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Abstract. We statistically compare the contributions of parenchymal phenotypes to mammographic density in
distinguishing between high-risk cases and low-risk controls. The age-matched evaluation included computer-
ized mammographic assessment of breast percent density (PD) and parenchymal patterns (phenotypes of
coarseness and contrast) from radiographic texture analysis (RTA) of the full-field digital mammograms from
456 cases: 53 women with BRCA1/2 gene mutations, 75 with unilateral cancer, and 328 at low risk of developing
breast cancer. Image-based phenotypes of parenchymal pattern coarseness and contrast were each found to
significantly discriminate between the groups; however, PD did not. From ROC analysis, PD alone yielded area
under the fitted ROC curve (AUC) values of 0.53 (SE ¼ 0.05) and 0.57 (SE ¼ 0.04) in the classification task
between BRCA1/2 gene-mutation carriers and low-risk women, and between unilateral cancer and low-risk
women, respectively. In a round-robin evaluation with Bayesian artificial neural network (BANN) analysis,
RTA yielded AUC values of 0.81 (95% confidence interval [0.71, 0.89]) and 0.70 (95% confidence interval
[0.63, 0.77]) between the BRCA1/2 gene-mutation carriers and low-risk women, and between unilateral cancer
and low-risk women, respectively. These results show that high-risk and low-risk women have different mammo-
graphic parenchymal patterns with significantly higher discrimination resulting from characteristics of the paren-
chymal patterns than just the breast PD. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.1.3

.031009]
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1 Introduction
Breast cancer is still the most frequently diagnosed cancer in
women besides skin cancer in 2014.1 Breast density, which
refers to the amount of fibroglandular tissue relative to the
whole breast, is an important biomarker in assessing breast
cancer risk.2,3 Mammographic density or radiographic density
of the breast is reflected by the tissue composition of the breast,
i.e., the amount of fibroglandular and fatty tissues.

Various investigators have studied the relationship between
breast density and the risk of developing breast cancer.4–8

Studies have demonstrated that increased mammographic breast
density is associated with increased risk of developing breast
cancer.9–13

Investigators have also studied breast parenchymal patterns
as characterized by computerized texture analysis on digitized
screen-film mammograms and full-field digital mammograms
(FFDMs).14–21 Results indicate that women at high risk of devel-
oping breast cancer tended to have mammographic parenchymal
patterns that were coarse and low in contrast.16–21

The purpose of this current study was to investigate the addi-
tional value of parenchymal pattern characteristics to breast per-
cent density (PD) in characterizing and distinguishing between
women at high risk for breast cancer and low-risk controls. The

image-based parenchymal phenotypes of coarseness and con-
trast, as well as other texture features, were calculated from dig-
ital radiographic texture analysis (RTA) applied to FFDMs. The
age-matched evaluation was comprised of women at high risk of
developing breast cancer, including cases with BRCA1/2 germ-
line mutations and unilateral cancer patients, and women at low
risk of developing breast cancer. Receiving-operating character-
istic (ROC) analysis22,23 was used to assess the performance of
the image-based phenotypes of density, coarseness, and con-
trast, as well as combined parenchymal signatures, in the
task of differentiating high-risk women from low-risk women.

2 Materials and Methods

2.1 Database

All full-field digital mammograms (FFDMs) images analyzed in
this study had been acquired with a GE Senographe 2000D sys-
tem (Waukesha, Wisconsin) and were retrospectively collected
under an IRB-approved protocol. FFDM images were acquired
at a 12-bit quantization level with 100-μm pixels. Regions of
interest (ROIs) of 256 × 256 pixels were manually selected
from the central breast region behind the nipple in the cranio-
caudal (CC) projection of mammographic images. The details of
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the ROI extraction have been described elsewhere in which the
size and location of the ROI were investigated for optimal char-
acterization of the breast parenchyma.24

The FFDMs used in this study were reviewed by an expert
breast mammographer and used only if no detectable breast
abnormalities were observed. A total of 456 cases were included
in this study, including two high-risk datasets: BRCA1/2 gene-
mutation carriers and women with unilateral breast cancer. A
low-risk dataset was used as a control group. The demographic
of the three groups is summarized in Table 1.

