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Abstract. With modern optical imaging methods, it is possible to map structural and functional connectivity.
Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and com-
plex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connec-
tivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and
quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional
network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2
stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we
employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium
indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for
interpreting optical imaging data and define network properties that may be used to compare across preparations
or other manipulations such as animal models of disease. © The Authors. Published by SPIE under a Creative Commons Attribution
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1 Introduction
A major goal in neuroscience is to map and understand the con-
nectivity of the brain. Recently, there has been great interest in
quantifying aspects of the connectome, which refers to a com-
plete description of the structural or functional connections
between elements of the nervous system.1,2 There have been a
number of efforts to reconstruct the structural connectivity of the
entire brain through detailed anatomical tracing studies in the
mouse3–6 and rat7 brain. Such intense research effort is indicative
of the great potential of the connectome to reshape our frame-
work for understanding the brain in health and disease.8

Modern optical imaging techniques are generating large
datasets from which anatomical or functional connectivity maps
have been derived. Recently, network analysis (based on graph
theory) has been used to describe these datasets as a type of net-
work and to quantify their properties.1,9–11 Such analyses open
exciting possibilities for experiments using network approaches
to investigate the organizing principles of the brain,1,10 and have
proven useful for quantifying how brain injury affects network
structure and function.9,12,13 This tutorial will describe how we
have applied network analysis and graph theory to optical im-
aging data [voltage-sensitive dye (VSD) imaging]. We provide
sample data and analysis codes to illustrate the image processing
and creation of brain network diagrams on our website, and refer
to these throughout this tutorial.14

2 Why Use Network Analysis?
Perhaps the greatest advantage to use network analysis in neuro-
imaging research is that network analysis can take large,

complex datasets and interpret it in a quantifiable way that
lends itself to graphical presentation. Furthermore, network
analysis can be applied to many different scales of connectivity
studies ranging from the microscopic level (the level of neurons
and synapses), to the mesoscopic level (the level of neuronal
groups or populations), to the macroscopic scale (the global
level of the entire brain and the inter-regional pathways between
large cortical areas).8 At each of these levels, neural networks
may be defined and described by quantifying important network
properties (see Appendix for a brief overview or Ref. 15 for a
full review of network properties). Network analysis can thus
be applied to many different types of neuroimaging approaches,
ranging from regional optical imaging12,16,17 to functional
neuroimaging in a clinical setting using functional magnetic res-
onance imaging (fMRI).18 A connectomics approach to neuro-
imaging analysis allows for comparisons between structural and
functional connectivity, as well as comparisons between sub-
jects or groups. Network analysis has been shown to be useful
in quantifying network changes that occur after brain injury,
such as stroke,12,18,19 and may be useful in informing treatment
and rehabilitation strategies or projecting recovery after brain
injury. Network analysis may also prove to be useful in identi-
fying changes that occur during aging, or in neurological dis-
eases that do not have a well-defined etiology, such as
schizophrenia20 or autism spectrum disorder.21

3 Basic Concepts in Network Analysis
Networks are structures that consist of nodes (or vertices),
and edges (or links) that connect nodes to one another. The
number of links connected to a node is the node degree and
broadly reflects the importance of the node within the network.
Edges may be directed or undirected: directed edges may be
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anatomical or effective functional connections, and indicate that
activity in one node modulates activity in the other node;22 undi-
rected edges indicate an anatomical or functional connection
between two nodes, but do not specify directionality for the
edge, and there is no effective causality between the nodes15

[Fig. 1(a)]. In an undirected network the edges represent recip-
rocal connections, so the in-degree (the number of afferent
connections for a given node) and out-degree (the number of
efferent connections for a given node) is equal. In a directed
network, edges are not necessarily reciprocal and the in-degree
differs from the out-degree for each node (the number of con-
nections to a given node does not necessarily equal the number
of connections from that node) [Fig. 1(b)].

