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ABSTRACT

Folding to a well-defined conformation is essential for the function of structured ribonucleic acids (RNAs) like the ribosome and
tRNA. Structured elements in the untranslated regions (UTRs) of specific messenger RNAs (mRNAs) are known to control
expression. The importance of unstructured regions adopting multiple conformations, however, is still poorly understood.
High-resolution SHAPE-directed Boltzmann suboptimal sampling of the Homo sapiens Retinoblastoma 1 (RB1) 5′ UTR yields
three distinct conformations compatible with the experimental data. Private single nucleotide variants (SNVs) identified in two
patients with retinoblastoma each collapse the structural ensemble to a single but distinct well-defined conformation. The RB1
5′ UTRs from Bos taurus (cow) and Trichechus manatus latirostris (manatee) are divergent in sequence from H. sapiens
(human) yet maintain structural compatibility with high-probability base pairs. SHAPE chemical probing of the cow and
manatee RB1 5′ UTRs reveals that they also adopt multiple conformations. Luciferase reporter assays reveal that 5′ UTR
mutations alter RB1 expression. In a traditional model of disease, causative SNVs disrupt a key structural element in the RNA.
For the subset of patients with heritable retinoblastoma-associated SNVs in the RB1 5′ UTR, the absence of multiple structures
is likely causative of the cancer. Our data therefore suggest that selective pressure will favor multiple conformations in
eukaryotic UTRs to regulate expression.
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INTRODUCTION

The process of RNA transcription fromDNA dictates a direct
sequence relationship between the two nucleic acid poly-
mers (Crick 1970). As a result, any sequence variants in the
genome will necessarily exist in the transcriptome as well
(Naruse et al. 2002; Macias et al. 2008; Cancer Genome
Atlas Research Network 2012). Unlike DNA, the nucleotides
in RNA are free to interact in an intramolecular fashion re-
sulting in folding of the polymer chain (Celander and Cech
1991; Zarrinkar and Williamson 1994; Thirumalai and
Woodson 2000; Woodson 2002; Schroeder et al. 2004).
Stretches of RNA that are complementary in sequence have
a propensity to pair, forming elements of RNA secondary
structure (Zuker and Sankoff 1984; Agius et al. 2010). The
functional consequences of these structural elements depend

on their molecular context (Bartel 2009; Ulitsky and Bartel
2013). Since the secondary structure of an RNA transcript
is dependent on its sequence, variants occurring in tran-
scripts have the potential to disrupt this structure resulting
in an altered phenotype.
A riboSNitch is broadly defined as an element in a non-

coding RNA or an untranslated region (UTR) of an mRNA
where a single nucleotide variant (SNV) results in a function-
ally important structural rearrangement (Halvorsen et al.
2010; Martin et al. 2012; Ritz et al. 2012; Lokody 2014;
Wan et al. 2014). It is similar to a bacterial riboswitch, where
binding of a small molecule results in a conformational rear-
rangement and gene regulation (Mandal et al. 2003; Tucker
and Breaker 2005; Weinberg et al. 2007, 2011). RiboSNitches
exist because of RNA’s propensity to adopt multiple confor-
mations (Sanchez et al. 2006; Taft et al. 2010; Lee and Tarn
2013; Rogler et al. 2014). A single point mutation has the
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potential to alter the thermodynamic folding landscape, fa-
voring alternative conformations (Russell et al. 2002; Laeder-
ach et al. 2007; Solomatin et al. 2010; Ritz et al. 2013). We
first described riboSNitches when we analyzed the struc-
tural consequences of human disease-associated mutations
on UTRs and noncoding RNAs (ncRNAs) (Halvorsen et al.
2010). We identified six human diseases (Hyperferritinemia
Cataract Syndrome, β-Thalassemia, Cartilage-Hair Hypopla-
sia, Retinoblastoma, Chronic Obstructive Pulmonary Dis-
ease, and Hypertension) where more than one associated
SNV was predicted to alter the structure of a UTR or ncRNA
using the SNPfold algorithm (Halvorsen et al. 2010). Retino-
blastoma, or cancer of the retina, is frequently caused by
SNVs in Retinoblastoma 1 (RB1), a tumor suppressor gene
(Lee et al. 1987; Jacks et al. 1992; Valverde et al. 2005). We
report here a detailed structural and functional analysis of
the RB1 5′ UTR including two SNVs observed in individuals
diagnosed with retinoblastoma (Cowell et al. 1996; Macias
et al. 2008).
We use here high-resolution SHAPE (selective 2′-hydroxyl

acylation analyzed by primer extension) to experimentally
probe the structures of the wild-type and mutant RB1
5′ UTRs, revealing that the 5′ UTR of RB1 is indeed a
riboSNitch. We used the SHAPE reactivities that we obtained
to direct Boltzmann suboptimal sampling and predict the
structural ensemble of each sequence. These different struc-
tural ensembles provide a structural framework for under-
standing the etiology of retinoblastoma in these individuals.
To further validate our structuralmodel of disease, we probed
other eukaryoticRB1 5′ UTRswhose sequences were different
from the human sequence butmaintained structural compat-
ibility with our model. By identifying regions in the UTR that
are both disrupted by disease-associated mutations and con-
served phylogenetically, we reveal the important regulatory
structural features of the RB1 5′ UTR and propose a mecha-
nism, supported by changes in expression observed in lucifer-
ase assays, for how thesemutations lead to the retinoblastoma
phenotype.

RESULTS

The RB1 5′ UTR is a riboSNitch associated
with retinoblastoma

We previously predicted with the SNPfold algorithm that
two retinoblastoma-associated SNVs mapping to the RB1 5′