The initial database included 53 gene-mutation carriers
(average age of 40.2 years with a standard deviation of 11.8
years and a range of 21 to 72 years) and 75 unilateral cancer
cases (average age of 55.8 years with a standard derivation of
15.0 years and a range of 25 to 89 years). Of the 53 gene-muta-
tion carriers, there were 36 BRCA1 and 17 BRCA2 mutation
carriers. Unilateral cancer cases included invasive ductal carci-
noma (43 of 75), invasive lobular carcinoma (7 of 75), ductal

carcinoma in situ (14 of 75), lobular carcinoma in situ (1 of
75), Paget’s disease (2 of 75), and other atypical malignant dis-
eases (8 of 75). The contralateral lesion-free normal mammo-
grams from the unilateral cancer women were used in the digital
image analysis.

For the low-risk control group, 328 women were selected
based on the following selection criteria: no family history of
breast or ovarian cancer; no prior history of breast cancer or
breast benign disease; no prior benign breast biopsy; and a life-
time risk of developing breast cancer of <10% based on the Gail
breast cancer risk assessment model.25 The average age for the
low-risk group was 58.4 years with a standard derivation of 11.9
years and a range of 32 to 89 years. BRCA1/2 gene testing infor-
mation was not available for those low-risk subjects.

For our study, age-matching analysis was performed in order to
minimize the possible bias due to the age distribution difference
(Table 2). High-risk subjects were age-matched with the low-
risk control group randomly using a 1 to 4 ratio at 5-year intervals,
yielding two age-matched datasets: 34 BRCA1/2 gene-mutation
carriers age-matched with 136 low-risk women and 67 unilateral
cancer patients age-matched with 268 low-risk women.

2.2 Breast Percent Density and Parenchymal
Pattern Analysis

As shown in Fig. 1, breast PD over the entire mammographic
image, and coarseness and contrast within each ROI, as well as
other texture features, were calculated to characterize the mam-
mographic parenchymal patterns. These computer-extracted
texture features were used to assess the image local composi-
tion (density-related measures), image contrast, image homo-
geneity, and image coarseness of the breast parenchyma, as
previously described,16–21,26 and served as image-based
phenotypes.

Calculation of breast PD included thresholding into breast
and nonbreast regions and morphologic operations to identify
the breast skin line. Histogram analysis was applied to initially
classify each pixel in the breast region into either fibroglandular

Table 1 Demographic distribution of BRCA1/2 gene-mutation car-
riers, unilateral cancer, and low-risk control groups.

Race/ethnicity

BRCA1/
2 BRCA1 BRCA2

Unilateral
cancer

Low-
risk

N ¼ 53 N ¼ 36 N ¼ 17 N ¼ 75 N¼328

White, non-Hispanic 49 33 16 28 107

Black, non-Hispanic 3 2 1 34 194

Asian 0 0 0 3 7

American Indian or
Alaskan Native

0 0 0 0 1

Hispanic 1 1 0 1 8

Other/mixed 0 0 0 9 11

Table 2 Age, breast PD (%), and selected texture features in BRCA1/2 gene-mutation carriers, unilateral cancer patients, and the low-risk controls
(SD, standard derivation; CI, confidence interval). Bold implies statistical significance achieved.

Datasets
Number
of cases

Mean age
(SD) Range p-value

Mean PD
(SD)

p-value
(95% CI of ΔPD)

Texture: mean
coarseness
× 104 (SD)

p-value
(95% CI)

Texture: mean
log2(contrast)

(SD)
p-value
(95% CI)

BRCA1/2 34 46.9 (9.3) 34 to 72 0.2065 23.1 (17.7) 0.7134 [−0.0871,
0.0587]

5.72 (2.64) 3.9E − 5
[0.86, 2.36]

3.86 (1.35) 8.0E − 4
[−1.30, −0.35]

Low-risk 136 48.9 (7.9) 32 to 71 24.4 (19.8) 4.11 (1.79) 4.68 (1.24)

