
TFs regulate many genes involved in plant growth and development at the transcriptional
level. The Br135K microarray includes 3,354 TFs (8% of the total of 41,174 genes), of over 43
different classes (Table 2, S19 Table). Among them, 109 TFs exhibited significant changes in
their expression levels following HS treatment (Table 2). Apart from the heat-induced Hsfs,
the majority of these TFs belong to the Integrase-type, NAC, homeodomain, HB, bHLH, and
DREB families. Members of these TF families are involved in the HSR and thermotolerance in
different plant species [45,64,65], indicating the existence of complex transcriptional regulatory
networks beyond the direct regulatory control of Hsfs.

Although only AP2/B3-like TF (AT5G60142) (Bra002509) exhibited Kenshin-specific up-
regulation, Chiifu-specific up-regulation was detected for three genes:MYB-like 2
(AT1G71030) (Bra016164),WRKY33 (Bra000064), and AGL64 (Bra032347). Zinc-finger
CCCH domain-containing-protein (Bra012068) and LSH6 (Bra031552) were Kenshin-specifi-
cally expressed without much change upon HS, and ten genes were specific to Chiifu. Except
forWRKY33, which may play a role in defense signaling, the functions of these genes have not
been determined.

According to a recent study, the ER membrane-associated basic leucine zipper (bZIP) tran-
scription factor bZIP28 is activated by ER stress resulting from the accumulation of misfolded
or unfolded proteins following HS; this factor stimulates expression of stress response genes
[66]. Two BrbZIP28 genes were highly expressed in all Chinese cabbage samples; expression of
one of them (Bra034147) increased slightly upon HS treatment, whereas the other gene
(Bra023224) exhibited no significant change.

Several TFs were selected and subjected to qRT-PCR analysis. Three genes (Bra022602,
Bra039069, Bra019599) were induced in both lines at similar levels upon HS, and three and
two genes exhibited prominent expression in Chiifu (Bra003801, Bra005852, Bra027501) and
Kenshin (Bra021735, Bra024224), respectively (Fig 5). Due to the large standard deviation
resulting from normalization, the qRT-PCR data of several genes (MYB41,MYB95,MYB82,
and bHLH92) were not consistent with the microarray values. Except for Bra022602 (MYB82),
expression of most genes was highly increased by HS treatment. With the exception of three
genes (CCH-type,MYB82, andMYB95) whose functions have not been identified, these genes
are related to abiotic stress responses in Arabidopsis. Two genes with prominent expression in
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Table 2. Summary of transcription factor genes represented on the Br135Kmicroarray.