Similarly, networks may be weighted or unweighted.
Unweighted networks, also known as binary networks, simply
indicate the presence or absence of an edge between two nodes
[Fig. 1(a)]. On the other hand, weighted networks allow edges to
be associated with a weight. The weight for each edge is typ-
ically proportional to the strength of the connection between the
nodes [Fig. 1(b)].

Certain types of neuroimaging data lend themselves to par-
ticular network representations. For example, diffusion tensor
imaging tractography and fMRI lend themselves to weighted,
undirected networks as these data do not explicitly capture the
direction of activity flow from one node to the next.15 However,
Granger causality analysis of fMRI has been used to infer the
direction and create a weighted, directed network.23 Weighted,
directed networks are also readily derived from structural
information such as the anatomical connectivity data in mice
(obtained through viral tracing studies) available from the
Allen Institute for Brain Science.4 In the Channelrhodopsin-2
(ChR2) stimulation-VSD imaging experiments described in
Sec. 4.1, we sought to quantify reciprocity of intracortical func-
tional connections in the healthy16 and stroke-affected brain.12

We exploited stimulus-evoked activity to create a weighted,
directed network where integrated VSD response is used
as a network weight and the direction of activity flow is
known based on the local laser stimulation. Because of this,
we were able to make comparisons about information process-
ing between nodes. For example, we found that the strength of
connectivity from the primary to secondary sensory areas was
stronger than the reciprocal (connectivity from secondary to pri-
mary sensory areas). This suggests that the connectivity between
primary and secondary sensory areas are not equivalent, but are

instead biased for network flow from primary to secondary
sensory areas.16

In large-scale brain networks, nodes usually represent func-
tional brain regions while edges represent structural or func-
tional connections between those regions.15 Here, we describe
how we have applied network analysis and graph theory to
assess intrahemispheric and interhemispheric functional rela-
tionships in the mouse cortex (Fig. 2). We combined VSD im-
aging and ChR2 stimulation12,16 to create an in vivo imaging
method that would allow us to map multiple points over a large
cortical area with high-spatiotemporal resolution. While we
describe this tutorial in the context of our optical imaging
method, the network analysis approach described here could
be easily applied to a different neuroimaging method, such as
calcium imaging with genetically encoded calcium indicators,24

or for spontaneous cortical activity.25,26

4 Optical Imaging and Network Analysis

4.1 Voltage-Sensitive-Dye Imaging

ChR2 transgenic mice were obtained from the Jackson
Laboratory [line 18, stock 007612, strain B6.Cg-Tg (Thy1-
COP4/EYFP) 18Gfng/J]. All experiments were conducted with
approval from the University of British Columbia Animal
Care Committee and in accordance with guidelines set forth
by the Canadian Council for Animal Care. At approximately
16 weeks of age, transgenic ChR2 mice27 were anesthetized
with isoflurane (1.0%), and given a large bilateral craniotomy
(8 × 8 mm). To minimize any movement artifacts in the image
acquisition, the skull was fastened to a custom-designed steel
plate with dental cement. This steel plate was screwed onto a
metal baseplate that could be mounted onto the imaging rig
for mechanically stable imaging.28 Following the craniotomy,
we used a blue-shifted VSD, RH1962 (Optical Imaging, New
York),29 dissolved in 4-(2-hydroxyethyl)-1-piperazineethanesul-
fonic acid (HEPES)-buffered saline solution to an optical den-
sity of 5 to 7, measured at 550 nm. The dye was applied to the
exposed cortex for 60 to 90 min in order to stain all cortical
layers.30 The brain was then washed with HEPES-buffered
saline solution to remove any unloaded dye, covered with 1.5%
agarose (made in HEPES-buffered saline) and sealed with a
glass coverslip to minimize movement artifacts due to respira-
tion. VSD imaging followed immediately.
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Fig. 1 Construction of network diagrams from connectivity matrices: (a) example of a simple unweighted
(binary), undirected connectivity matrix and network. Note that the connectivity matrix is symmetrical
across the diagonal because all edges are reciprocal (A → B and B → A are equivalent); (b) example
of a weighted, directed connectivity matrix and network. The thickness of the edges corresponds to the
weight of the edge. Note that the edges in the network diagram display a direction (arrowheads), and
connections between nodes are not always reciprocal (for example, while there is a strong efferent con-
nection from D to A, there is no afferent connection from A to D).
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For VSD data collection, 12-bit images were captured with
6.67-ms exposure using a CCD camera (1M60 Pantera, Dalsa,
Waterloo, Ontario, Canada), and EPIX E4DB frame grabber
with XCAP 3.7 imaging software (EPIX, Inc., Buffalo
Grove, Illinois). VSD was excited with a red LED (Luxeon
K2, 627 nm centre) and the camera focused 400 μm below
the surface to prevent VSD signal distortion from large surface
vessels. VSD fluorescence was filtered using a 673 to 703 nm
bandpass filter (Semrock New York), after reflection by a
dichroic mirror (510 dcspxr; 400 to 495 transmission reflection
550 to 725 nm, Chroma, Bellows Falls, Vermont). Images were
taken through a macroscope consisting of coupled camera lenses
(Nikon NIKKOR f ¼ 35 mm and f ¼ 50 mm) (8.4 × 8.4 mm