BRCA1 24 48.5 (9.7) 34 to 72

0.9188

22.5 (19.2)
0.7395 [−0.1037,

0.0738]

5.37 (2.47)
0.003967
[0.40, 2.10]

4.02 (1.26)
0.02163

[−1.17, −0.09]
Low-risk 96 44.7 (9.3) 32 to 74 24.0 (19.7) 4.11 (1.70) 4.65 (1.17)

BRCA2 10 43.2 (7.5) 35 to 57

0.5504

24.3 (14.4)
0.4653 [−0.1986,

0.0922]

6.57 (2.97)
6.08E − 4
[1.22,4.19]

3.47 (1.53)
4.3E − 2

[−2.26, −0.44]
Low-risk 40 44.6 (6.4) 32 to 57 29.6 (21.6) 3.87 (1.82) 4.82 (1.21)

Unilateral
cancer

67 58.8 (12.9) 35 to 89

0.9071

20.8 (17.3)

0.3835 [−0.0266,
0.0689]

4.77 (1.64)
1.21E − 4
[0.46, 1.40]

4.13 (1.01)

9.5E − 6
[−1.09, −0.43]

Low-risk 268 59.0 (12.6) 32 to 88 18.7 (17.9) 3.84 (1.78) 4.89 (1.28)
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or fatty tissue.27 Mammographic PD is estimated as the percent-
age of fibroglandular tissue area relative to the total breast
region. The breast density segmentations generated in this
study were then visually verified by an expert mammographer,
and if not satisfied, their adjusted threshold was used in the
breast density estimation. Our method is somewhat similar to

the Cumulus™method,28 which is widely used in breast density
estimation work.

Linear stepwise feature selection was performed using the
Wilks lambda criterion29,30 to select a subset of computer-
extracted texture features in the task of differentiating between
high-risk subjects and low-risk subjects. In this study, the step-
wise feature selection was performed twice, once with input
of the RTA features alone and again with combined RTA
features and PD together (RTA + PD; texture features plus
PD). A Bayesian artificial neural network31 (BANN) was then
used to merge these selected features in an iterated leave-one-
case-out analysis. The output from the BANN classifier can be
viewed as a potential parenchymal signature for breast cancer
risk with output values corresponding to an estimate of the
likelihood that a woman is at high risk for breast cancer.

2.3 Statistical Analyses and Performance
Evaluation

The two-sample t-test was used to compare the means of age
and the image-based phenotypes of breast PD, coarseness,
and contrast between the high-risk and low-risk groups. All
tests of statistical significance were two-tailed. Pearson correla-
tion coefficients were calculated to assess the relationship
between various texture features and breast PD. The analyses
were performed using MATLAB software (The MathWorks,
Inc., Natick, Massachusetts).

ROC analysis21,22,32 was used to determine the performance
of each image-based phenotype in the task of distinguishing
between high-risk subjects and the low-risk control group.

Fig. 2 Performance comparison on the contribution of RTA and PD on the breast cancer risk assessment
on FFDM. Results are shown with age-matched analyses. Leave-one-case-out (round-robin) analysis
was performed on FFDM. RTA, radiographic texture analysis; PD, percent density; AUC, area under
the fitted ROC curve; SE, standard error; CI, confidence interval; NT, number of total cases; NH, number
of high-risk cases; and NL, number of low-risk cases. Bold implies statistical significance achieved after
multiple comparison correction.

Fig. 1 Schematic of computerized method for extracting image-based
phenotypes of percent density (PD) and texture characteristics of the
parenchymal patterns (such as coarseness and contrast) using radio-
graphic texture analysis (RTA) on full-field digital mammograms
(FFDMs).
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The area under the fitted ROC curve (AUC value) was used as a
figure of merit to assess the potential usefulness of the pheno-
types in assessing breast cancer risk. Statistical Z tests were per-
formed to assess the statistical significance of the difference
between the AUC value of each phenotype and an AUC of
0.5 (equivalent to random guessing). The level of statistical sig-
nificance for the difference of two AUC values was calculated
using the ROCKIT computer program.32 In order to correct for
multiple test of comparisons, the Holm t-test was applied.33,34

The required level to claim significance was determined after
taking into account the situation of multiple tests of comparison
and used as the statistical cutoff for calculated p-values.

