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Abstract. We present a technique to rectify nonrigid registrations by improving their group-wise consistency,
which is a widely used unsupervised measure to assess pair-wise registration quality. While pair-wise registra-
tion methods cannot guarantee any group-wise consistency, group-wise approaches typically enforce perfect
consistency by registering all images to a common reference. However, errors in individual registrations to the
reference then propagate, distorting the mean and accumulating in the pair-wise registrations inferred via the
reference. Furthermore, the assumption that perfect correspondences exist is not always true, e.g., for interpa-
tient registration. The proposed consistency-based registration rectification (CBRR) method addresses these
issues by minimizing the group-wise inconsistency of all pair-wise registrations using a regularized least-squares
algorithm. The regularization controls the adherence to the original registration, which is additionally weighted by
the local postregistration similarity. This allows CBRR to adaptively improve consistency while locally preserving
accurate pair-wise registrations. We show that the resulting registrations are not only more consistent, but also
have lower average transformation error when compared to known transformations in simulated data. On clinical
data, we show improvements of up to 50% target registration error in breathing motion estimation from four-
dimensional MRI and improvements in atlas-based segmentation quality of up to 65% in terms of mean surface
distance in three-dimensional (3-D) CT. Such improvement was observed consistently using different registra-
tion algorithms, dimensionality (two-dimensional/3-D), and modalities (MRI/CT). © 2015 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.1.014005]
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1 Introduction
Image registration is an essential tool in medical image analysis.
It enables applications such as atlas-based segmentation,1 stat-
istical model building, and automatic landmark detection. In
many of these tasks, high registration accuracy is critical, but
difficult to achieve since the registration problem is known to
be ill-posed2 with anatomical correspondences estimated merely
using visual similarity. Regularization terms based on global
smoothness assumptions are commonly utilized to facilitate
anatomically reasonable transformations. However, the resulting
elastic matching problem is very difficult, and its approxima-
tions lead to registration algorithms that are only locally optimal.
Techniques such as multiresolution registration are widely
employed to reduce the likelihood of poor local optima.3

There have been several studies that aimed at detecting regis-
tration inaccuracies or errors posterior to registration. Some of
these were based on intensity measures, e.g., using the multiple
Gaussian state-space,4 voxel-statistics based on active appear-
ance models from registered images,5 or supervised learning.6,7

However, it was shown that such voxel similarity metrics are not
suitable indicators of registration quality due to homogeneous
tissue regions, partial volume effects, and anatomies of similar
appearance.8,9 While independent labeling of landmarks or ana-
tomic regions can be used to measure registration fidelity, this
requires invaluable time and effort of trained medical personnel,
which an automatic registration is supposed to avoid in the
first place. To estimate the uncertainty in single pair-wise

registrations, different methods, such as the Cramér-Rao
bound,10 bootstrap resampling,11 or Markov chain Monte-
Carlo,12 have been proposed, often increasing the complexity
of a registration algorithm by orders of magnitude. Recently,
such uncertainty estimations have been utilized to improve
registrations by adaptively estimating an optimal regularization
weight13 or by re-registering uncertain regions in a boosting
framework.14

Moving from pairs of images to groups, it is possible to
investigate the consistency of multiple registrations as a measure
of registration fidelity.9,15–19 The most common application of
this has been the evaluation and comparison of registration algo-
rithms by computing the residual norm of inconsistencies in
pair-wise registrations.9,16 Recently, a method was proposed
to exploit redundancy in multiple registration circles for estimat-
ing the spatial location and magnitude of errors in pair-wise
registrations.19,20 Using a simplified model for the accumulation
of registration errors, this method can estimate a dimensionless
measure for local registration error, which was shown therein to
correlate with true errors. A similar method was also used to
predict the segmentation quality for multi-atlas segmentations.21

This was also shown in Ref. 22 to be able to leverage additional
information from unlabeled images.