field of view, 65 μm per pixel). The depth of field was 1.20 mm
and was defined by the distance along the optical axis where the
resolution was better than 10 lines per mm, corresponding to
a maximum blur of 2 pixels.

For each trial, either sensory or optogenetic stimulation was
performed, as described in Secs. 4.2 and 4.3. For all types of
stimulation, images were collected for 205 ms before stimula-
tion and 515 ms after stimulation for a total of 108 frames at
150 Hz (6.67 ms∕frame). To correct for dye bleaching over
time, stimulation trials were divided by null stimulation trials.
Null stimulation trials were interleaved with stimulation trials to
correct for any dye bleaching that may take place over the course
of the experiment (for every two stimulation trials, there was one
null stimulation trial). To reduce the impact of spontaneous
cortical activity,25 we averaged 2 to 10 trials of stimulus presen-
tation per stimulation type. VSD responses were expressed
as a percent change relative to baseline VSD fluorescence
(ΔF∕F0 × 100%).

4.2 Sensory Stimulation

We used sensory stimuli to locate the functional sites of the
primary sensory cortical areas. Specifically, we mapped the
hindlimb, forelimb, C2 whisker, and visual system. Probes
were inserted subcutaneously to each of the paws and a 1 ms,
1-mA pulse was delivered to locate the functional forelimb and
hindlimb areas of the primary somatosensory cortex (FL and
HL, respectively). A piezo device was attached to a single
whisker (C2) to locate the somatosensory barrel cortex (BC).
A combined blue and green LED light stimulus was presented
to map the primary visual cortex (V1). These functional sites
were then used as the coordinates for the photostimulation
sites and to stereotaxically locate secondary and association
areas for photostimulation.

4.3 Optogenetic Stimulation

We used transgenic ChR2 mice from Jackson Laboratory
[line 18, stock 007612, strain B6.Cg-Tg (Thy1-COP4/EYFP)
18Gfng/J]. These mice express ChR2 in layer V neurons,27

allowing for optogenetic photostimulation at any area of the
cortex. We used a 473-nm diode pumped solid-state laser
(CNI Optoelectronics, Changhun, China) and a 1-ms, 5-mW
pulse to stimulate these ChR2-expressing neurons. In order to
verify that the beam was relatively collimated, we imaged the
beam profile as it passed through a cuvette containing a fluores-
cein solution. The FWHM at the top of the cuvette was 68 μm
and has an f-number of 34. This degree of collimation reduced
the potential effects of differences in path length due to brain
curvature.