UTR alter its structure (Halvorsen et al. 2010). The two
SNVs, G17C and G18U (with respect to the transcription
start site), were identified in a clinical genetics panel of pa-
tients with retinoblastoma (Cowell et al. 1996; Macias et al.
2008), suggesting that the G17C and G18U SNVs were caus-
ative of retinoblastoma (Cowell et al. 1996; Macias et al.
2008). Importantly, the patients with these SNVs had no
other mutations near their RB1 gene that could explain the
phenotype. Subsequent analysis of RB1 protein expression

concluded that the G17C SNV altered the levels of the tumor
suppressor, but no further characterization was carried out
(Cowell et al. 1996).
The RB1 5′ UTR is particularly barren in terms of func-

tional or experimental genomic annotations (Fig. 1A,B).
Indeed, only a single Argonaute RNA Binding Protein
(RBP, Fig. 1B) site was identified in genome-wide PAR-
CLIP (Photoactivatable-Ribonucleoside-Enhanced Cross-
linking and Immunoprecipitation) experiments (Anders
et al. 2012). No Rfam motifs scored significantly on the se-
quence, indicating there are no known structural motifs
(Griffiths-Jones et al. 2003, 2005; Gardner et al. 2009; Hafner
et al. 2010a,b). This contrasts with the RB1 3′ UTR and cod-
ing sequence where a high density of RBP binding was sug-
gested by PAR-CLIP data (Fig. 1A; Anders et al. 2012). The
vast majority of known retinoblastoma-associated SNVs
lie in the RB1 coding sequence (vertical lines, Fig. 1A,B), in-
dicating that mutations and/or alterations to the protein
are the cause of the disease etiology in most patients. None-
theless, the 5′ UTR of RB1 and the two associated SNVs we
identified present a unique system to study the specifics of
SNV-induced RNA structure change, where structural mech-
anisms potentially cause human disease in the absence of
known RBP-binding motifs or structural elements.
Representative raw SHAPE capillary electrophoresis

(SHAPE-CE) (Wilkinson et al. 2005; Mitra et al. 2008;
Karabiber et al. 2013) traces illustrated in Figure 1C clearly
demonstrate that both the G17C (gold) and G18U (purple)
SNVs significantly alter the UTR transcript structure, while
the C4A control mutation (red) does not. When the data
are averaged over five repeats and compared with two con-
trol mutations (C4A and C166U, red and green, res-
pectively), distinct patterns of structural disruption occur
with both retinoblastoma-associated SNVs (Fig. 1D,E;
Supplemental Fig. S1A) consistent with our SNPfold pre-
dictions (Halvorsen et al. 2010). These data suggest that
the human RB1 5′ UTR is a structural riboSNitch, as pre-
viously predicted.
We examined recent ChIP-seq data from the ENCODE

project to locate transcription factor binding sites (TFBSs)
near the RB1 gene locus in cell lines GM12878 (B-lympho-
cyte) and K562 (erythromyeloblastoid leukemia) (The
ENCODE Project Consortium 2012). Although there are
no publicly available ChIP-seq data sets for human retinal
cells, hereditary mutations in RB1 also lead to cancer in other
tissues (Marees et al. 2008). We found 61 ChIP-seq point-
source peaks, corresponding to 32 unique proteins, within
200 nt of the annotated transcription start site (TSS) (Supple-
mental Fig. S2A). A majority of these peaks (74%) map 5′ of
the TSS, indicating that the RB1 gene is conventionally regu-
lated (Supplemental Fig. S2B). Out of these potential regula-
tors, only 11 (18%) of the point-source peaks map to within
20 nt of the G17C and G18U SNVs (Supplemental Fig. S2C).
We then investigated the sequence motifs for the transcrip-
tion factors belonging to these 11 nearby peaks to see if any
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matched the beginning of the RB1 gene. We found that only
MAZ and EGR1 have binding motifs that overlap G17C or
G18U (Supplemental Fig. S2D). The mutations are located
in the transcribed portion of the gene and sufficiently dis-
tant from a majority of known transcriptional regulators.
Therefore, further investigation into the structure of the
RB1 riboSNitch is warranted as a possible mechanism of
disease.

Retinoblastoma SNVs and the 5′ UTR structural
ensemble

No clear patterns of common structural disruption appear in
the G17C and G18U mutant transcript SHAPE data (Fig. 1).
The large peaks visible in the G18U trace (Fig. 1E, purple)
that appear to differ fromWT near nucleotide 100 are the re-
sult of our plotting standard error as line width. The resulting
mean SHAPE reactivity at these sites does not suggest a signif-

icant structural disruption far downstream from the G18U
mutation. To visualize potential common structural features
of the two disease-associated transcripts, we performed sub-
optimal Boltzmann sampling to generate a representative en-
semble of structures each sequence adopts (Ding et al. 2004,
2005). To generate an ensemble consistent with experimen-
tal observation, we used the SHAPE reactivities to direct
the sampling as a pseudo-free energy term with the program
RNAstructure (Mathews 2004; Deigan et al. 2009; Hajdin et
al. 2013). Thus, the Boltzmann suboptimal sampling (Fig.
2) is consistent with the experimental SHAPE data shown
in Figure 1D,E.
The suboptimal structures projected onto the common

principal component analysis (PCA) space for the three tran-
scripts (wild-type blue, G17C gold, and G18U purple) reveal
important similarities in the type of structural change ob-
served for the RB1 5′ UTR (Fig. 2). The wild-type (WT)
RB1 5′ UTR (blue dots) forms three structural clusters while
both disease-associated SNVs collapse the ensemble to a
single cluster (gold and purple). This analysis suggests that
retinoblastoma-associated SNVs “decrease” the structural
diversity of the UTR, favoring a structurally homogenous en-
semble compared with that ofWT. Representative structures
for each cluster of conformations, near each cluster’s cen-
troid, find a P1 stem (green) present in each WT structure.
In addition, the G18U SNV forms a single structure similar
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FIGURE 1. Disease-associated mutations in the 5′ UTR of RB1 change
its SHAPE profile. (A) RB1 gene structure, protein-binding sites, and lo-
cations of retinoblastoma-associated mutations with reference to the
27 exons of the gene. (Top) Experimentally determined PAR-CLIP
(Photoactivatable-Ribonucleoside-Enhanced Crosslinking and
Immunoprecipitation) RNA binding protein (RBP) sites obtained
from doRiNA database, from top to bottom: R521H, FUS, EWSR1,
FMR1 isoform 1, FMR1 isoform 7, C17ORF85, PUM2, TIAL1, FXR2,
ZC3H7B, TIA1, IGF2BP1-3, AGO1-4, ELAV1 (Anders et al. 2012).
We observed that a majority of RBP binding sites are in the 3′ UTR
and coding sequence. (Middle) Exons of the RB1 gene, to scale, includ-
ing splice junctions. Light blue: 5′ UTR, green: coding sequence (CDS),
dark blue: 3′ UTR. (Bottom) Positions of known retinoblastoma-associ-
ated point mutations, insertions, and deletions, from the Human Gene
Mutation Database (HGMD), indicated as vertical black bars (Stenson
et al. 2003; George et al. 2008). (B) Close-up schematic of exon 1
with a single PAR-CLIP site (Argonaute 2) mapping to the 5′ UTR.
Corresponding retinoblastoma-associated mutations, G17C and
G18U, which were previously predicted to alter the UTR structure
(Halvorsen et al. 2010). (C) Representative raw SHAPE (selective 2′-hy-
droxyl acylation analyzed by primer extension) capillary electrophoresis
traces for the WT (blue), G17C (gold), G18U (purple), and C4A (red)
UTRs before normalization and averaging. Differences between the se-
quences across positions 17–24 show that the two disease-associated
mutations result in large structural changes as predicted. (D,E)
Normalized SHAPE profiles for wild-type, mutant, and structural con-
trol UTRs; area represents mean ± SD normalized SHAPE values over
five repeats. The region containing nucleotides with mutation-induced
structure change are highlighted in gray. Asterisks (in color) indicate po-
sitions where the background control peak was too high to accurately
determine SHAPE reactivity for the nucleotide. (D) WT (blue), G17C
(gold), C4A (structural control; red). (E) WT (blue), G18U (purple),
C166U (structural control; green).
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to one of the three WT structures. G17C also collapses the
ensemble, but favors an entirely different structure with an
alternative P1 (Alt-P1) stem. The representative structures
are both informed by and compatible with the SHAPE profile
for that sequence (Supplemental Fig. S1B). All four structural
conformations contain a conserved P2 stem (orange) not dis-
rupted by either SNV.