In contrast to registration error detection, registration consis-
tency can also directly be incorporated into a registration
algorithm. Several algorithms optimize a symmetric energy
term, which adheres to the inverse consistency described in
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Ref. 18. Noteable examples are symmetric log-domain demons23

and symmetric normalization.24 Group-wise registration can
naturally incorporate consistency criteria as well. Here, images
are commonly registered to a reference image25 and pair-wise
registrations can then be computed if the individual registrations
are invertible.26 To avoid bias to a specific image, an averaged
intensity image is used as the group mean on which all other
images are then registered. Using the registered images, a
new (improved) mean is then computed, and the process is
repeated iteratively. In order to ensure that the group mean is
in a natural coordinate system, the sum of the registrations
can additionally be constrained to be zero.27 A transitive regis-
tration method for triplets of manifolds was presented in Ref. 28.
The described algorithm was extended to larger groups of
images by a hierarchical clustering approach, where first the
images within a cluster were registered transitively and the clus-
ter means were registered to each other.29

In this paper, we introduce a novel method that rectifies a
given set of pair-wise transformations within a group of images.
Importantly, our algorithm allows for rectifying nonrigid regis-
trations, in contrast to a previous method for rigid registra-
tions.30 Our method extends an approach19,20 presented earlier,
which computes dimensionless estimates of nonrigid registra-
tion errors by optimizing a surrogate model of inconsistency
in mutually registered sets of images. In contrast, our work
directly minimizes actual registration inconsistencies within
registrations. This then estimates error vectors which can be
used to rectify the given registrations, which is not possible
with the method in Ref. 19. In comparison to group-wise regis-
tration, one major advantage of our approach is that it can
be used as a postprocessing technique to any given pair-wise
registration method, necessitating neither a reference image
nor any guarantees on the invertibility of given transformations.
Accordingly, it can easily be integrated in any existing work-
flow that is tailored to a specific clinical problem. Additionally,
our approach treats consistency as a criterion that is encouraged
rather than enforced, as implicitly stated by group-wise registra-
tion (c.f. Fig. 1). This enables its application in scenarios where
perfect correspondences are not guaranteed and may not exist,
e.g., in interpatient registration.

We compute our consistency based registration rectification
(CBRR) by solving a series of linear least-squares problems for
which efficient large-scale algorithms exist. In combination with

a coarse grid, this allows CBRR to run on large datasets.
Preliminary results of this work have been presented in
Ref. 31. A main contribution of the current paper is an improved
formulation of the CBRR problem, which (1) requires only half
of the free variables compared to Ref. 31, (2) requires fewer
weighting parameters, and (3) allows for an iterative rectifica-
tion process yielding better accuracy for employed approxima-
tions and thereby improving the resulting registrations. We
present a thorough evaluation of CBRR on fully synthetic
and clinical data. Consistency is shown to improve on datasets
of two-dimensional (2-D) and three-dimensional (3-D) images,
while average transformation error, target registration error, and
segmentation overlap improve substantially, regardless of initial
registration algorithm and image modality. Such measures are
also shown to outperform a common group-wise registration
algorithm.

This paper is structured as follows. First, we introduce the
notation used in this paper, along with a presentation of common
concepts regarding consistency. Subsequently, we describe our
CBRR algorithm before presenting experimental results and a
discussion thereof.

2 Notation and Background
An image X is a function that maps points in the D-dimensional
spatial domain Ω to a space I of image intensities, e.g., CT
Hounsfield units. A nonrigid transformation T is a mapping
from Ω to Ω. T is based on a displacement field D such that
T ðpÞ ¼ pþDðpÞ for all points p in Ω. Note that both X
and D are commonly defined on discrete (Cartesian) regular
grids, where nonrigid values can be obtained by interpolation.
In this notation, deforming an image is a function composition
X ∘ T ¼ XðT Þ. Composing two transformations is also a func-
tion composition: ðT 2 ∘ T 1ÞðpÞ ¼ pþD1ðpÞ þD2½T 1ðpÞ�. ∘
denotes the composition operator, read from right to left.
Therefore, T 2 ∘ T 1 means transformation T 2 applied after T 1.

