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Numerous versions of human papillomavirus (HPV) therapeutic vaccines designed to treat individuals with established HPV
infection, including those with cervical intraepithelial neoplasia (CIN), are in development because approved prophylactic vac-
cines are not effective once HPV infection is established. As human papillomavirus 16 (HPV-16) is the most commonly detected
type worldwide, all versions of HPV therapeutic vaccines contain HPV-16, and some also contain HPV-18. While these two HPV
types are responsible for approximately 70% of cervical cancer cases, there are other high-risk HPV types known to cause malig-
nancy. Therefore, it would be of interest to assess whether these HPV therapeutic vaccines may confer cross-protection against
other high-risk HPV types. Data available from a few clinical trials that enrolled subjects with CINs regardless of the HPV
type(s) present demonstrated clinical responses, as measured by CIN regression, in subjects with both vaccine-matched and
nonvaccine HPV types. The currently available evidence demonstrating cross-reactivity, epitope spreading, and de novo immune
stimulation as possible mechanisms of cross-protection conferred by investigational HPV therapeutic vaccines is discussed.

Human papillomavirus (HPV) is best known as the causative
agent of cervical cancer, the fourth most common cancer

among women globally. This is the case despite advances in
screening techniques and the availability of approved prophylactic
vaccines. Every year in the United States, there are 12,360 new
cases of cervical cancer and 4,020 deaths (1). High-risk HPV types
associated with the development of malignancies have been linked
to 90 to 93% of anal cancers, 12 to 63% of oropharyngeal cancers,
36 to 40% of penile cancers, 40 to 64% of vaginal cancers, and 40
to 51% of vulvar cancers (2). Overall, HPV is estimated to be
responsible for 5.2% of the worldwide cancer burden (3). Of note,
the incidence of HPV-associated anal and oropharyngeal cancers
is increasing in the United States (4).

The designation of papillomaviruses as the family Papilloma-
viridae was created in the seventh report of the International
Committee for the Taxonomy of Viruses (5). The papillomavi-
ruses were further divided into genera by assigning Greek letters
and into species by Roman numerals (6). For example, HPV-16,
-31, -33, -35, -52, -58, and -67 belong to genus alpha, species 9
(�9) (6). The circular double-stranded-DNA genomes of papillo-
maviruses are approximately 8 kb in size and commonly encode 8
proteins (6). The L1 gene encodes a major capsid protein, while
the L2 gene encodes a minor capsid protein. A more traditional
designation of HPV types was based on the nucleotide sequence of
the L1 gene. A designation of a new type was created whenever a
full-length papillomavirus clone was described which was at least
10% dissimilar from any other known papillomavirus type (6).

Currently, three effective HPV prophylactic vaccines are com-
mercially available, all of which contain HPV L1 proteins that are
capable of forming viruslike particles (VLPs). Gardasil (Merck,
Whitehouse Station, NJ, USA), a quadrivalent HPV VLP prophy-
lactic vaccine containing the L1 proteins of HPV-16, -18, -6, and
-11, was the first to be approved by the U.S. Food and Drug Ad-
ministration (FDA), in 2006. Cervarix (GalaxoSmithKline Biolog-

icals, Rixensart, Belgium), a bivalent version containing the L1
proteins of HPV-16 and -18, was approved 3 years later in the
United States. Gardasil 9 (Merck), which includes L1 VLPs from
HPV-16, -18, -31, -33, -45, -52, -59, -6, and -11, was approved by
the FDA in late 2014. Gardasil and Cervarix were designed to
prevent 70% of cervical, vulvar, vaginal, and anal cancer cases
caused by HPV-16 and -18, while Gardasil 9 was designed to pre-
vent approximately 90% of such cases. HPV types associated with
the development of malignancy are regarded as high risk. On the
other hand, HPV-6 and -11, which are included in Gardasil and
Gardasil 9, are considered low risk and are associated with the
development of genital warts. While Gardasil and Gardasil 9 in-
clude aluminum-containing adjuvant (amorphous aluminum hy-
droxyphosphate sulfate), Cervarix uses AS04, which is made of
3-O-desacyl-4=-monophosphoryl lipid A adsorbed onto alumi-
num as hydroxide salt. These three vaccines are called prophylac-
tic vaccines, as they are designed to prevent HPV infection from
occurring. In contrast, HPV therapeutic vaccines for individuals
who have already acquired HPV are in development, and none are
currently available on the market.