Two sequential high-probability hairpins
in the human RB1 5′ UTR

The principal component projection in Figure 2 is ideal for
visualizing the entire Boltzmann ensemble, but it does not re-
veal specifics of most common structural features in the
mRNA. The SHAPE reactivities were used to direct estima-
tion of the partition function for each sequence using the
program suite RNAstructure, from which we obtained the
base-pairing probabilities (McCaskill 1990; Mathews 2004;
Bernhart et al. 2006; Deigan et al. 2009). As can be seen in
Figure 3A, two hairpin loops (one small and one large, de-
noted P1 and P2) occur with over 90% frequency. Thus,
although theWT RB1 5′ UTR adopts three classes of confor-
mations (Fig. 2), these two hairpins occur in a large majority

of the sampled structures and are a com-
mon feature of all three conformations.

The Shannon entropy of the base-pair
probabilities for theWT and two mutant
constructs are consistent with the chang-
es observed in PCA space. In this context,
Shannon entropy is a measure of struc-
tural homogeneity at a particular nu-
cleotide; a low value indicates that the
nucleotide always forms the same base
pair (or lack thereof), and a high value
indicates that the nucleotide exists in a
variety of base-pairing contexts (Mante-
gna et al. 1994; Huynen et al. 1997; Ken-
nedy et al. 2008). We calculated the
Shannon entropy of each nucleotide us-
ing the SHAPE-directed base-pair proba-
bilities (Equation 1). As can be seen in
Figure 3B, both disease-associated SNVs
lower the local entropy of the bases
near the site of mutation. The G17Cmu-
tation drastically increases the entropy of
bases in the P1 helix (nucleotides 44–49)
while the entropy of the P2 helices re-
main unaffected by mutation.

Phylogenetically related RB1 5′ UTRs

The high-probability hairpins in the
human RB1 5′ UTR provide a starting
point for structurally informed phyloge-
netic comparisons to other eukaryotic

sequences. Structural alignment based solely on sequence
comparisons is challenging in eukaryotic UTRs, as these
tend to be either too highly conserved or too divergent for
traditional covariation analysis (Griffiths-Jones et al. 2003;
Eddy 2006; Nawrocki et al. 2009). As such, traditional covari-
ation approaches do not produce strong or useful models, ex-
plaining the dearth of structural annotations in the RB1 5′

UTR. Nonetheless, our data on the WT and mutant human
RB1 5′ UTRs suggest that an important structural element
is present (two high-probability hairpins, P1 and P2).
Furthermore, based on the data presented here, we propose
that multiple conformations are critical for the proper regu-
lation of this transcript.
A multiple sequence alignment of the 20 known homolo-

gous eukaryotic RB1 5′ UTRs indicates a high level of se-
quence conservation in this transcript (Fig. 4A). This high
level of conservation is paralleled in the coding sequence as
well (Supplemental Fig. S3). From this alignment alone a
covariance model cannot be derived as very few columns
reveal significant covariation signal. When the SHAPE-de-
rived human base-pairing probabilities (or partition func-
tion) are projected on the alignment, however, it is clear
the P1 and P2 stem-loops occur in highly conserved regions

FIGURE 2. Mutations collapse the structural space of the RB1 5′ UTR. (Center) Principal com-
ponent decomposition of Boltzmann sampled suboptimal structures using SHAPE-directed free
energy calculations (Deigan et al. 2009; Wilkinson et al. 2009). Representative structures are plot-
ted next to the principal component space with their corresponding arc diagram. WT (blue)
adopts three distinct conformations, while G17C (gold) adopts one cluster distinctly different
from any WT structure. G18U (purple) adopts one major conformation that overlaps with one
of the three WT structures, indicating that both sequences contain the same class of structures,
seen in the arc diagrams (right). Positions 17 and 18 are denoted in gray when not mutated
and in color when mutated. All structures include a major paired region (P2abc; orange). The
WT and G18U conformations all contain another paired region (P1; green), while G17C favors
an alternative P1 (Alt-P1) helix.
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of the alignment, suggesting structural conservation of this
element. To quantify this conservation, we computed a struc-
tural similarity score by summing the base-pair probabilities
for consistent base pairs for each aligned homologous se-
quence (Equation 2). We plotted these structural similarity
scores against the corresponding sequence similarity scores,
revealing the correlation between the two metrics (Fig. 4B).

The purpose of this analysis was to identify RB1 5′ UTR se-
quences that are highly divergent from human in sequence
but maintain consistency with theWT structure. In addition,
because the G17C and G18U disease-associated constructs
adopt different structural ensembles, we also computed
structural similarity scores relative to those two ensembles
(Fig. 4B, inset). Although the rat and mouse RB1 5′ UTR se-
quences are the most divergent from the human sequence,
they are also missing the region containing the G17C and
G18Umutations (Fig. 4A). As such, we did not consider these
RNAs for further structural analysis.