Several studies9,16–18 have presented methods for estimating
registration accuracy using the consistency of a pair-wise trans-
formation set (PTS),

R ¼ fT ijji ≠ j; i; j ∈ f1; · · · ; Ngg;

between images of a set X ¼ fX1; · · · ; XNg. T ij then denotes
the transformation of image Xi to Xj. As originally introduced in

Fig. 1 (a) Group-wise registration to the mean image (center), implicitly implying complete consistency
via the inferred interimage registrations (dashed). (b) Consistency-based registration rectification (CBRR)
utilizes the information from the complete set of pair-wise registrations. (c) In this set, it aims at reducing
the registration inconsistency by modifying pair-wise transformations such that the differences ~r between
direct and indirect transformations are minimized. (d) This is done simultaneously for all pair-wise trans-
formations using all possible registration triplets. This allows us to exploit the redundant information from
multiple loops for each transformation.
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Ref. 16, a perfect registration should lead to consistent corre-
spondences over the entire set of images. Inverse consistency
as given in Refs. 9 and 18 stipulates that registering Xi to Xj
should result in the same transformation as the inversion of
the transformation from registering Xj to Xi. Formally, it
requires T ij ∘ T ji ¼ I , where I is the identity transform.
Another form of consistency is based on registration circuits,17

where any composition of transformations in a circle should
result in the identity transform; for instance, for a circle of
three transformations,

T ij ∘ T jk ∘ T ki ¼ I : (1)

Transitivity has also been used for consistency evaluation.32

Intuitively, transitivity entails that composing two transforma-
tions from registering Xi to Xj and Xj to Xk should result in
the same transformation as registering Xi to Xk:

T ik ¼ T ij ∘ T jk: (2)

Note that transitivity and circuit consistency follow from
each other when the transformations are symmetric. A general
definition of consistency is the following: Let Φn

ij be the set of
all direct paths of length n such that each path p ∈ Φn

ij is a com-
position of n transformations fT 1; T 2; · · · ; T ng that registers
Xi to Xj. A path p ∈ Φn

ij is direct if any closed loop in p,
i.e., a subsection with the same start and end point, has a length
of n. This allows only the start/end point to be visited twice,
where we we define Φ0

ii ¼ I for all i. Note that some sets
may be empty, e.g., Φ0

ij for i ≠ j, and Φ1
ii. Then, the PTS R

is ðm; nÞ-consistent if p ¼ q for all transformations p ∈ Φm
ij

and q ∈ Φn
ij. In this notation, inverse consistency can be denoted

as (2,0)-consistency, circuit consistency as (3,0)-consistency for
circuits of length 3, and transitivity as (2,1)-consistency. Since
each pair p and q share the same start and end points, we will
henceforth refer to each such pair as a loop. Then, the inconsis-
tency can be quantified using the residual vector fields
rpq ¼ p − q for p ∈ Φm

ij and q ∈ Φn
ij. In this notation, the met-

ric for algorithmic efficacy of a transformation can be computed
as the mean over the norms of all rpq.

33

3 Method
In this section, we introduce our algorithm for CBRR. The goal
of the method is to improve pair-wise registrations by minimiz-
ing an inconsistency criterion C defined as the average norm of
the inconsistency residuals r. Note that consistency is only a
necessary condition for correct registrations. This can intuitively
be observed when considering the set of identity transforms,
which are perfectly consistent but are unlikely to register images
properly. This effect can also partly be seen in Fig. 2, where
several loops with low inconsistency but substantial registration
errors can be observed. We, therefore, additionally constrain the
solution of CBRR by penalizing large deviations from the input
PTS R using a function F . This makes use of the fact that
a prior PTS R contains useful information.

We define our CBRR algorithm as the minimization of the
inconsistency criterion C for a given input PTSR obtained using
an arbitrary registration method as follows:

R 0 ¼ argmin
R̂

CðR̂Þ þ λFðR; R̂Þ; (3)

where R 0 is the rectified PTS and λ is the weight controlling its
adherence to the prior transformations.