A common belief has been that HPV vaccines, both prophylac-
tic and therapeutic, confer mostly HPV type-specific protection.
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However, some level of cross-protection against nonvaccine HPV
types has been demonstrated for the prophylactic vaccines Garda-
sil and Cervarix (7–14). In the phase III randomized, double-
blinded clinical trial examining the efficacy of Cervarix, Paavonen
et al. observed vaccine efficacy not only against cervical intraepi-
thelial neoplasias of grade 2 and worse (CIN2�) associated with
HPV-16 and -18 but also against CIN2� associated with HPV-31,
-33, and -45 (11). In the study examining the effect of Gardasil
on oncogenic nonvaccine HPV types, significant reduction of
CIN2� associated with 10 nonvaccine high-risk HPV types
(HPV-31, -33, -35, -39, -45, -51, -52, -56, -58, and -59), most
notably HPV-31, was observed (7). It is generally accepted that the
bivalent prophylactic vaccine confers additional protection
against HPV-31, -33, and -45, while the quadrivalent vaccine pro-
tects against HPV-31 (14). Furthermore, cross-neutralizing anti-
bodies against HPV-31 and -45 have been demonstrated in vac-
cine recipients (15).

In order to gain insights into the mechanisms of cross-protec-
tion against nonvaccine HPV types, two groups studied serum
samples from vaccine recipients using different approaches in
vitro (16, 17). Serum samples from Cervarix recipients were incu-
bated with HPV-16 or HPV-18 VLPs prior to a VLP-based multi-
plex immunoassay for antibodies against HPV-16, -18, -31, -33,
-45, -52, and -58 L1 VLPs. The vaccine-derived antibodies were
type specific and cross-reacted to a lesser degree with other HPV
types within the species. For example, serum incubated with
HPV-16 VLPs showed decreased antibody concentrations bind-
ing to HPV-16, -31, -33, -52, and -58 (�9 species) but not HPV-18.
On the other hand, serum incubated with HPV-18 VLPs showed
decreased antibody concentrations binding to HPV-18 and -45
(�7 species) but not HPV-16, -31, -33, -52, and -58 (17). Bissett
and colleagues used L1 VLPs of nonvaccine HPV types (HPV-31,
-33, -35, or -58) coupled to magnetic Sepharose beads to isolate
antibodies from serum samples from Cervarix recipients (16).
These purified antibodies were then tested for their ability to neu-
tralize L1L2 pseudoviruses. The neutralization titers of HPV-16
L1L2 pseudoviruses, nonvaccine-HPV-type L1L2 pseudoviruses
used for isolation, and other nonvaccine-HPV-type L1L2 pseudo-
viruses were compared. The titer against HPV-16 was greatly re-
duced after antibody depletion with nonvaccine VLPs. Increased
neutralization of L1L2 pseudoviruses of nonvaccine HPV types
not used for antibody isolation was not observed. The data appear
to support the notion that cross-neutralization is due to a small
fraction of antibodies exhibiting different but overlapping speci-
ficities rather than weak cross-recognition of nonvaccine types by
vaccine-type-HPV-specific antibodies (16). Both of these studies
examined a small number of subjects, and further work is needed
to clarify exactly how prophylactic vaccines confer cross-protec-
tion. However, it is safe to conclude that some types of cross-
reactivity are responsible for the observed cross-protection. The
most recently FDA-approved HPV prophylactic vaccine, Gardasil
9, contains all the HPV types for which cross-protection by Gar-
dasil and Cervarix has been shown. Therefore, further investiga-
tion in this area would be of academic interest.