Both the domestic cow (Bos taurus) and the manatee
(Trichechus manatus latirostris) RB1 5′ UTR sequences
diverge from human sequence. When the cow sequence is
compared by alignment to the SHAPE-informed human

structural model (Fig. 4A), it becomes
apparent that the major structural fea-
tures of the UTR (the P1 and P2 stems)
are still compatible with both sequen-
ces. Furthermore, when we compute
the structural similarity scores (Fig. 4B),
we see that despite being relatively diver-
gent in sequence, both the cow and man-
atee sequences remain compatible with
the human SHAPE-directed structural
model. In addition, the transcription
start site for the cow RB1 transcript has
been experimentally determined as part
of the domestic cow whole-genome
assembly (Zimin et al. 2009, 2012).
Further inspection of structural similari-
ty scores forWT, G17C, and G18U (blue,
gold, and purple, Fig. 4B, inset) reveal
that themanateeRB1 5′ UTR ismost con-
sistent (asmeasured by structural similar-
ity score) with the human WT structure
relative to the two disease-associated mu-
tants. The manatee is also the organism
most phylogenetically distant from hu-
man in the multiple sequence alignment
(Fig. 4A; Sayers et al. 2009). We therefore
chose to further characterize the structure
of the manatee and cow RB1 5′ UTRs by
SHAPE structural probing.
Next, we performed SHAPE for the

cow and manatee RB1 5′ UTRs (Fig. 4C;
Supplemental Fig. S4A). We aligned the
SHAPE data for the cow (brown) and

manatee (gray) UTRs to human (blue) according to the mul-
tiple sequence alignment in Figure 4A. Qualitatively, we ob-
served similar patterns of reactivity in the most conserved
regions of the sequence. However, only SHAPE-directed pre-
diction of the Boltzmann suboptimal ensemble reveals the
common features of these three RNAs.
The conservation of multiple, populated alternative struc-

tures as a feature of RB1 5′ UTRs is further supported by
SHAPE-directed Boltzmann suboptimal sampling for cow
and manatee (Fig. 5A). Indeed, both sequences can adopt
multiple conformations, with the manatee 5′ UTR even
adopting three conformations like the humanWT. Represen-
tative structures for each sequence demonstrate that the P1
and P2 helices are a common feature for each structural con-
formation. These structures correspond to the SHAPE reac-
tivities for the cow and manatee sequences (Supplemental
Fig. S4B). The conservation of the core P1 and P2 helices
are confirmed when the high probability base pairs for cow
and manatee are compared with human (Fig. 5B). Interest-
ingly, in both cow and manatee, the P1 helix is shifted 3′,
to a position analogous to the Alt-P1 helix observed in the
G17C mutant. Thus, while the precise structure of the core
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helices is not perfectly conserved, the
overall architecture of the ensemble is
present in all three WT sequences. The
main structural feature conserved in the
human, cow, and manatee WT RB1 5′

UTRs is the presence of alternative
conformations. Multiple conformations
are also lost as a structural feature in
the G17C and G18U SNVs (Fig. 2) sug-
gesting multiple conformations are an
important component of the disease
etiology.

For another measure of conformation-
al flexibility, we computed the Shannon
entropy of each nucleotide in the ensem-
ble for human, cow, and manateeWT se-
quences as well as the sequences with the
disease-associated mutations (Fig. 5C).
The distributions of the human WT and
mutant entropies show that the two dis-
ease-associated mutations reduced the
median entropy, corresponding to the
collapse of the structural ensemble ob-
served with the principal component
decomposition (Fig. 2). The cow and
manatee ensembles (brown and gray dots,
respectively) bothhave highermedian en-
tropies than the disease-associated con-
structs, consistent with our sequence/
structure analysis.