Up-regulated by HS Down-regulated by HS Genotype specific

No Chiifu Kenshin Both Chiifu Kenshin Both Chiifu Kenshin

MYB 289 1 - 3 - - 1 - -

bHLH 234 - - 1 - - 4 - -

NAC 191 - - 7 - - 3 - -

Homeodomain 183 - - 3 1 - 1 1 -

C2H2 159 - - 1 - - 2 1 -

Integrase-type 153 - - 9 - - 6 - -

WRKY 150 1 - - - - 1 - -

AGL 109 1 - - - - 2 - -

bZIP 108 - - 1 - - - 1 -

AP2 100 - 1 - - - - - -

HB 93 - - 2 - - 5 3 -

GATA 69 - - - - - 1 - -

Dof 66 - - - - - - - -

MADS 62 - - - - - - 1 -

B3 family 59 - - - - - - 1 -

NF-Y 51 - - 1 - - - - -

C3HC4 50 - - 2 - - - - -

C-x8-C-x5-C-x3 43 - - - - - 3 - 1

DHHC 42 - - - - - 1 1 -

CCCH 41 - - 2 - - 1 - -

LOB 41 - - - - - 1 - -

HS 38 - - 6 - - - - -

ERF 38 - - 1 - - - - -

ARF 36 - - 1 - - 2 - -

GRAS 34 - - - 1 - - - -

TCP 33 - - - - - - - -

B-box 32 - - 1 - - 2 - -

Squamosa 29 - - - - - 2 - -

DREB (TINY) 28 - - 5 - - 1 - -

JAZ 26 - - 1 - - - - -

LSH 26 - - 4 - - - - 1

A20/AN1 24 - - - - - - -

PLATZ 23 - - - - - - - -

RWP-RK 23 - - - - - - - -

Jumonji 22 - 1 - - - - -

CCHC 22 - - - - - - - -

ZFP 20 - - - - - - - -

GRF 17 - - - - - - - -

Alfin-like 17

KNAT 16 - - - - - - 1 -

BZR1 family 16 - - - - - - - -

Winged-helix 12 - - - - - - - -

AUX/IAA 8 - - - - - - - -

OTHER 521 3 - 6 1 - 10 - -

Total 3,354 3 1 52 2 0 39 10 2

doi:10.1371/journal.pone.0130451.t002
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Chiifu, Bra005852 (DREB2A: dehydration-responsive element binding protein 2A) and
Bra027501 (bHLH92), are responsive to cold stress [28] suggesting that they serve another role
in HSR. In Arabidopsis, bHLH92 functions in response to NaCl, dehydration, and cold [67],
but its homolog, Bra027501, would be expected to function in HS of B. rapa, based on its
expression change. Arabidopsis DREB2A controls the levels of HsfA3, Hsp18.1-CI,
Hsp26.5-MII, and Hsp70 during heat and drought stress [68–70], implying that it responds to

Fig 5. qRT-PCR analysis of transcription factor genes that were up-regulated by HS treatment.Relative expression was normalized to BrActin and is
presented relative to 0 h expression levels. Two biological repeats were performed, and error bars represent SD. HS, heat shock.

doi:10.1371/journal.pone.0130451.g005
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both heat and cold stresses. B. rapa contains three DREB2A genes: two of these (Bra005852,
Bra019162) were expressed at low basal levels under normal growth conditions and were
greatly up-regulated by HS, whereas the other (Bra009112) was expressed at a relatively high
level that increased further upon HS treatment (S19 Table). These results indicate that expres-
sion of Hsps in B. rapamight be also induced by DREB2A.

Two genes exhibiting a similar response to HS treatment in both inbred lines, Bra003801
(MYB95) and Bra019599 (NAC062/NTL6), are predicted to function in both cold and HT,
even though only the cold response has been characterized in Arabidopsis [71,72]. In Arabidop-
sis, NAC062/NTL6 processing is stimulated by cold and ABA to activate the expression of
defense response genes, but in B. rapa, its processing is reduced by HT [71]. Given that the
expression of Bra019599 was greatly increased upon HS in both lines, it is possible that
BrNAC62 functions in both cold and HT stress.

Two genes with a notable response to HS treatment in Kenshin, Bra024224 (MYB41) and
Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]), may function in HS tolerance.
ArabidopsisMYB41 activates suberin synthesis under abiotic stress conditions [73], implying a
relationship to HS. Arabidopsis AIR1 regulates various steps in the flavonoid and anthocyanin
accumulation pathway [74]. Its expression is regulated by salt stress, but not by HT or drought.
It is possible that BrAIR1 could function under HS conditions, particularly for Kenshin. There-
fore, BrAIR1 could be a useful molecular marker for HT tolerance in B. rapa.

HSR genes and proteins can be divided into two groups, signaling components (protein
kinases and TFs) and functional genes (HSPs and catalase) [75,76]. Zat7 [77], Zat10 [15], and
Zat12 [78] respond to HS. In particular, Zat12 is necessary for the expression of APX, Zat7,
andWARKY 25. B. rapa contains Zat1, 6, 10, and 12, but not Zat7. The expression levels of
Zat12 (four alleles) and Zat10 (two alleles) were very high and slightly increased by HS. Also,
WRKY25 expression was very high. These results suggest the possible involvement of TFs
through the MAPK signaling pathway.

HSmarker genes
According to a previous report [41], Arabidopsis plants exhibit four classes of tolerance to HS
regimes: basal thermotolerance (BT), short-term acquired thermotolerance (SAT), long-term
acquired thermotolerance (LAT), and thermotolerance to moderately high temperature
(TMHT). Because genes representing each regime have been identified in Arabidopsis, we
examined expression of the B. rapa genes that correspond to the Arabidopsis genes involved in
the tolerance phenotypes (S20 Table, Fig 6). Expression of most genes did not differ between
Chiifu and Kenshin, but only expression of XPO1A (exportin 1A) (Bra008580, Bra006382),
which is involved in BT and TMHT in Arabidopsis, seemed to be correlated with thermotoler-
ance as well as membrane leakage. LAT-related genes could be up-regulated (induced or stimu-
lated) even after 30 min HT treatments, but no difference was observed between the two
genotypes. TheHsa32 (HS-associated 32 kD: AT4G21320) homolog, which is also a marker of
LAT, was absent from the B. rapa gene database. These results suggest that (1) HSR markers
differ between Arabidopsis [41] and B. rapa, and (2) BT and LAT from B. rapa are controlled
by different genes.