Fig. 2 Workflow for network analysis and the creation of network diagrams from functional voltage-sen-
sitive dye imaging and channelrhodopsin-2 stimulation: (a) experimental setup for simultaneous ChR2-
photostimulation and VSD imaging; (b) raw, time-series VSD images were collected and processed
offline using MATLAB®; (c) raw images were normalized, filtered, and averaged across 2 to 10 photo-
stimulation trials to determine dF∕F 0ð%Þ responses (see “NetworkAnlaysis_VSD” code Section A);
(d) twenty different regions of interest [regions of interest (ROIs); red boxes] were selected (left) to mea-
sure VSD responses. An example time course of the dF∕F 0ð%Þ VSD response from a single ROI is
shown on the right (see “NetworkAnlaysis_VSD” code Section B); (e) VSD responses were represented
as a weighted connection matrix (see “NetworkAnlaysis_VSD” code Section C); (f) a number of threshold
levels were tested with various network properties using the Brain Connectivity Toolbox15 to determine a
threshold that would retain only the strongest network connections without changing the global network
properties (red dashed line; see “NetworkAnlaysis_VSD” code Section D); (g) this threshold was applied
to the connection matrix and a network diagram was created (see “NetworkAnlaysis_VSD” code Section
E). DM = dichroic mirror; BP = bandpass filter; MB = motor barrel cortex; M2 = secondary motor cortex;
MF = motor forelimb area; FL = forelimb area of the primary somatosensory cortex; HL = hindlimb area of
the primary somatosensory cortex; BC = barrel cortex; PT = parietal cortex; RS = retrosplenial cortex;
V1 = primary visual cortex; and V2 = secondary visual cortex.
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The beam was positioned on the cortex using custom-written
software in IGOR PRO (Portland, Oregon) which controlled
galvanometer scan mirrors (Cambridge Tech, Lexington,
Massachusetts), via analog output voltage from PCI-6115
DAQ (National Instruments, Austin, Texas). The IGOR program
controlled the timing of each stimulation trial with TTL triggers
to XCAP from a second DAQ (PCI-6036E). The stimulation
delay (205 ms) and pulse length (a single 1-ms pulse) were con-
trolled by an A–M Systems (Sequim, Washington) isolated
pulse stimulator. The intensity and duration of the photosti-
mulation was chosen based on its ability to reliably evoke
electroencephalogram (EEG) responses in a ChR2 mouse.
We determined 20 regions of interest (ROIs) that we used for
photostimulation sites (10 per hemisphere): secondary motor
cortex (M2), primary motor cortex (MB), forelimb area of
the primary motor cortex (MF), forelimb area of the primary
somatosensory cortex (FL), hindlimb area of the primary soma-
tosensory cortex (HL), barrel cortex of the primary somatosen-
sory cortex (BC), parietal cortex (PT), retrosplenial cortex (RS),
secondary visual cortex (V2), and primary visual cortex (V1).
These sites were calculated per animal, and were based on
known sensory coordinates (primary sensory areas were func-
tionally mapped from sensory stimulation, as described previ-
ously) and on stereotaxic coordinates.31 (Note: the coordinates
for these 20 ROIs can be found with the MATLAB® code on
our website. These ROIs are listed according to pixel location,
given our 128 × 128 pixel images. See file: “pos.mat.”)
Photostimulation was given in a semirandom, interleaved order
to reduce the possibility of sequential stimulation at neigh-
boring cortical sites and to reduce any time-dependent effects
of anesthesia depth or cortical excitability. There was a 10-s
interval between trials to allow for VSD fluorescence to fully
recover.