3.1 CBRR Algorithm: Consistency

CBRR minimizes the aggregate inconsistency that is induced by
all loops in the set of pair-wise transformations:

CðR̂Þ ¼
XN
i¼1

XN
j¼1

j≠i

X
p∈Φm

ij

X
q∈Φn

ij

kp − qk2: (4)

A desirable property of such inconsistency criterion is redun-
dancy, which means that each pair-wise registration occurs in the
residual of multiple loops. This is an important cue for determin-
ing the cause of inconsistencies in a registration. For example,
consider a PTS R where only one transformation T ij has errors
which cause inconsistencies. Any consistency loop containing
T ij will, therefore, have a non-negative residual r, the cause
of which cannot easily be located using only information from
said loops alone. However, since every transformation other
than T ij will also contribute to multiple loops that all have
zero residuals, it is, thus, inferable that the cause of inconsistency
originates from T ij. It is observable that such redundancy is cre-
ated for any m and n when mþ n > 2. However, the number of
summands in Eq. (4) increases exponentially with m and n.
Furthermore, each transformation composition, especially in
longer paths, will require interpolation and, therefore, loses accu-
racy. This motivates our choice of consistency criterion as (2,1)-
consistency (transitivity), where each individual transformation
T ij occurs in 3ðN − 2Þ different loops and the number of trans-
formation compositions is minimal. Then, C becomes

CðR̂Þ¼1∕ZC

XN
i¼1

XN
j¼1

j≠i

XN
k¼1
k≠i;j

X
p∈Ω

kT̂ ij ∘ T̂ jkðpÞ− T̂ ikðpÞk2; (5)

where ZC ¼ MNðN − 1ÞðN − 2Þ is a normalization constant (the
number of all summands, where M is the total number of all
points p). This definition also minimizes the number of nonlinear
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Fig. 2 Inconsistency and target registration error (TRE) for registra-
tion loops in four-dimensional (4-D) liver MRI sequences. Each point
indicates the inconsistency of one loop of three registrations and
the average TRE of those three registrations, and the blue line is
a least-square fit with r ¼ 0.77 denoting the Pearson correlation. For
more details on the data and registration algorithms, please see
Sec. 4.4.
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terms in the form of transformation compositions, the importance
of which will be explained in Sec. 3.3.

3.2 CBRR Algorithm: Prior

We assume that the initial PTS R was computed properly and,
therefore, carries usable information. This motivates us to penal-
ize large deviations of CBRR solution R 0 from the input PTS.
This approach also enables us to avoid degenerate solutions,
such as the set of identity transforms. To include similarity-
based information in the process, we allow larger deviations
from the initial transformation in cases of locally low postregis-
tration similarity. Intuitively, this allows CBRR to limit any neg-
ative impact on local registration accuracy while improving
consistency. We then define such penalty function F as follows:

F ðR̂;RÞ ¼ 1∕ZF

XN
i¼1

XN
j¼1

j≠i

X
p∈Ω

ΨijðpÞkT̂ ijðpÞ − T ijðpÞk2;

(6)

where p ∈ Ω is a (discrete) point, ZF ¼ MNðN − 1Þ is a nor-
malization constant, and Ψij is the local similarity between the
transformed image XiðT ijÞ and Xj.

We use local normalized cross-correlation (LNCC)34 as the
local similarity metric, which was successfully utilized to locally
rank segmentation hypotheses in Ref. 35. LNCC can be com-
puted efficiently as follows:

LNCCðXi; Xj; pÞ ¼
hXi; XjiðpÞ
σXi

ðpÞσXj
ðpÞ ; (7)

hXi; XjiðpÞ ¼ Xi · XjðpÞ − XiðpÞ · XjðpÞ; (8)

X̄ ¼ GσG � X; (9)

σ2Xi
ðpÞ ¼ X2

i ðpÞ − X̄i
2ðpÞ; (10)

where * is the convolution operator and GσG is a Gaussian kernel
with standard deviation σG. From the LNCC metric, we compute
the weights

Ψij ¼
�
1.0 −

LNCC½XiðT ijÞ; Xj�
2

�
γ

; (11)

which normalizes LNCC to the range [0,1] and subsequently
applies a contrast scaling using γ. The resulting local weights
are shown on an example in Fig. 3.

3.3 Casting into a System of Linear Equations

We find a solution for Eq. (3) by casting it as a linear least-
squares optimization problem, for which efficient large-scale
algorithms exist. The only nonlinear term is the transformation
composition in Eq. (5), which we approximate as follows:

T̂ ij ∘ T̂ jk − T̂ ik ¼ D̂ijðT̂ jkÞ þ D̂jk − D̂ik; (12)

≈ D̂ijðT jkÞ þ D̂jk − D̂ik; (13)

by substituting the unknown true transformation T̂ jk in Eq. (12)
with the observed transformation T jk when it is used to deform
the displacement field D̂ij.