Structure/function relationships with
luciferase reporter assays

To understand the functional conse-
quences of the observed structural
changes in the RB1 5′ UTR, we per-
formed quantitative luciferase reporter
assays in transiently transfected cells.
We measured both Firefly luciferase ac-
tivity (Supplemental Fig. S5A) and RNA
levels (Supplemental Fig. S5B) for each
construct relative to an empty vector
control (Fig. 5D). We also measured
transfection efficiency with a Renilla lu-
ciferase control and found no difference
between the different constructs (Supple-
mental Fig. S5C). The x-axis in Figure 5D
represents luciferase transcript levels,
while the y-axis shows luciferase activity
relative to the control. The line in Figure
5D is a regression through the three WT
constructs (human, cow, and manatee)
and represents mean relative lucife-
rase expression. We observe a qualitative
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−−−−−−−−−−−−−−−−−−−−−−−GCTCAGTTGCCGGGCGGGGGAGGGCGCGTCCGGTTTTT−−CTCAGGGGA−CGTTGAAATTATTTTTGTAACGGGAGTCGGGAGAGGACGGGGCGTGCCCCGACGTGCGCGCGC−−GTCGTC−CTCCCCGGCGCTCCTCCACAGCTCGCTGGCTCCTGCTGCGGAAAGGCGTC
−−−−−−−−−−−−−−−−−−−−−−−GCTCAGTTGCCAGGCGGGGGAGGGCGCGTCCGGTTTTT−−CTCA−GGGA−CGTTGAAATTATTTTTGTAACGGGAGTCGGGAGAGGACGGGGCGTGCCCCGACGTGCGCGCGC−−GTTGTC−CTCCCCGGCGCTCCTCAACAGCTCGCTGGCTCCCGCCGCGGAAAGGCGTC
−−−−−−−−−−−−−−−−−−−−−−−GCTCAGTTGCCGGGCGGGGGACTGCGCGTCCGGTTTTT−−CTCAGGGGA−CGTTGAAATTATTTTTGTAACGGGAGTCAGGAGAGGACGGGGCGTGCCCCGACGTGCGCGCGC−−TGCGCC−CTCCCCGGCTCTCCTCCACAGCTCGCTGGCTCCCGCCTCGGTAAGGCGTC
−−−−−−−−−−−−−−−−−−−−−−−GCTCAGTTGCCGGGCGGGGGAAGGCGCGTCCGGTTTTT−−CTCAGGGGA−CGTTGAAATTATTTTTGTAACGGGAGTCAGGAGAGGACGGGGCGTGCCCCGACGTGCGCGCGC−−TTCGCC−CTCCCCGGCTCTCCTCCACAGCTCGCTGGCTCCCGCCTCGGTAAGGCGTC
−−−−−−−−−−−−−−−−−−−−−−−−−TCAGTTGCCGGGCGGGGGAGGGCGCGTCCGGTTTTT−−CTCTGGGGA−CGTTGAAATTATTTTTGTAACGGGAGTCGGGAGAGGACGGGGCGTGCCCCGACGTGCGCACGC−−GTCGCC−CTCCCCGGCATTCCTGCACAGCTAGCTGCCTCCAGCCGCGGGAAGGCGTC
−−−−−−−−−−−−−−−−−−−−−−−GCTCGGTTGCCGGGCGGGGGAGGGCGCGTCCGGTTTTT−−CTCAGGGGA−CGTTCAAATTATTTTTGTAACGGGAGTCGAGCGAGGACGGGGCGTG−CCCGACGTGCGCGCGC−−GTCGTC−CTCCCCGGCGCCCCTCCGCCGCTCGCTGGCTCCTGCCGTGGGAAGGCGTC
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−GCC−−−−−−−−−−GGGCGCGTCCGGTTTTC−−CTCGGGGGA−CGTTCCCATTATTTTTGTAACGGGAGTCGGGTGAGGACGGGGCGTG−CCCGGCGTGCGCGCGCGCCCGCCCGCCTCCCCGCGCGCCTCCCTCGGCTGCTCGCGCCGGCCCGCGCTGCGCGTC
GTTTTCCCGCGGTTGGCC−CGGCGCTCGGTTGCC−−−−−−−−−−GGGCGCGTCCGGTTTTC−−CTCAGGGGA−CGTTCCCATTATTTTTGTAACGGGAGTCGGGTGAGGACGGGGCGTG−CCCGGCGTGCGCGCG−−−−CGCCCGCCTCCCCGCGCGCCTCCCTCGCCTGCTCGCGCCGGCCCGCGCAGCGCGTC
−−−−−−−−−−−−−−−−−−−−−−−−−−−−GTTGCCGGGCGGGGGAGGGCGCGTCCGGTTTTT−−CTCAGGGGA−CGTTCAAATTATTTTTGTAACGGGAGTCGGGAGGGGACGGGGCGTGTCCCGAGGTGCGCGCGC−−GTCGGC−CTCCTCCGCGCTGCTGCTCAGCTCGTA−GCTCCTGCACTGAGAGGGCGTC
−−−−−−−−−−−−−−−−−−−−−−−GCTCGGTTGCCGGGCGGGGGAGGGCGCGTCCGGTTTTT−−CTCAGGGGA−CGTTCAAATTATTTTTGTAACGGGAGTCGGGAGGGGACGGGGCGTGCCCCGAGGTGCGCGCGC−−GCCGTCAGTTTTCGGCGCTCCTCCTCAGCTCGCT−GCTCCTGCCTTGAGAAGGCGTC
−−−−−CCCGCGGTTGGCCGCGGCGCTCGGTTGCGGGGCGGGGGAGGGCGCGTCCGGTTTTT−−CTCAGGGGA−CGTTCAAATTATTTTTGTAACGGGAGTCAGGAGAGGACGGGGCGTGCCCCGACGTGCGCGCGC−−GCCGGC−CCGCCC−GCGCTCCTCCATAGCTCGCCGGCTCCGGCCCCGGGAGCGCGTC
−−TTTCCCGCGGTTGGACGCGGCGCTCGGTTGCCGGGCGGGGGAGGGCTCGTCCGGTTTTT−−CTCAGGGGA−CGTTCAA−−−ATTTTTGTAACGGGAGTC−GGAGAGGACGGGGCGTG−CCCGACGTGCGCGCGG−−−CCTCC−CTCCCGGGCCCTCCTCCACCGCTCGCCGGCTCCTGCCCGGGCAGGGCGTC
−−−−−−−−−−−−−TGGACGCGGCGCTCGGTTGCCGGGCGGGGGAGGGCTCGTCCGGTTTTT−−CTCAGGGGA−CGTTCAAATTATTTTTGTAACGGGAGTCAGGAGAGGACGGGGCGTGCCCCGACGTGCGCGCGT−−−CCTCC−TTTCCCGGCCCTTCGCCACCAGTCACTGGCTCCTGCCCTGGGGGGGAGTC
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−TTTTT−−CTCAGGGGA−CGTTCAAATTATTTTTGTAACGGGAGTCGGGAGAGGACGGGGCGTGCCCCGACGTGCGCGCGT−−−CCTCC−TTCCCCGGCTCTTCGCCACCATTCACTGGCGCCTGCCCTGGGGGGGAGTC
−−−−−−−−−−−−−−−−−CGCGGCGCTCGGTTGCCGGGCGAGGGAGGGCCGGCCCGGTTTTTTTCTCAGGGGAACGTTCAAATTATTTTTGTAACGGGAGTCGGCCGAGGACGGGGCGTG−CCCGAGGTGCGCGCGTCCTCTCCC−TTCCCCGGCCCTCCTCCAGCGCCCGCCGGCGCCTGCCCAGCGAGCGCGTC
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−GGGCGGGGGAGGGCTCGTCCGGTTTTT−−CTCAGGGGA−CGTTCAAATTATTTTTGTAACGGGAGTCGGCAGAGGACGGGGCGTG−CCCGACGTGCGCGCGT−−−CCTCC−CTCCCCGGCCCTCCTCCAGCGTCCGCCGGCGCCTGCCCTGCGAGGGCGTC
−−TTTCCCGCGGTTGGACGCGGCGCTCGGTTGCCGGGT−GGGGAGGGCTTGTCCGGTTTTT−−CTCAGGGGA−CGTTCAAATTATTTTTGTAACGGGAGTCGAGAGAGGACGGGGCGTGCCCCGACGTGTGCGCGC−−GTCCCC−CGCCCCCGCCCTCCTCCACAGCTCTCTAGCTCCTACCCTGTAAGGGCGTC
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FIGURE 4. Comparative sequence analysis predicts manatee and domestic cow RB1 5′ UTRs
have conserved structural features present in the human construct. (A) (Top) Ensemble of human
structures for the RB1 WT 5′ UTR, represented by predicted arcs colored by base-pairing prob-
ability. (Bottom) Multiple sequence alignment of the RB1 5′ UTR, showing that the UTR is highly
conserved in mammals. Phylogenetic tree was created from the RB1 protein sequence from each
organism (Supplemental Fig. S3). The length of the black branches indicates evolutionary dis-
tance, and the dashed blue lines connect the leaves of the tree to their corresponding organism.
(B) (x-axis) Sequence similarity score. (y-axis) Structural similarity score (consistency of each se-
quence from the alignment to the SHAPE-directed partition function for human WT). The se-
quences we are interested in, which are most divergent in sequence yet highly conserved in
structure, are easily visualized by trending to the top left corner. We used this plot to identify can-
didate UTR sequences for further SHAPE structural characterization. We chose to study the do-
mestic cow (B. taurus) as it diverges significantly from human in sequence but has a relatively high
structural similarity. In addition, the transcription start site of the cow RB1 5′ UTR was recently
verified experimentally (Zimin et al. 2009, 2012). Themanatee RB1 5′ UTRwas chosen for further
experimental characterization since it is structurally similar to humanWT (blue diamond, inset)
and differs significantly from G17C and G18U (gold and purple diamonds, inset). (C) SHAPE
structure probing for human (blue), domestic cow (brown), and manatee (gray) mapped onto
the alignment of these sequences. Qualitative similarities in the protection patterns suggest similar
properties of the RNA structural ensemble.
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inverse correlation between expression and the entropy of
each sequence (Fig. 5C), consistent with the hypothesis that
multiple structures are important to WT function. Surpris-
ingly, the C4A mutation also increases expression relative
to WT, even though it does not significantly affect structure.
This mutation was computationally predicted as not disrup-
tive of the structural ensemble, but its close proximity to the
5′ cap may affect translation initiation. It is important to note
that the C4A mutation has not been observed in any individ-
ual (healthy or diseased); in fact, the RB1 5′ UTR is highly
conserved in mammalian genomes (Fig. 4A).