3 Results
Table 2 and Fig. 2 summarize the performances of the image-
based phenotypes in terms of differences in means and AUCs,
respectively.

3.1 Difference in Means

In general, high-risk women, including both BRCA1/2 gene-
mutation carriers and unilateral cancer patients, demonstrated

coarser and lower contrast parenchymal patterns than the con-
trols, i.e., those women who were at low risk of developing
breast cancer. The mean PD differences were small between
the high-risk groups and the low-risk control group, and not sta-
tistically significant; however, the differences in characteristics
in terms of the image-based phenotypes of coarseness and
contrast of the parenchymal pattern were statistically significant
(Table 2 and Fig. 3).

A Pearson correlation coefficient of 0.30 (p < 0.0001) was
obtained between PD and coarseness for BRCA1/2 gene-muta-
tion carriers and the low-risk group. Larger coarseness values
correspond to coarser mammographic parenchymal patterns in
the images and were observed on images from the BRCA1/2
gene-mutation carriers (Fig. 4). Similarly, PD versus coarseness
yielded a Pearson correlation coefficient of 0.44 (p < 0.0001)
with higher coarseness values observed for the unilateral cancer
patients (Fig. 4).

A Pearson correlation coefficient of −0.40 (p < 0.0001)
was obtained between PD and contrast for BRCA1/2 gene-
mutation carriers and the low-risk group. Smaller contrast values
were observed on mammographic parenchymal patterns from
BRCA1/2 gene-mutation carriers as compared to those in the

Fig. 3 Statistical comparison of age-matched high-risk and low-risk groups in terms of the sample means
for age, PD, parenchymal coarseness, and parenchymal contrast. (a)BRCA1/2 and low-risk; (b) unilateral
cancer and low-risk; * indicates statistical significance was achieved using the two-sample t -test after
correction for multiple comparisons. Values are given in Table 2.
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low-risk control group (Fig. 4). Similarly, PD versus contrast
yielded a Pearson correlation coefficient of −0.49 (p < 0.0001)
with lower contrast values observed for the unilateral cancer
patients (Fig. 4).

3.2 ROC Analysis: BRCA1/2 Gene-Mutation
Carriers Versus Low-Risk Control Group

PD alone yielded an AUC value of 0.53 in the task of distin-
guishing between BRCA1/2 gene-mutation carriers and the
low-risk women. AUC values of 0.69 and 0.68 were obtained
using the phenotypes of coarseness and contrast, respectively,
as decision variables in distinguishing the two groups.

Six texture phenotypes characterizing coarseness, homo-
geneity, randomness, and nonlinearity of mammographic paren-
chymal patterns were selected from the leave-one-case-out
stepwise feature selection when using only the RTA features
as feature selection inputs. An AUC value of 0.81 was obtained
with this resulting BANN parenchymal signature in the task of
distinguishing between gene-mutation carriers and the low-risk
group in a leave-one-out analysis. A statistically significant
difference in AUC values (ΔAUC ¼ −0.28; 95% CI ½−0.4433;
−0.1238�; p ¼ 0.0005) was found between the performance of

Fig. 4 Cluster plots showing distribution of RTA features of coarseness, contrast, and breast PD for
(a) BRCA1/2 and low-risk and (b) unilateral cancer and low-risk subjects.

Fig. 5 Receiver-operating characteristic (ROC) curves indicating the
performance of computerized RTA performed on FFDMs in the task of
distinguishing between high-risk groups and low-risk controls with
age-matched analysis. Area under the fitted ROC curve (AUC) values
using RTA as decision variable are from a round-robin cross-valida-
tion analysis.
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the parenchyma signature (AUC ¼ 0.81) and that with PD alone
(AUC ¼ 0.53) (Figs. 2 and 5).