Many clinical trials testing putative HPV therapeutic vaccines
have selectively vaccinated subjects known to be positive for
HPV-16 DNA (18–27) or for HPV-16 and/or -18 DNA (28–30).
However, in some clinical trials, subjects with cervical intraepithe-
lial lesions of grade 2 or 3 (CIN2/3) were enrolled regardless of the
HPV type(s) detected (31–33). Therefore, cross-protection

against nonvaccine HPV types could be assessed in these studies.
An example is our phase I clinical trial of an HPV-16 E6 peptide-
based HPV therapeutic vaccine (PepCan), which used a Candida
skin test reagent (Candin; Nielsen Biosciences, San Diego, CA) as
a novel vaccine adjuvant (33). Forty-four percent (4 of 9) of sub-
jects with HPV-16 at entry and 57% (8 of 14) of subjects with
nonvaccine HPV types showed histological regression. Nieminen
and colleagues reported a regression rate of 20% (11 of 56) in
vaccine (modified Vaccinia Ankara with modified HPV-16 E6 and
E7 and human interleukin 2) recipients with HPV-16 monoinfec-
tion at entry, while the regression rate of all vaccine recipients was
31% (40 of 129) (32). In recipients of ZYC101a [plasmid DNA
encoding regions of HPV-16 and -18 E6 and E7 proteins, encap-
sulated in biodegradable poly(D,L-lactide-co-glycolide) micropar-
ticles] who were less than 25 years old, the regression rate was 64%
in those with HPV-16 or -18 at entry, 73% in subjects with other
HPV types, and 23% in the placebo group (31). These data suggest
that the cross-protection for CIN2/3 associated with nonvaccine
HPV types is at least equal to that of CIN2/3 associated with vac-
cine HPV types. An obvious possible mechanism of cross-protec-
tion is cross-reactivity of T cells induced by the vaccines. Alterna-
tive possible mechanisms are epitope spreading and de novo
immune stimulation.

CROSS-REACTIVITY

Cross-protection and cross-reactivity of HPV prophylactic vac-
cine-induced antibodies have been demonstrated for HPV types
closely phylogenetically related to the vaccine HPV types. Like-
wise, cross-reactivity of T cells induced by HPV therapeutic vac-
cines is expected to target epitopes of HPV types with high amino
acid sequence homology. In Fig. 1, the amino acid sequences of
HPV-16 E6 and E7 proteins (Papillomavirus Episteme, http:
//pave.niaid.nih.gov/#home), divided into overlapping 15-mer
peptides, are compared (NCBI BLAST, http://blast.ncbi.nlm.nih
.gov/Blast.cgi?PROGRAM�blastp&PAGE_TYPE�BlastSearch
&LINK_LOC�blasthome) with those of other high-risk and low-
risk HPV types (34). Based on homology, peptides containing
potentially cross-reactive T-cell epitopes are found most fre-
quently in HPV-16-related types and to a lesser extent in other
high-risk HPV types. In low-risk HPV types, such potentially
cross-reactive peptides are only present in the E7 protein, not the
E6 protein. Whether or not high amino acid homology results in
cross-recognition has been addressed for a select number of T-cell
epitopes described within the HPV-16 E6 and E7 proteins. Tables
1 and 2 list CD4 and CD8 HPV-16 T-cell epitopes described to
date to our knowledge for which the amino acid sequences and the
restricting HLA molecules have been identified. The homologous
peptides used to study each of the marked epitopes in Tables 1 and
2 are listed in Tables 3 to 7.

Our group approached this question by isolating T-cell clones
positive for an HPV-16 epitope and examining the recognition of
homologous sequences from other high-risk HPV types using a
gamma interferon (IFN-�) enzyme-linked immunosorbent spot
assay (ELISPOT) (35–37). If the number of spot-forming units for
a homologous sequence from another HPV type was equal to or
greater than 50% of the number for HPV-16, then that HPV type
was considered to be cross-reactive. Using this criterion, an exam-
ple in which an HPV-16 E6 aa-52-to-62-epitope-specific CD4 T-
cell clone was cross-reacting with a homologous peptide from
HPV-45 has been shown (Table 3) (38). Other homologous pep-
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tides (�70% amino acid homology) from HPV-31, -33, -58, and
-73 were not recognized. Therefore, cross-recognition with HPV-
45, which belongs to the �7 species (HPV-18 related), was ob-
served, while cross-recognition with other �9 species (HPV-16-
related types HPV-31, -33, and -58) was not.

