Skip to main content
. Author manuscript; available in PMC: 2016 Mar 31.
Published in final edited form as: J Comput Graph Stat. 2014 Mar 13;24(1):183–204. doi: 10.1080/10618600.2014.889023

Table 2.

The Frobenius loss and the entropy loss estimated by the probit graphical model, the oracle method and the naive method. The oracle method and the naive method simply apply the graphical lasso algorithm to the latent continuous data Z and the observed discrete data X, respectively. The results are averaged over 50 repetitions and the corresponding standard deviations are recorded in the parentheses.

Example n Frobenius Loss
Entropy Loss
Gaussian Oracle Probit Gaussian Oracle Probit
Scale-free 50 2.3 (0.12) 0.7 (0.05) 2.2 (0.13) 12.0 (0.73) 3.1 (0.29) 23.1 (1.83)
100 2.2 (0.13) 0.4 (0.08) 1.7 (0.09) 9.4 (0.68) 1.9 (0.29) 10.1 (0.45)
200 1.7 (0.12) 0.3 (0.02) 1.2 (0.04) 6.4 (0.33) 1.1 (0.10) 5.4 (0.26)
500 0.9 (0.05) 0.1 (0.01) 0.7 (0.04) 3.3 (0.19) 0.5 (0.05) 2.7 (0.19)

Hub 50 1.2 (0.06) 0.3 (0.02) 1.1 (0.04) 21.2 (1.32) 5.8 (0.70) 29.4 (1.76)
100 1.1 (0.10) 0.1 (0.01) 0.8 (0.03) 15.9 (1.03) 3.2 (0.27) 15.1 (0.64)
200 0.8 (0.05) 0.1 (0.01) 0.6 (0.01) 11.9 (0.39) 1.8 (0.23) 10.4 (0.33)
500 0.6 (0.02) 0.0 (0.00) 0.5 (0.01) 9.1 (0.16) 0.7 (0.06) 7.5 (0.16)

Nearest-neighbor 50 1.4 (0.04) 0.6 (0.02) 1.3 (0.06) 16.5 (0.80) 5.6 (0.30) 25.6 (2.04)
100 1.3 (0.08) 0.4 (0.02) 1.0 (0.02) 12.1 (0.52) 3.5 (0.36) 12.4 (0.76)
200 1.0 (0.04) 0.2 (0.01) 0.7 (0.03) 8.6 (0.32) 2.0 (0.11) 7.5 (0.17)
500 0.6 (0.03) 0.1 (0.01) 0.5 (0.02) 5.5 (0.12) 0.8 (0.02) 4.5 (0.19)

Random-block 50 1.8 (0.05) 0.7 (0.05) 1.7 (0.04) 14.8 (1.04) 4.7 (0.46) 23.5 (1.76)
100 1.6 (0.16) 0.4 (0.02) 1.3 (0.03) 10.7 (1.10) 2.9 (0.27) 11.3 (0.46)
200 1.3 (0.05) 0.2 (0.03) 0.9 (0.05) 7.2 (0.19) 1.6 (0.11) 6.3 (0.32)
500 0.7 (0.03) 0.1 (0.01) 0.6 (0.03) 4.1 (0.15) 0.7 (0.06) 3.5 (0.13)