DISCUSSION

The role of structure in eukaryotic UTR evolution is still
poorly understood since traditional approaches, such as co-

variation analysis, have not revealed con-
served features in a majority of mRNAs
(Eddy 2006; Nawrocki et al. 2009; Gard-
ner et al. 2011). Indeed, UTRs and a ma-
jority of noncoding RNAs produced in
eukaryotes are either not conserved or
so highly conserved (as is the case for
the RB1 5′ UTR) that strong covariation
signals cannot be derived (Gardner and
Giegerich 2004; Stevens et al. 2011; Wid-
mann et al. 2012). In contrast, alignment-
based structure prediction has identi-
fied thousands of conserved secondary
structure motifs in prokaryotic genomes
(Weinberg et al. 2007, 2009, 2011;
Weinberg and Breaker 2011).
The cellular milieu is quite different in

prokaryotes and eukaryotes; multiple
RNA helicases in the latter likely reduce
the importance of RNA structure in
many regulatory processes (Burckin
et al. 2005; Coller and Parker 2005; Rus-
sell et al. 2012). Nonetheless, mutations
that affect RNA structure and conse-
quently alter human phenotypes are not
limited to the RB1 5′ UTR (Halvorsen
et al. 2010; Martin et al. 2012; Lokody
2014; Wan et al. 2014). Interestingly,
when genome-wide association studies
include genetic variation in noncoding
regions of the genome, a majority of
highly associated SNPs (Single Nucleo-
tide Polymorphisms) map outside of
the coding region (Benjamin et al. 2007;
Martin et al. 2012; Bulik-Sullivan et al.
2013). The lack of retinoblastoma-asso-
ciated mutations mapping to noncoding
regions of the gene (Fig. 1A) is likely
the result of clinical genomics sequenc-

ing bias; until recently such studies focused almost exclusive-
ly on coding regions of the genome (Naruse et al. 2002;
Macias et al. 2008; Cancer Genome Atlas Research Network
2012). It is therefore likely that other SNVs in the RB1 5′ UTR
will cause retinoblastoma, but have yet to be reported in pub-
licly available databases. In fact, a third private SNV was iden-
tified in a patient with retinoblastoma (Fig. 1B), but it was not
predicted to alter the mRNA’s structure (Halvorsen et al.
2010). This mutation is near the start codon and likely affects
expression through a different mechanism than structure
change.
A recent genome-wide characterization of human tran-

scriptome secondary structure in three individuals identi-
fied almost 2000 riboSNitches in a family trio (Wan et al.
2014). These data suggest that SNV-induced structure change
is quite common and in most cases phenotypically benign;

FIGURE 5. Multiple divergent conformations are a conserved feature of the cow and manatee
RB1 5′ UTRs. (A) (Center) Principal component decomposition of SHAPE-directed
Boltzmann suboptimal sampling for the B. taurus (brown) and T.m. latirostris (gray) RB1 5′
UTRs. Both these RNAs display multiple well-populated conformations. Representative struc-
tures are plotted next to their corresponding arc diagrams. The P1 and P2 stem structures, anal-
ogous to those observed in human, are annotated with green and orange, respectively. (B) Arc
diagrams of high-probability base pairs for the B. taurus (left) and T.m. latirostris (gray) compared
with high-probability base pairs in H. sapiens. The P1 and P2 stem structures are consistent with
the predicted structural similarity of these sequences. (C) Shannon entropy for each base using
SHAPE-directed prediction of the partition function. The WT human, cow, and manatee
UTRs have the highest median entropies, consistent with these UTRs formingmultiple structures,
while the two disease-associated UTRs have lower Shannon entropy. (D) Scatter plot of luciferase
activity (y-axis) versus luciferase RNA abundance (x-axis) for the human, cow, and manateeWT
constructs (blue, brown, and gray, respectively) and the three human mutant UTRs (C4A, G17C,
G18U; red, gold, and purple, respectively). Values reported for both luciferase activity and RNA
abundance are relative to an empty vector control. In general, higher RNA transcription yields
higher luciferase activity, as expected. Also plotted is the linear regression through the three
WT constructs (human, manatee, and cow). The three mutant constructs have slightly higher ex-
pression thanWT as they all decrease above this line; however, the largest regulatory effects of UTR
variation are at the level of RNA.
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the study was carried out on three healthy individuals. The
propensity of SNVs to affect RNA structure thus appears
to be a general phenomenon. What makes the RB1 5′ UTR
system particularly interesting as a novel riboSNitch is
the nature of the observed structure changes. For both dis-
ease-associated SNVs, the mutations collapse the ensemble
into a single structure, and for the case of G18U, the
single structure is very similar to a wild-type conformation,
with no disruption of important structural motifs. Our
data suggest that the formation of a single structure is de-
leterious to the regulation of RB1. This conclusion is support-
ed by the fact that the two other wild-type RB1 UTRs we
investigated (cow and manatee) also adopt multistructure
ensembles.
Our transient transfection assays (Fig. 5D; Supplemental