Membrane leakage-related (MLR) genes
Even though HSR genes were immediately induced by HT exposure, membrane leakage of B.
rapa remained constant until 1 h HT exposure (Fig 1). Regarding electrolyte leakage, Kenshin
is less sensitive to prolonged HT exposure than Chiifu, implying that the HT responses of these
lines are negatively correlated with leakage. Because electrolyte leakage reflects the traits of
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these two inbred lines, analysis of the MLR genes is important for an understanding of the B.
rapaHT-response. MLR genes can be defined as those whose expression patterns correlate
with the membrane leakage pattern either positively or negatively, i.e., expression of genes
should not exhibit a significant change from no treatment to 1 h HS treatment, but should start
to change upon 2 h HS treatment (over 2-fold, up or down) and increase thereafter. As shown
in S21 Table, expression levels of 15 and 65 genes were changed over 2-fold in Chiifu and Ken-
shin, respectively. Among them, four genes specifically expressed in Kenshin were selected as
putative MLR genes: two up-regulated genes [Bra032994 (NA), Bra025083 (cytochrome P450;
CYP707A3)], and two down-regulated genes [Bra006613 (FAD/NAD(P)-binding oxidoreduc-
tase) and Bra016265 (protein kinase superfamily protein)](Fig 7A and 7B). In particular, the
Bra025083 expression pattern was well matched to the membrane leakage pattern. B. rapa
includes three CYP707A3 genes, and two of them, Bra025083 and Bra021965, exactly followed
the pattern of membrane leakage (Fig 7C). The reported functions of CYP707A3, a major ABA
8’-hydroxylase, includes the dehydration response [79,80], stomata closure [81], and salt stress
[80]. Our data suggests another function for this gene in HS conditions.

Orphan genes
Orphan genes, which are protein-coding genes unique to a species, are widespread across all
organisms [82]. Estimates of the percentage of orphan genes in various species range from 1%
to 71%, with 5–15% being fairly typical [83]. Orphan genes are associated with abiotic stresses,
including HS [83–85]. About 13% of genes on the Br135K microarray were orphan genes
(5,349 out of 41,173 genes) (S22 Table). Among them, 34 were induced or up-regulated by HS
treatment, and 16 and 13 genes were induced in a Chiifu- or Kenshin-specific manner (S22
Table, Fig 8). Bra026318 (15–37-fold induction) and Bra024533 (25–34-fold induction) exhib-
ited the strongest induction in Chiifu and Kenshin, respectively. In addition, 54 and 14 genes
were specific to Chiifu and Kenshin, respectively, suggesting that they were associated with spe-
cific traits of the two genotypes, ncluding their HS responses. Several genes that were up-regu-
lated in both inbred lines were confirmed by qRT-PCR (Fig 9). In contrast to the PI value
changes observed in the microarray experiment, the induction revealed by qRT-PCR was less
obvious, even though the expression levels clearly increased upon HS.

Fig 6. Expression patterns of marker genes for thermotolerance in Chiifu and Kenshin. PI value indicates probe intensity (see also S20 Table). A,
Expression patterns of basal thermotolerance marker genes (BT) and short-term acquired thermotolerance (SAT) in Chiifu and Kenshin.B, Expression
patterns of long-term acquired thermotolerance (LAT) marker genes in Chiifu and Kenshin. C, Expression patterns of thermotolerance to moderately high
temperatures (TMHT) marker genes in Chiifu and Kenshin.

doi:10.1371/journal.pone.0130451.g006
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Analysis of conserved cis-elements enriched for HSR genes
Because the full genome sequence has already been reported for Chiifu (http://brassicadb.org/
brad/), we performed an analysis of cis-elements of the HSR genes in order to extend our knowl-
edge of HSR mechanisms in B. rapa. Although the genome sequence of Kenshin has not yet
been published, results obtained using the Chiifu genome sequence should be sufficient to pro-
vide information about Kenshin because expression of most TFs exhibited similar patterns in
both inbred lines (Fig 5). We performed our clustering analysis with STEM [37] using HSR
genes that were> 2-fold DEGs (8,160 genes) in Chiifu. Fifty profiles were obtained from STEM,
and nine of them significant overrepresentation (p< 0.01) (S23 Table, Fig 10). We then sub-
jected the 1,000 bp upstream sequences of the genes in the nine significantly overrepresented
profiles to PLACE database for motif scanning [38]. The occurrences of these motifs were com-
pared with their frequencies among all promoters represented in the 135Kmicroarray. A P-
value was then calculated for each motif and profile combination, based on the hypergeometric
distribution [39]. Motifs with P-values below 10-4 were considered to be significantly enriched
significantly enriched motifs (SEMs) (S24 Table). Among the SEMs in profiles P35, P42, P47,