4.4 Data Analysis in MATLAB®

VSD responses to stimulation were captured using EPIX soft-
ware (see sample data on our website) and then processed offline
using custom-written MATLAB® code (see sample code,
“NetworkAnalysis_VSD.m,” on our website). To correct for
VSD bleaching over the imaging time, the VSD response
was normalized by dividing by the VSD response to a null
stimulation trial, for example NOA.tif. VSD responses were
then calculated and expressed as a percent change relative to
baseline VSD fluorescence (ΔF∕F0 × 100%). For each stimu-
lation, we averaged 2 to 10 trials together to create an average
VSD response; for example, two trials of stimulation of the left
forelimb somatosensory cortex: FLL1.tif and FLL2.tif. Images
were spatially filtered with a Gaussian kernel 2-d filter (sigma
2.5). (See code ”NetworkAnalysis_VSD.m”—Section A.)

Integrated VSD responses were quantified at the same 20
ROIs that were used as photostimulation sites. Each response
area measured 5 × 5 pixels, or 0.0625 mm2, and responses were
taken at a number of time points after stimulation (6, 12, and
20 ms after stimulation). Therefore, for each photostimulation
site, VSD responses were collected from the remaining 19 sites.
Responses were not taken from the photostimulation site
due to transient photobleaching caused by the laser. In order to
ensure that the VSD responses we collected were not simply due
to noise, we excluded any VSD responses that were less than
2.5 times greater than the standard deviation of the baseline.
Responses that did not meet this threshold were assigned a
value of zero. (See code “NetworkAnalysis_VSD.m”—Section B.

Note that for simplicity, this code calculates responses at a single
time point only.)

In a given connectivity matrix, the number of rows or number
of columns is equal to the number of nodes in the network, while
the elements within the matrix represent the edges within the
network. Here, VSD responses were put into a 20 × 20weighted
matrix, arranged with photostimulation sites on the x axis, and
response sites on the y axis, with the integrated VSD response as
the elements of the matrix. For each node, the connectivity
matrix shows in-strength as the rows (the strength of the con-
nections coming to the node when other areas were photostimu-
lated) and out-strength as the columns (the strength of the
connections to other areas when the node was photostimulated).
We chose to represent the data as a weighted, directed network
to preserve the information regarding reciprocal connections
and their relative importance (as opposed to a binary, undirected
network which would simply indicate the presence or absence of
an edge between nodes, but would not provide any information
on the direction of information processing or the strength of that
connection). This allows us to make the distinction between
incoming and outgoing strength as well as the relative impor-
tance of each node to the network as a whole. We chose to
order our connectivity matrix by approximate anatomical ROI
position, from anterior to posterior in the left hemisphere,
and then anterior to posterior in the right hemisphere: M2L,
MBL, MFL, FLL, HLL, BCL, PTL, RSL, V2L, V1L, M2R,
MBR, MFR, FLR, HLR, BCR, PTR, RSR, V2R, V1R. This
makes it easier to distinguish clusters of activity in neighboring
nodes; for example, the top-left quadrant of the connectivity
matrix shows strong VSD responses in the left hemisphere
somatosensory areas after left hemisphere photostimulation of
the somatosensory areas. Note that the order of the nodes
does not affect the computation of network measures but is
important for visualization of the connectivity matrix and the
network diagram. (See “NetworkAnalysis_VSD.m” code—
Section C.)

We chose to focus on the 20 ms poststimulation time point
based on previous work that showed the greatest VSD activa-
tion,16 however, these analyses can easily be applied to a differ-
ent time point or a different set of ROIs.

4.5 Network Analysis in MATLAB®

Once the data is arranged in a connectivity matrix, it is possible
to use functions from the Brain Connectivity Toolbox15,32 for
network analysis. The Brain Connectivity Toolbox has a number
of functions for both directed and undirected networks,
weighted and unweighted networks (for a full review of these
functions and network properties, see Ref. 15). We used the
Brain Connectivity Toolbox to determine a suitable threshold
for creating network diagrams (see Sec. 4.6) and calculate vari-
ous network properties (see Appendix). Network analysis may
be used to describe global network properties such as character-
istic path length and efficiency (Table 1), or may be used to
describe properties per node, such as node degree and node
strength (Table 2). For simplicity, only results for three example
nodes are shown for a single animal. Given that this a single
animal example, left and right hemisphere differences are
unlikely to represent a true lateralization of function, but rather
some noise within the system.
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4.6 Network Diagram Generation in MATLAB®