Fig. S5) reveal the complexity of structure/function relation-
ships in eukaryotic gene regulation. We observe that the three
mutant RB1 5′ UTRs have higher expression compared with
WT (regression line, Fig. 5D). Renilla cotransfection controls
(Supplemental Fig. S5C) suggest the important difference
in RNA expression of the WT and mutant constructs (as
measured by qRT-PCR) is not the result of differences in
transfection efficiency. Our assay is nonetheless primarily de-
signed to measure translation efficiency, but the possibility
that a riboSNitch could alter RNA expression is intriguing
and warrants further study. There are many transcriptional
riboswitches in bacteria, and changes in UTR structure in eu-
karyotes may affect transcription too (Batey et al. 2004;
Stoddard et al. 2008, 2010). One other aspect of expression
we could not directly measure in these assays is RNA degra-
dation. It is possible that the large changes in expression we
observe are due to differential stabilities of the mutant
mRNAs in the cell. One final consideration with these assays
is that they were performed in HeLa cells, which are known to
have altered transcriptional and post-transcriptional pro-
grams (Murray et al. 2004; Landry et al. 2013).
Phylogenetic comparison of RNAs remains a powerful tool

for determining structure, especially in prokaryotic systems
where covariation signals are sufficient to unambiguously
determine secondary structure (Michel and Westhof 1990;
Gutell et al. 2002; Mertz et al. 2009). Our comparative anal-
ysis of the human, cow, and manatee RB1 5′ UTRs suggests
that structural elements are conserved in noncoding regions
of messages as a result of selective pressure. For this UTR, a
single structure is not selected for; instead, diversity of the
structural landscape is conserved. This observation may ex-
plain the high degree of evolutionary sequence conservation
(Fig. 4A) and lack of covariation signal observed in the UTR.
Selection for a single structure favors canonical covariation,
but little is known about how tolerant specific structural en-
sembles are to mutation and covariation. With the advent of
high-throughput techniques for obtaining high-resolution
structural probing data (Siegfried et al. 2014), along with
new methods of profiling RNA structural ensembles (Rogers
and Heitsch 2014), it will become feasible to determine the

role of specific structural ensembles in regulating eukaryotic
expression through genomic analysis.

MATERIALS AND METHODS

SHAPE data collection

The human WT RB1 5′ UTR sequence with hairpin adapters for
SHAPE (GGCCTTCGGGCCAAGCTCAGTTGCCGGGCGGGGG
AGGGCGCGTCCGGTTTTTCTCAGGGGACGTTGAAATTA
TTTTTGTAACGGGAGTCGGGAGAGGACGGGGCGTGCCCCG
ACGTGCGCGCGCGTCGTCCTCCCCGGCGCTCCTCCACAGC
TCGCTGGCTCCCGCCGCGGAAAGGCGTCATGCCGTCGATCC
GGTTCGCCGGATCCAAATCGGGCTTCGGTCCGGTTC) was in-
serted between the SgfI and MluI sites of the pCMV6-AC nontagged
precision shuttle vector (Origene). Hairpin adapters are indicated in
bold. The mutant sequences, which varied only by point mutations,
were inserted into pUC57 by Genscript. The Bos taurus RB1 (GGCC
TTCGGGCCAACGCGGCGCTCGGTTGCCGGGCGAGGGAGGG
CCGGCCCGGTTTTTTTCTCAGGGGAACGTTCAAATTATTTTT
GTAACGGGAGTCGGCCGAGGACGGGGCGTGCCCGAGGTGC
GCGCGTCCTCTCCCTTCCCCGGCCCTCCTCCAGCGCCCGCC
GGCGCCTGCCCAGCGAGCGCGTCATGCCGTCGATCCGGTTC
GCCGGATCCAAATCGGGCTTCGGTCCGGTTC) and T.m. latir-
ostris RB1 (GGCCTTCGGGCCAAGCTCGGTTGCCGGGTGGGG
AGGGCTTGTCCGGTTTTTCTCAGGGGACGTTCAAATTATTTT
TGTAACGGGAGTCGAGAGAGGACGGGGCGTGCCCCGACGT
GTGCGCGCGTCCCCCGCCCCCGCCCTCCTCCACAGCTCTC
TAGCTCCTACCCTGTAAGGGCGTCATGCCGTCGATCCGGT
TCGCCGGATCCAAATCGGGCTTCGGTCCGGTTC) sequences
were also cloned by Genscript into pUC57. A T7 promoter (TAA
TACGACTCACTATAGGG) was introduced to the 5′ end of the
5′ UTR during PCR amplification followed by transcription with
the T7 high-yield RNA synthesis kit (New England Biolabs) and
cleanup by MegaClear (Ambion).
Selective 2′-hydroxyl acylation analyzed by primer extension

(SHAPE) experiments were performed as previously described
(Martin et al. 2012) with a few modifications. Of note, 2 pmol
RNA were used for each reaction and, after denaturation as previ-
ously described, were folded in a final concentration of 100 mM
HEPES, pH 8.0, 10 mM MgCl2, 100 mM KCl at 37°C for 15 min.
Primer extension was performed as previously described, but with
2 pmol of Vic or Ned-labeled primer without RNase inhibitor.
The samples with and without NMIA were reverse transcribed
with the Vic-labeled primer; the Ned-labeled primer was used to
make sequencing ladders using unreacted RNA and 1 µl 5 mM
ddGTP, ddCTP, ddATP, or ddTTP. The base and neutralization
steps used to degrade remaining RNA in the cDNA samples were
found to be unnecessary and were eliminated in later experiments.
The cDNA pellets were dried, resuspended in Hi-Di formamide
(Applied Biosystems/Life Technologies), and run on an Applied
Biosystems 3500 Genetic Analyzer. The resulting data were analyzed
using QuSHAPE (Karabiber et al. 2013).