When all RTA features together with PD were used as inputs
in the feature selection step, the same prior-selected six texture
phenotypes were chosen again, but not PD. However, in order
to further investigate the role of PD, we forced the inclusion of
PD in the production of the BANN parenchymal signature,
which subsequently yielded an AUC value of 0.81 (RTA + PD)
(Fig. 2).

3.3 ROC Analysis: Unilateral Cancer Women
Versus Low-Risk Control Group

AUC values of 0.70 (SE ¼ 0.04), 0.57 (SE ¼ 0.04), and 0.68
(SE ¼ 0.04) were obtained in the task of distinguishing between
the unilateral cancer group and the low-risk control group
for the RTA parenchyma signature, PD alone, and the RTA +
PD signature, respectively, achieving statistical significance

between the RTA signature (AUC ¼ 0.70) and the PD alone
(AUC ¼ 0.57) in terms of the difference between AUC values
(ΔAUC ¼ −0.13; 95% CI [−0.2081, −0.0275]; p ¼ 0.0106)
(Figs. 2 and 5).

AUC values of 0.67 and 0.67 were obtained for the pheno-
types of coarseness and contrast, respectively, in the task of
distinguishing the two groups.

3.4 Image-Based Phenotype Arrays

Image-based phenotype arrays are shown in Figs. 6(a) and 6(b)
to visualize the phenotypes of coarseness and contrast, PD,
RTA, and RTA + PD on the age-matched dataset, including
(a) BRCA1/2 gene-mutation carriers, (b) unilateral cancer
patients, and the low-risk controls. The individual patients
are ordered based on the output values of the RTA + PD paren-
chyma signature. Values in parentheses corresponded to AUC
using image-based phenotypes as decision variables in the

Fig. 6 Image-based phenotype arrays showing the color map of individual RTA features of coarseness
and contrast, PD, RTA, and RTA + PD on the age-matched dataset, including (a) BRCA1/2 gene-muta-
tion carriers and the low-risk controls and (b) unilateral cancer patients and the low-risk controls. The
individual patients are ordered based on the output values of RTA + PD. Values in parentheses corre-
sponded to AUC using image-based phenotypes as decision variables in the task of distinguishing
between the high-risk and the low-risk groups. For each image-based phenotype, red corresponds to
high phenotype value and green corresponds to low phenotype value. Thus, the high-risk cases are
characterized by coarser patterns that are lower in contrast than the low-risk group. RTA, radiographic
texture analysis and PD, breast PD.
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task of distinguishing between either (a) the BRCA1/2 gene-
mutation carriers or (b) the unilateral cancer patients and
the low-risk controls. For each image-based phenotype, red
corresponds to a high phenotype value and green corresponds
to a low phenotype value. Thus, the BRCA1/2 gene-mutation
carrier cases and the unilateral cancer patients are characterized
by coarser patterns that are lower in contrast than those of the
low-risk group.

4 Discussion and Conclusion
We investigated the contributing role of FFDM-based pheno-
types of parenchyma texture to breast PD in breast cancer risk
assessment in an age-matched study. Our results show that high-
risk women, i.e., either BRCA1/2 gene-mutation carriers or uni-
lateral cancer patients, tend to have parenchymal patterns that
are coarse and low in contrast relative to the low-risk women
(control group) as indicated by the results in Table 2 and
Fig. 3. RTA performed significantly better than PD alone in
the task of distinguishing between the high-risk and low-risk
groups (Fig. 5). However, similar performance levels were
observed using either RTA or RTA + PD in the task of differ-
entiating the two groups (Figs. 2 and 7).

Our results presented here build on our prior work and that
of others in characterizing the breast density and parenchyma
in order to assess breast cancer risk.2–21,24 Although PD is one
of the most important risk factors for breast cancer risk
assessment, the results from this study further suggest that
image-based phenotypes of texture extracted from mammo-
graphic images may better assess breast cancer risk. Note that
within our age-matched groups, PD showed very little dis-
crimination between the high-risk group and the low-risk con-
trol group.