A similar conclusion can be drawn regarding cross-recognition
of homologous CD8 HPV T-cell epitopes. A CD8 T-cell clone
specific for the HPV-16 E6 aa-52-to-61 epitope restricted by the
HLA class I B57 molecule has been shown to cross-recognize
HPV-35 (�9), -39 (�7), -45 (�7), -51 (�5), and -73 (�11) (35)
(Table 4), while another CD8 T-cell clone specific for the same

peptide but restricted by another HLA class I molecule, B58, has
been shown to cross-recognize HPV-31 (�9), -33 (�9), -35 (�9),
-39 (�7), -45 (�7), -51 (�5), -58 (�9), and -73 (�11) (36) (Table
5). On the other hand, a CD8 T-cell clone recognizing the HPV-16
E6 aa-75-to-83 epitope restricted by the HLA class I B62 molecule
(Table 6) and another clone recognizing the E6 aa-133-to-142
epitope restricted by the HLA class I A6801 molecule (Table 7) did
not recognize any homologous peptides tested (37). Therefore,
the presence of amino acid homology does not automatically lead
to cross-recognition and it is not species specific when present.
Whether or not such cross-recognition is present in natural infec-

FIG 1 Amino acid sequence homologies between peptides (15 amino acids in length) of HPV-16 and other HPV types. The peptides with �70% homology are
highlighted in yellow. *, amino acid insertion(s) is present.
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tion is not known, since the generation of homologous epitopes
from native protein by endogenous antigen processing has not
been investigated. On the other hand, the possibility of cross-
recognition can be ruled out in the absence of peptide recognition.

Another group has taken the investigation of cross-recognition
of HPV-16 CD4 T-cell epitopes one step further. van den Hende
and colleagues investigated the cross-recognition of five closely
related members of the �9 species (HPV-31, -33, -35, -52, and -58)

TABLE 1 CD4 T-cell epitopes of HPV-16 E6 and E7 proteins described, with HLA restriction elements identified

Epitope (length) Sequence HLA Reference

E6 11–32 (22) DPQERPRKLPQLCTELQTTIHD DP17 59
E6 11–32 (22) DPQERPRKLPQLCTELQTTIHD DP1401 59
E6 37–68 (32) CVYCKQQLLRREVYDFAFRDLCIVYRDGNPYA DP0201 59
E6 52–62 (11)a FAFRDLCIVYR DR11 38
E6 52–61 (10) FAFRDLCIVY DP0201 59
E6 61–82 (22) YRDGNPYAVCDKCLKFYSKISE DP0101 59
E6 61–82 (22) YRDGNPYAVCDKCLKFYSKISE DP1401 59
E6 71–92 (22) DKCLKFYSKISEYRHYCYSLYG DP0101 59
E6 73–105 (33) CLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCD DP0401 59
E6 74–83 (10)b LKFYSKISEY DP 39
E6 91–112 (22) YGTTLEQQYNKPLCDLLIRCIN DR15 or DQ05 59
E6 101–122 (22) KPLCDLLIRCINCQKPLCPEEK DQ06 59
E6 121–142 (22) EKQRHLDKKQRFHNIRGRWTGR DP0201 or DQ05 59
E6 127–141 (15) DKKQRFHNIRGRWTG DR01 60
E6 129–138 (10) KQRFHNIRGR DR7 59
E7 21–42 (22) DLYCYEQLNDSSEEEDEIDGPA DR4 59
E7 35–50 (16) EDEIDGPAGQAEPDRA DQ2 61
E7 43–77 (35) GQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIR DR3 61
E7 50–62 (13) AHYNIVTFCCKCD DR15 61
E7 51–72 (22) HYNIVTFCCKCDSTLRLCVQST DP1901 59
E7 58–68 (11) CCKCDSTLRLC DR17 62
E7 61–80 (20) CDSTLRLCVQSTHVDIRTLE DR0901 63
E7 71–85 (15) STHVDIRTLEDLLMG DQ0201 64
E7 76–86 (11) IRTLEDLLMGT DR12 59
a Cross-reactivity to homologous sequences from other HPV types has been tested and demonstrated (Table 3).
b Cross-recognition of homologous peptides from HPV types 31 and 35 has been demonstrated (39).