Fig 7. Examples of membrane leakage-related (MLR) genes. A, Four genes: two up-regulated genes, Bra032994 (NA) and Bra025083 (cytochrome
P450; CYP707A3), and two down-regulated genes, Bra006613 (FAD/NAD(P)-binding oxidoreductase) and Bra016265 (protein kinase superfamily protein).
B, Three B. rapa genes for CYP707A3. C, qRT-PCR of three B. rapa cytochrome P450 genes (abscisic acid 8’-hydroxylase). Relative expression was
normalized to BrActin and is presented relative to 0 h expression levels. Two biological repeats were performed and error bars represent SD. HS, heat shock.

doi:10.1371/journal.pone.0130451.g007
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and P19, we identified several motifs related to the HSR: CCAATBOX1 (CCAAT) in P35 is
required for heat shock promoter activity [86,87]; and ACGTABREMOTIFA2OSEM
(ACGTGKC) in P42, ABRELATERD1 (ACGTG) in P47, and two calcium-responsive motifs in
P47, ABRERATCAL (MACGYGB) [88], and CGCGBOXAT (VCGCGB) could be responsible
for the HS response. These three motifs are also known as ABREs binding by a bZIP TF
responding to multiple stresses, such as drought and cold [88–93]. Our motif and transcriptome
analyses suggest that ABREs are also necessary for the HSR. SEMs found in down-regulated
genes were also related to the HSR: the DRECRTCOREAT (RCCGAC) motif, represented in P1
and P3, is an AP2 TF-binding site involved in cold and ABA-responsive processes [94]; and
SITEIIATCYTC (TGGGCY), in P1 and P13, is a TCP-domain TF-binding site important for
mitochondrial oxidative phosphorylation. Furthermore, we subjected genes containing the

Fig 8. Heat map of orphan genes induced by HS treatment.

doi:10.1371/journal.pone.0130451.g008
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same cis-elements to agriGO for GO enrichment analysis. Processes including response to heat,
heat acclimation, MAPKKK cascade, calmodulin binding, and regulation of oxygen and ROS
metabolic process were represented by up-regulated genes containing shared cis-elements (S24
Table). In addition, shoot system development, respiratory burst during defense response, and

Fig 9. qRT-PCR verifications of the expression of several orphan genes.Relative expression was normalized to BrActin and is presented relative to 0 h
expression levels. Two biological repeats were performed, and error bars represent SD. HS, heat shock.

doi:10.1371/journal.pone.0130451.g009

Fig 10. Short Time-series Expression Miner (STEM) clusters of expression profiles with HSR genes in
Chiifu. The number of profiles in each cluster is at the top left corner of each STEM. Profiles are ordered
based on the p-value significance of the number (at bottom-left corner) of assigned versus expected genes.
Colored frame denotes significant profiles (P-value�0.01). Each graph displays the mean expression pattern
(black lines) of the profile genes.

doi:10.1371/journal.pone.0130451.g010
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very-long-chain fatty acid metabolic processes were represented by down-regulated genes con-
taining shared cis-elements (S24 Table). All of this information will be useful because combina-
torial analysis of promoters, co-expression networks, and transcriptome can provide further
insight into gene functions and signaling pathways [39,95].

Conclusion
Genome-wide analysis of the transcriptome following heat treatment in two inbred lines of
Chinese cabbage provided important information regarding the HSR. First, even though Ken-
shin was more resistant to membrane leakage than Chiifu, the number of DEGs was higher in
Chiifu. Second, expression of small Hsps was highly induced by HS treatment, whereas high-
molecular weight Hsps exhibited constitutively high expression. Third, although expression of
several upstream genes of the HSR was induced by HS treatment, most genes associated with
the signaling pathway were constitutively expressed, suggesting that they are regulated at the
protein level. Fourth, besides well-known TFs, many TFs and orphan genes seemed to be
related to HSR in B. rapa. Fifth, most of the B. rapaHSR is likely to use mechanisms identified
in other plants, but the critical or core genes could be different. To strengthen HSR mechanism
in Chinese cabbage, it will be essential to perform combinatorial analyses of transcriptomes,
proteomes, metabolomes, and small RNAs.
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