Since BRCA1 gene-mutation carriers tend to have higher
risk of developing breast cancer and ovarian cancer than
women with BRCA2 gene mutations,1 we also conducted a
secondary analysis separately on the BRCA1 and BRCA2
gene-mutation carriers (Fig. 8). BRCA1/2 carriers may have
different underlying biological mechanisms for the develop-
ment of breast cancer, thus potentially presenting different
stroma patterns, i.e., parenchymal patterns. For PD alone,
AUC values of 0.54 and 0.59 were obtained in the task of
distinguishing between BRCA1 mutation carriers and the
low-risk group and between BRCA2 mutation carriers and
the low-risk group, respectively. After feature selection, the
BANN RTA signature yielded AUC values of 0.73 and
0.87 in the task of distinguishing between BRCA1 mutation
carriers and the low-risk group and between BRCA2 mutation
carriers and the low-risk group, respectively. With the inclu-
sion of PD, the BANN RTA + PD signature yielded AUC val-
ues of 0.73 and 0.86 in the task of distinguishing between
BRCA1 mutation carriers and the low-risk group and between
BRCA2 mutation carriers and the low-risk group, respectively
(Fig. 2). These promising results warrant further studies on
BRCA1 and BRCA2 groups with larger datasets, potentially
increasing the understanding of the parenchyma characteris-
tics difference between these two groups, and their roles in
breast cancer risk assessment. Our results are in agreement
with studies published by other research groups that mammo-
graphic PD does not differ between the BRCA1/2 gene-muta-
tion carriers and the low-risk group.35,36 Breast PD and
parenchyma textures should be considered together in breast
cancer risk assessment.

There were some limitations in this study. Because of the
relatively small numbers of BRCA1/2 gene-mutation carriers
and unilateral cancer patients, we did not perform the analysis
in terms of their menopausal status. Instead, we performed
age-matching analysis to minimize the bias due to skewed
study population distribution between high-risk patients and
low-risk controls. Also, as our dataset increases, we will con-
sider hormone replacement therapy status and oral contracep-
tives usage, since these factors may also influence the breast

Fig. 7 Performance of RTA combined with PD, and PD alone, in
terms of AUC values in the task of distinguishing between age-
matched high-risk and low-risk women.

Fig. 8 AUC values obtained with PD, RTA, and RTA + PD as decision
variables in the task of distinguishing between the age-matched high-
risk groups and the low-risk control group. An asterisk indicates
that the AUC difference is statistically significant after correction for
multiple comparisons.
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PD estimation. In addition, since our study was performed on
processed FFDM images, future studies will include perform-
ing both breast PD estimation and RTA on both raw and
processed images from various manufacturers to assess the
robustness of the method and to allow for more generalization
and flexibility in different clinical settings.

Since breast density estimation can be subjective, the lack of
ground truth is a major challenge for any existing density esti-
mation method. Currently, the breast density estimation estab-
lished by expert mammographers is used as the ground truth. We
believe that the breast PD estimated in this study using CC view
images may not reflect the true fibroglandular measure because
of superimposing tissue; however, such breast PD estimation
can still be used as a surrogate marker in breast cancer risk
assessment. Future studies will include performing breast den-
sity estimation on both CC and MLO view images. Since the
MLO view includes more breast tissue volume, the breast den-
sity estimation from the MLO view may be closer to the true
fibroglandular content.

In conclusion, we analyzed mammographic parenchymal
patterns, in terms of image-based phenotypes from RTA and/
or breast PD, as a means to assess breast cancer risk with
full-field digital mammography. The evaluation included analy-
ses of breast parenchymal patterns of women at high risk of
developing breast cancer, including both BRCA1/2 gene-muta-
tion carriers and unilateral cancer patients, and of a control
group of women at low risk of developing breast cancer. Our
results indicate that women at high risk for breast cancer and
women at low risk present with different mammographic paren-
chymal patterns with statistically significant higher discrimina-
tion resulting from the parenchymal texture pattern than from
the breast PD alone. Such findings are expected to contribute
to the formation of personalized screening regimes dependent
on the associated breast cancer risk.
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