TABLE 2 CD8 T-cell epitopes of HPV-16 E6 and E7 proteins described, with HLA restriction elements identified

Epitope (length) Sequence HLA Reference(s)

E6 13–22 (10) QERPRKLPQL B7 59
E6 29–37 (9) TIHDIILEC B48 65
E6 29–38 (10) TIHDIILECV A02, A0201 59, 65, 66
E6 31–38 (8) HDIILECV B4002 65
E6 52–61 (10)a FAFRDLCIVY B57 35, 59, 67
E6 52–61 (10) FAFRDLCIVY B35 65
E6 52–61 (10)b FAFRDLCIVY B58 36
E6 75–83 (9)c KFYSKISEY B62 37
E6 80–88 (9) ISEYRHYCY B18 68
E6 133–142 (10)d HNIRGRWTGR A6801 37
E6 137–146 (10) GRWTGRCMSC B27 59
E6 149–158 (10) SSRTRRETQL B14 59
E7 7–15 (9) TLHEYMLDL B8 69
E7 7–15 (9) TLHEYMLDL B48 67
E7 11–19 (9) YMLDLQPET A02, A0201 59, 70
E7 11–20 (10) YMLDLQPETT A0201 66
E7 44–52 (9) QAEPDRAHY B18 68
E7 61–69 (9) CDSTLRLCV A2402 71
E7 67–76 (10) LCVQSTHVDI A2402 71
E7 79–87 (9) LEDLLMGTL B60 67
E7 82–90 (9) LLMGTLGIV A0201 66
E7 86–93 (8) TLGIVCPI A0201 66
a Cross-reactivity to homologous sequences from other HPV types has been tested and demonstrated (Table 4).
b Cross-reactivity to homologous sequences from other HPV types has been tested and demonstrated (Table 5).
c Cross-reactivity to homologous sequences from other HPV types has been tested but not demonstrated (Table 6).
d Cross-reactivity to homologous sequences from other HPV types has been tested but not demonstrated (Table 7).
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(39). Using overlapping peptides, approximately half of the re-
sponding subjects displayed recognition of more than two other
HPV types, suggesting that cross-recognition may be relatively
common. However, further investigation using enriched and
clonal T-cell populations and naturally processed epitopes de-
rived from whole proteins demonstrated only one example of an
HPV-16-specific CD4 T-cell clone capable of cross-recognizing
homologous peptides of other HPV types (Table 1). Therefore,
they concluded that the HPV-16 E6-specific CD4 T-cell responses
are unlikely to cross-recognize and so unlikely to cross-protect
against other highly related HPV types. Overall, cross-recognition
can be demonstrated, but rarely. Thus, cross-recognition is un-
likely to be the main mechanism of cross-protection seen in the
recipients of HPV therapeutic vaccines.

EPITOPE SPREADING

Epitope spreading is a process in which antigenic epitopes distinct
from and non-cross-reactive with an inducing epitope become
additional targets of an ongoing immune response (40). It can be
beneficial to the host by resulting in protection from other patho-
gens, or it can be harmful to the host in the setting of autoimmu-
nity (41). In our phase I clinical trial of a peptide-based HPV
therapeutic vaccine, statistically significant increases in CD3 T-
cell responses to HPV-16 E7 protein, which was not included in
the vaccine, were demonstrated in two vaccine recipients (33).