Once a square connectivity matrix has been generated, it is
possible to use the bioinformatics toolbox in MATLAB® to gen-
erate network diagrams. This toolbox includes functions and
methods for creating, visualizing, and manipulating graph
data as a directed network. Here, nodes may represent proteins,
genes, locations, or brain regions and edges may represent inter-
actions, dependencies, or connections (structural or functional).
Importantly, the graph visualization function in the bioinfor-
matics toolbox does not work with nonsquare matrices. Using
the biograph function in MATLAB®, the network diagram
can be formatted to change the position of the nodes to
match an anatomical representation, or to change properties
of the elements within the diagram (for example, if a weighted
connectivity matrix is being used, node size can be made to be
proportional to the strength of the connection weight).

The network diagrams that we use here are simply a graphi-
cal representation of the information in the connectivity matrix;
however, these diagrams are useful to illustrate the data. In order
to keep the network diagram illustration relatively simple, we
chose to display only the strongest connections in the network
by applying a consistent threshold across the connectivity
matrix. This threshold was applied for display purposes only,
as it was difficult to visually assess trends within the diagram
of the unthresholded network due to the large number of con-
nections present. To determine the threshold, we examined the
effects of various threshold levels on common global network
properties, including characteristic path length and efficiency

[see Fig. 2(d)] using functions from the Brain Connectivity
Toolbox.15 (See “NetworkAnalysis_VSD.m” code—Section D
and see Table 1.) An ideal threshold will remove a large number
of connections without having a severe effect on global network
properties. This generally allows for easier visualization of the
most important connections within the network. In our previous
studies,12,16 we limited the use of thresholded network to visu-
alization only, and performed all statistical analyses with the
unthresholded network. The suitability of the thresholded net-
work for further analysis should be carefully considered for
the particular system under study.

Once we had a thresholded square matrix (connections that
did not reach the threshold level were given a value of zero), we
used the biograph function in MATLAB® to visualize the graph.
Using this function, it is possible to identify the nodes with iden-
tification strings and color code them. While the biograph func-
tion will automatically arrange the nodes in space, we defined
the placement of our nodes according to the stereotaxic coordi-
nates we mapped during each experiment so the positions of the
nodes were anatomically relevant.12,16 We used the out-strength
of the node (that is, the sum of the outgoing connections) to
determine the overall size of the node within our graph. Similarly,
we used the weight of the connection strength between two
given nodes to determine the thickness of the edge connecting
these two nodes. Edges were also color-coordinated to match the
node from which the connection was coming (out-strength).
This generated network diagrams that had the nodes in the
correct stereotaxic position, with the node size relating to the
total node out-strength, and with edges relating to weighted con-
nection strength (in this case, integrated VSD response), and
color-coded by node. (See “NetworkAnalysis_VSD.m” code—
Section E).

5 Caveats and Limitations of Network
Analysis

Due to the nature of our preparation, one of the biggest limita-
tions is that VSD imaging is only capable of measuring surface
cortical connections, and cannot be used for subcortical connec-
tions or provide depth information about cortical connections.
Thus, our networks only represent intracortical connections,
although it is possible that there are subcortical contributions
(especially when considering the VSD response at later time
points). Despite the fact that we cannot account for possible sub-
cortical contribution using our method, it is still possible to use
network analysis to examine directionality and relative node
strength within the cortical network. For example, we have dem-
onstrated that the strength of reciprocal intracortical connections
between primary and secondary areas are unequal, suggesting
different roles in information processing between these nodes.16

When identifying hub nodes using betweenness centrality, it is
important to recognize that there may be contributions from
areas outside the scope of the measured network. A high betwe-
enness centrality may therefore also reflect strong connections
through an inaccessible hub; for example, a subcortical area or
even a cortical area outside of the imaging window.