SHAPE data averaging and visualization

A minimum of five experimental repeats were collected for each
construct, and the data were filtered for quality control as previously
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described (Martin et al. 2012). SHAPE reactivities for each experi-
ment were normalized as described in (Wilkinson et al. 2008).
Briefly, the mean reactivity at each nucleotide was found for the
background (-NMIA) conditions. The positions with the highest
background signal (3.6%–7.0% of nucleotides) were manually iden-
tified for each construct, not used in the averaging, and indicated as
no data (asterisks in Figs. 1D,E, 4C). For each SHAPE experiment,
the background was scaled so that the mean of those positions in
the background would equal the mean of those positions with the
reagent. To find the SHAPE reactivities, the background reactivities
were subtracted from the reagent reactivities, and these were nor-
malized by the 2%–8% method described in Wilkinson et al.
(2005, 2006, 2008). Nucleotides 142–176 in the B. taurus sequence
were not considered in structure prediction because of difficulty
aligning to the ladder.

The normalized SHAPE data is presented in Supplemental Data 1
as well as available for download in ISATab format at https://docs.
google.com/spreadsheet/ccc?key=0AhfD_gVAiWMBdENTNEEw
UDNZRm52T052SUVac1VCOXc&usp=sharing

Boltzmann suboptimal sampling and principal
component visualization

The partition program in RNAstructure (v5.6) was used to compute
the partition function used for all structure prediction and sampling
calculations (Mathews 2004; Deigan et al. 2009; Hajdin et al. 2013).
SHAPE data were used to direct all simulations as described in (Dei-
gan et al. 2009) using standard parameters (SHAPE Intercept: −0.6
kcal/mol, SHAPE slope: 1.8 kcal/mol, and temperature: 310.15 K).
For suboptimal sampling, we used RNAstructure’s stochastic to gen-
erate 5000 structures for each sampled sequence. These structures
were coded as binary vectors by whether each nucleotide was
base-paired. Principal component visualization of suboptimal struc-
tures was carried out with the R Project for Statistical Computing
(v3.1.0). The principal component space for human structures
was created by first predicting which mutations in the human
sequence would maximize overall entropy, sampling suboptimal
structures from both entropy-maximizing mutations and the WT
sequence (without SHAPE data), and finding the principal compo-
nents of those sampled structures in aggregate. For cow and mana-
tee, the native principal component space was used. Representative
structures for each cluster were chosen from sampled structures near
each cluster’s centroid, as the centroid does not necessarily corre-
spond to a sampled structure. Arc diagrams were created using
R4RNA (Lai et al. 2012). Base-pairing probabilities used in arc dia-
grams were those reported by RNAstructure’s ProbabilityPlot.

Shannon entropy

The SHAPE-directed base-pairing probabilities found by RNAstruc-
ture’s ProbabilityPlotwere used for calculations of Shannon entropy.
The Shannon entropy of each nucleotide was calculated as described
(Huynen et al. 1997; Siegfried et al. 2014):

Si = −
∑

j

Pi,j log Pi,j, (1)

where Si is the entropy of nucleotide i and Pi,j is the probability of
nucleotides i and j base-pairing (which is the probability of nucleo-
tide i being unpaired when i = j).

Sequence analysis of homologous RB1 transcripts

Homologous sequences to the human RB1 5′ UTR were identified
with NCBI BLAST. A multiple sequence alignment was created
with MAFFT (v6.850) (Katoh and Toh 2008) with the EMBL-EBI
webserver (McWilliam et al. 2013) and then refined manually.
Using each partition function for the human sequences (WT,
G17C,G18U) a “structure similarity score” for each homologous se-
quence was computed according to Equation 2:

Tq =
∑

valid(i,j),i,j Phuman(i,j)∑
i,j Phuman(i,j)

. (2)

The structure similarity score for sequence q (Tq) quantifies the
compatibility of a given sequence with the human, SHAPE-directed
partition function. Phuman(i,j) is the probability of alignment posi-
tions i and j base based on the human, SHAPE-directed partition
function. Each probability is only included in the sum if those align-
ment positions can form a valid Watson–Crick or wobble base pair
in sequence q. The denominator contains the sum of all base-pairing
probabilities for the human sequence. As such, structure similarity
scores have a value between 0 and 1. Sequence similarity was com-
puted using the alistat software, which is part of the HMMER pack-
age (Eddy 2009; Johnson et al. 2010; Finn et al. 2011). To visualize
sequence and structural divergence, the structural similarity score to
WT for each homologous sequence was plotted against the sequence
conservation score.

The phylogeny of the RB1 gene was found through an NCBI
BLAST search of the human RB1 coding DNA sequence. The trans-
lations of these coding sequences were aligned by MAFFT (Katoh
and Toh 2008). From this multiple sequence alignment, a phyloge-
netic tree was created using PhyML (Guindon et al. 2010). The tree
was rooted by the manatee sequence, the only non-Boreoeutherian
mammal in the tree (Sayers et al. 2009).

Luciferase assays and qPCR to measure expression

For luciferase assays, each RB1 construct was cloned into the pGL3-
control vector between the SV40 promoter and the Firefly luciferase
CDS by Genscript. HeLa cells were transfected with 0.5 μg plasmid
DNA and harvested 24 h later using Cell Culture Lysis Reagent
(Promega # E153A). Luciferase activity was measured on a lu-
minometer (Molecular Devices) using Luciferase Assay Substrate
(Promega # E151C). The protein content of the samples was deter-
mined by Bradford assay. The luciferase readings were normalized
to protein content in each lysate, as determined by the Bradford as-
say (n = 4).

To control for differences in transfection efficiency we repeated
our transfections including a common Renilla luciferase construct
(n = 2). Following measurement of Firefly luciferase we measured
the exact same sample for Renilla abundance. The abundance of
Renilla was normalized to sample protein content.

Total RNA was extracted from the same lysates used in the lucif-
erase assays using TRIzol reagent. The RNA was DNase treated us-
ing Ambion Turbo DNA-free (AM1907). cDNA was generated
using Ambion High Capacity cDNA Reverse Transcription Kit
(#4368813). cDNA abundance was measured by quantitative real
time PCR (qRT-PCR) on a BioRad CFX96 Real-Time System using
the following primers: luciferase 5′-ACAAAGGCTATCAGGTGGC
T-3′, 5′-CGTGCTCCAAAACAACAACG-3′; GAPDH 5′-CTGTT
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GCTGTAGCCAAATTCGT-3′, 5′-ACCCACTCCTCCACCTTTGA
C-3′. The abundance of luciferase RNA was determined by the
▵▵Ct method using GAPDH as the reference transcript (n = 4).
Values reported for both luciferase activity and RNA abundance
are relative to an empty vector control.
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