Both subjects also had significantly increased responses to the E6
protein, which is included in the vaccine. One subject had HPV-16
DNA detected before and after vaccination, while the other sub-
ject had HPV-45 detected prior to and after vaccination. These
may be the first examples of epitope spreading in recipients of an
HPV therapeutic vaccine (33). For the subject with HPV-45,
cross-recognition would be unlikely, as the HPV-45 E7 aa-1-to-15
region only has 33% amino acid homology with the HPV-16 se-
quences of the same region (Fig. 1). The presence of latent
HPV-16 infection no longer detectable with the current method of
HPV detection may be more likely. Epitope spreading has been
shown to correlate with tumor regression in peptide-based cancer
immunotherapy (42–47) and may be quite beneficial in enhanc-
ing the therapeutic effects of the treatment. Therefore, future in-
vestigations to uncover additional evidence of epitope spreading
and to elucidate underlying mechanisms should be pursued.

DE NOVO IMMUNE STIMULATION

The idea of using Candida skin testing reagent as a novel vaccine
adjuvant came about from observations that intralesional injec-
tions of recall antigens result in common wart regression (48–54).
Traditionally, recall antigens, which typically include a panel de-
rived from Candida, mumps virus, and Trichophyton, were used as
a control to indicate intact cell-mediated immunity in patients

TABLE 3 Peptides from high-risk HPV types homologous to HPV-16
E6 aa-51-to-65 epitope for assessment of cross-reactive CD4 epitopesa

HPV
type Species

Epitope
(length) Sequence

16 �9 E6 51–65 (15) DFAFRDLCIVYRDGN
31 �9 E6 44–58 (15) DFAFTDLTIVYRDDT
33 �9 E6 44–58 (15) DFAFADLTVVYREGN
45 �7 E6 46–60 (15) QFAFKDLCIVYRDCI
58 �9 E6 44–58 (15) DFVFADLRIVYRDGN
73 �11 E6 45–59 (15) DFAFSDLCIVYRDKP
a Amino acids different from those of HPV-16 are shown in bold, and peptides
recognized in ELISPOTs are highlighted in gray.

TABLE 4 Peptides from high-risk HPV types homologous to HPV-16
E6 aa-52-to-61 (HLA B57 restricted) epitope for assessment of cross-
reactive CD8 epitopesa

HPV
type Species

Epitope
(length) Sequence

16 �9 52–61 (10) FAFRDLCIVY
18 �7 47–56 (10) FAFKDLFVVY
31 �9 45–54 (10) FAFTDLTIVY
33 �9 45–54 (10) FAFADLTVVY
35 �9 45–54 (10) FACYDLCIVY
39 �7 47–56 (10) FAFSDLYVVY
45 �7 47–56 (10) FAFKDLCIVY
51 �5 45–54 (10) VAFTEIKIVY
52 �9 45–54 (10) FLFTDLRIVY
56 �6 48–57 (10) FACTELKLVY
58 �9 45–54 (10) FVFADLRIVY
59 �7 47–56 (10) FAFNDLFIVY
68 �7 47–56 (10) FAFGDLNVVY
73 �11 45–54 (10) FAFSDLCIVY
a Amino acids different from those in HPV 16 are shown in bold, and peptides
recognized in ELISPOTs are highlighted in gray.

TABLE 5 Peptides from high-risk HPV types homologous to HPV 16
E6 aa-52-to-61 (HLA B58 restricted) epitope for assessment of cross-
reactive CD8 epitopesa

HPV
type Species

Epitope
(length) Sequence

16 �9 52–61 (10) FAFRDLCIVY
18 �7 47–56 (10) FAFKDLFVVY
31 �9 45–54 (10) FAFTDLTIVY
33 �9 45–54 (10) FAFADLTVVY
35 �9 45–54 (10) FACYDLCIVY
39 �7 47–56 (10) FAFSDLYVVY
45 �7 47–56 (10) FAFKDLCIVY
51 �5 45–54 (10) VAFTEIKIVY
52 �9 45–54 (10) FLFTDLRIVY
56 �6 48–57 (10) FACTELKLVY
58 �9 45–54 (10) FVFADLRIVY
59 �7 47–56 (10) FAFNDLFIVY
68 �7 47–56 (10) FAFGDLNVVY
73 �11 45–54 (10) FAFSDLCIVY
a Amino acids different from those in HPV-16 are shown in bold, and peptides
recognized in ELISPOTs are highlighted in gray.