While we cannot distinguish between cortical and subcortical
contribution with VSD imaging, this distinction could be made
using a different technique, such as fMRI. Indeed, optogenetic
stimulation has been paired with fMRI in order to map whole
brain networks.33–35 However, the disadvantage of using fMRI is
that signals are much slower compared to VSD imaging, and
the fMRI signal and its relationship to neuronal coupling is

Table 1 Global network properties calculated with the Brain
Connectivity Toolbox.

Global network
property

Unthresholded
network

Thresholded
network (0.2577)

Difference
(%)

Number of
connections

231 158 −31.6

Characteristic
path length

3.35 2.72 −18.8

Global efficiency 0.38 0.36 −5.3

Table 2 Example per-node network properties calculated with the
Brain Connectivity Toolbox (network thresholded at 0.2257).

Node
Node
degree

Node
strength

Mean
strength
per edge

Betweenness
centrality

HLL 22 15.1 0.69 6

PTL 23 14.1 0.61 22

V2L 4 1.8 0.45 0

HLR 21 12.9 0.61 8

PTR 19 10.3 0.54 35

V2R 0 0 – 0
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not always clear.36 Each mapping technique will have strengths
and limitations with respect to network analysis, thus, results
from network analysis should be interpreted with the technique
in mind.

One of the general challenges in applying network analysis is
determining how to define nodes.37,38 The parcellation of the
brain into different nodes should be done such that there is
no overlap between nodes (that is, each node should be separate
from the others). In experimental studies, nodes may be defined
by the cytoarchitecture of the tissue (for example, motor cortex
can be defined by the absence of layer IV cells), by the func-
tionality of the tissue (for example, motor cortex can be mapped
by the region that is active during the execution of a motor task),
or by previously defined stereotactic coordinates (for example,
using a brain atlas). It is important for the parcellation scheme
to be consistent between studies to allow for contrast and com-
parison.37 Here, we determined nodes on the functional VSD
responses to sensory stimulation (for the primary sensory areas)
and on stereotaxic coordinates. Functional maps were com-
pleted for each animal to account for any animal-to-animal vari-
ability in cortical map distribution.

Detecting network connectivity abnormalities in neuropsy-
chiatric disorders1,39,40 or brain injury9 may prove to be useful
in understanding these conditions. Particularly, it may be useful
to relate structural and functional networks. However, one of the
challenges with comparing brain networks is differences in edge
density—for example, functional brain networks may be denser
than anatomical networks due to numerous redundant connec-
tions between areas not directly anatomically connected.15,41 As
anatomical mapping efforts continue and more detailed struc-
tural maps become available, it will be easier to draw compar-
isons between functional and anatomical networks.1,15 While
structural and functional maps do not always correlate, the
mouse dorsal cortex does offer the ability to correlate functional
and structural connections.25

6 Prospects
Regional, functional connectomics by network analysis holds
great potential for the interpretation of neuroimaging data at
multiple scales of organization. Using these analyses, we can
further investigate cortical organization in the healthy and
unhealthy brain. For instance, network changes may be useful
in tracking progressive disease models, such as Alzheimer’s dis-
ease,42 and may lead to better preventative treatment methods.
Network analysis may also prove useful in tracking recovery of
brain function after brain injury, such as stroke,18 or could be
used to inform future studies about which areas of the brain
are most vulnerable to damage; for example, damage to hub
areas will have great effects on the whole network.43 The con-
nectomics approach may prove especially useful in the clinical
setting where noninvasive imaging techniques such as fMRI can
collect data relatively easily (for example, the collection of spon-
taneous fMRI data requires little effort on behalf of the patient)
and over multiple time points.11