TABLE 6 Peptides from high-risk HPV types homologous to HPV-16
E6 aa-75-to-83 (HLA B62 restricted) epitope for assessment of cross-
reactive CD8 epitopesa

HPV
type Species

Epitope
(length) Sequence

16 �9 75–83 (9) KFYSKISEY
33 �9 68–76 (9) RFLSKISEY
51 �5 68–76 (9) LFYSKIREY
52 �9 68–76 (9) RFLSKISEY
56 �6 71–79 (9) LFYSKVRKY
73 �11 69–77 (9) KFYSKIREY
a Amino acids different from those in HPV-16 are shown in bold, and peptides
recognized in ELISPOTs are highlighted in gray.
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being tested for tuberculosis by placing purified protein derivative
(PPD; an extract of Mycobacterium tuberculosis); T-cell-mediated
inflammation would emerge within 24 to 48 h (55). Many studies
have shown that recall antigens were effective not only in regress-
ing injected warts, but also in regressing untreated distant warts
(48–52, 54). These studies suggested that T cells may have a role in
wart regression. In a recently completed phase I investigational
new drug study in which the largest wart was treated with Candin,
our group reported complete resolution of the treated warts in
82% (9 of 11) of the subjects and complete resolution of distant
untreated warts in 75% (6 of 8) of the subjects (52). Furthermore,
T-cell responses to the HPV-57 L1 peptide were detected in 67%
(6 of 9) of the complete responders. Therefore, intralesional injec-
tion of Candida may have resulted in de novo generation of anti-
HPV T-cell responses. In vitro experiments have demonstrated
that Candida has a proliferative effect on T-cells and that the cy-
tokine most frequently produced by Langerhans cells exposed to
Candida was interleukin 12, which promotes T-cell response (56,
57). Intriguingly, injecting the wart, which is the site of active
infection, may not be necessary to induce T-cell responses, as one
group reported that weekly intradermal injections of PPD in the
forearms was effective in treating anogenital warts in pregnant
women (58).

Additional evidence of de novo immune stimulation was dem-
onstrated in our clinical trial of the HPV therapeutic vaccine men-
tioned above (33). HPV-DNA testing was performed prior to vac-
cination and 20 weeks after initiation of vaccination. The rate of
HPV clearance was higher for low-risk HPV types (62%) than for
HPV-16 (33%), HPV-16-related types (33%), and other high-risk
types (25%) (Table 8), although the vaccine only contained
HPV-16 E6 peptides. Since there is no amino acid sequence ho-
mology equal to or greater than 70% between the E6 protein of
HPV-16 and the E6 proteins of low-risk HPV types (Fig. 1), de
novo immune stimulation is likely responsible for the low-risk
HPV types becoming undetectable. One should keep in mind that
the subjects’ own immunity may account for some degree of HPV
clearance. Nevertheless, it is possible that our HPV therapeutic
vaccine, which consists of HPV-16 E6 peptides and Candida skin
test reagent, may work through a nonspecific immune stimulatory
effect of the Candida skin test reagent in addition to the HPV-
specific effects induced by the HPV-16 E6 peptides (33).

The three potential mechanisms discussed here, cross-recogni-
tion, epitope spreading, and de novo immune stimulation, need
not be mutually exclusive. Further investigation of the mecha-
nisms of cross-protection conferred by HPV therapeutic vaccines

should yield interesting findings, and they may be quite different
from the mechanisms of cross-protection conferred by the HPV
prophylactic vaccines.
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