Future studies using animal models may take advantage of
recently developed sensors, which would allow for more spe-
cific imaging of the network. While the VSD signal includes
contribution from excitatory and inhibitory cells,44 tools such
as genetically encoded calcium imaging could be used to inves-
tigate specific aspects of the neuronal signal.24,45 Novel voltage-
sensitive fluorescent proteins (VSFPs) could also be used to
investigate networks over time (for example, several time points

in the poststroke period could be investigated in the same animal
using VSFPs), and could be used to investigate cell-specific,
layer-specific contributions to the signal.45
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Appendix
The typically observed brain network can be considered as
a small-world network. This type of network has efficient
information transfer with minimal wiring costs, has both local
processing (specialization) and global processing (integration),
and is resistant to random network damage.1 Abnormal or
pathological networks do not necessarily have these character-
istics. In cases where networks are altered due to increased
aberrant connectivity,1,39,40 there may be increased clustering,
decreased characteristic path lengths, and increased efficiency.
For the purposes of this review, we describe network properties
in the Appendix in the context of the typical brain network.

A1 Basic Properties in Network Analysis

A1.1 Degree

The degree is a measure of the number of links connected to a
node and broadly reflects the importance of the node within the
network; nodes with more links have a higher degree, and nodes
with fewer links have a lower degree. In a directed network,
degree is the sum of the incoming (afferent) and outgoing
(efferent) connections in a given node. Degree can be broken
down into in-degree and out-degree (corresponding to the sum
of incoming and sum of outgoing connections for a give node,
respectively). The comparison of in-degree and out-degree can
be useful in describing the properties of the node. A node with
high in-degree can be considered an integrator, whereas a node
with a high out-degree can be seen as distributors.46

The degree distribution is the probability distribution
describing the likelihood of a given node having a given
degree.47 Degree distribution may be used to compare and
classify network types: for example, brain networks tend to
have a non-Gaussian degree distribution, while a random net-
work has a Gaussian degree distribution.1

A1.2 Clustering Coefficient

For a given node, X, all nodes that have a direct projection to this
node, and all nodes to which X has a direct projection, are con-
sidered neighbors. Connectivity between neighbors is used to
determine clustering. The presence of clusters, or groups, can
represent the ability for specialized processing to occur within
the network and is calculated using the clustering coefficient,
which measures the fraction of the node’s neighbors that are
also neighbors to each other.48 This determines how much clus-
tered connectivity takes place around an individual node. In a
random network (where node pairs are connected randomly
by a probability, p), there would be relatively low clustering;
however, many real-life complex networks show a high degree
of clustering, which may be indicative of specialization.22
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A1.3 Characteristic Path Length

The distance between two nodes in a network is defined as the
number of edges along the shortest path connecting the two
nodes (that is, the lowest number of connections possible
between the pair of nodes). The characteristic path length is the
mean distance of the shortest path between two given nodes in a
network, averaged over all pairs of nodes.48 Characteristic path
length gives a measure of network integration. Shorter average
path length typically suggests fast communication within the
network.39 The characteristic path length of most real, complex
networks is relatively small, allowing for the efficient transfer of
information between specialized regions.48

A1.4 Efficiency

Efficiency is a measure of integration or information processing
within the network. Global efficiency is the average inverse
shortest path length in the network.49 High efficiency and rel-
atively low wiring cost (number of connections) are important
features of small-world networks.50

A1.5 Betweenness Centrality

The betweenness centrality is a measure of the number of short-
est paths that pass through a given node.51 A higher centrality
indicates a “hub” node, meaning that the node has many impor-
tant connections for information transfer within the network.
Nodes with a high betweenness centrality are highly important
for network efficiency and integration. Hub nodes are a charac-
teristic of small-world networks, and are often seen in real,
complex networks. Networks containing hub nodes tend to
be resistant to random network damage but are vulnerable to
targeted damage of these hub nodes.43

For a full description of network properties, see Ref. 15.
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