This allows us to rewrite the minimization problem in the
form of x 0 ¼ minxjAx − bj2, where x is the column vector of
all grid-point displacement variables for all transformations in
R̂. Then, x has MNðN − 1Þ entries and has the form

x ¼ ½D̂1;2ðp1Þ; · · · ; D̂ijðpmÞ; · · · ; D̂N−1;NðpMÞ�T: (14)

The matrix A and the vector b can be decomposed into two
parts AC and bC for the consistency criterion and AF and bF for
the regularization term:

x 0 ¼ min
x

����
�
AC
AF

�
x −

�
bC
bF

�����
2

: (15)

Each row of AC consists of 0’s and �1’s such that multipli-
cation with x yields one of the summands of the consistency
criterion. The locations of the nonzero entries correspond to
the locations of the respective displacements in the vector x
and can be calculated with the help of an indexing function
idx() that returns the index of displacement p in transformation
T ij as follows:

idx∶ N3 → N∶ idxði; j; pÞ → f1; : : : ;MNðN − 1Þg: (16)

Then, each row r of Ac corresponding to a consistency term
D̂ij½T jkðpÞ� þ D̂jkðpÞ − D̂ikðpÞ has the following entries in
column c:

ACðr;cÞ¼
8<
:

1; if c¼ idx½i;j;T jkðpÞ�orc¼ idx½j;k;p�
−1; if c¼ idxði;k;pÞ
0; otherwise:

(17)

All corresponding entries in bC are then zero, since we want
the inconsistency to vanish. When T jkðpÞ is not on a grid point,
we use linear interpolation:

Fig. 3 Local normalized cross-correlation (LNCC) weight used for the CBRR regularizer. Shown are
target image, deformed source, and LNCC weight computed with σ ¼ 4 mm and γ ¼ 10 for sample
pairs from the MRI (left) and CT (right) datasets.
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D̂ij½T jkðpÞ� þ D̂jkðpÞ − D̂ikðpÞ

≈
� X
p 0∈N ½T jkðpÞ�

νðp 0Þ · D̂ijðp 0Þ
�
þ D̂jkðpÞ − D̂ikðpÞ; (18)

where N returns the grid neighborhood of a nongrid
point, and ν computes the interpolation weights. Thus, such

consistency-expressing rows in AC can contain up to 10 nonzero
elements in 3-D, where the first nongrid point is interpolated
from eight neighboring grid points.

AF is a square, diagonal matrix such that the multiplication
of one row of AF with x and subtraction of the corresponding
entry of bF yields one of the prior terms λΨijðpÞD̂ijðpÞ −
λΨijðpÞDijðpÞ being minimized. In the same notation as
above, this can be expressed as

AF ðr; cÞ ¼
8<
:

λΨijðpÞ; if r ¼ c

0; otherwise
; bF ðcÞ ¼ λΨijðpÞDijðpÞ; with c ¼ idxði; j; pÞ: (19)

3.4 Iterative Refinement

In order to improve the approximation in Eq. (13), we employ
a fixed point iterative update scheme. In each iteration t, a new
PTS Rt is computed, where R0 is the CBRR initialization from
a prior registration. The estimate of the last iteration is then used
for the approximation in Eq. (13) as follows:

T t
ij ∘ T t

jk − T t
ik ≈Dt

ijðT t−1
jk Þ þDt

jk −Dt
ik: (20)

This allows the approximation to become more accurate as
the difference between T t−1 and T t becomes smaller. The iter-
ative process can also be used to update the prior term. Since we
assume that the input registration contains errors, adhering too
strongly to it might deteriorate the results of the algorithm.
A straightforward way to check for improvements during the
iterations is to compare the local postregistration similarities.
We, therefore, recompute the local similarity weights Ψt after
every iteration and keep track of the locally best encountered
value along with the corresponding displacement.

ðΨbest;DbestÞijp ¼
� ðΨt;DtÞijp; if Ψt

ijðpÞ > Ψbest
ij ðpÞ

ðΨbest;DbestÞijp; otherwise;

(21)

where we moved the subindices outside of the tuples for read-
ability. Then we change the prior terms in Eq. (6) to penalize
differences from these current best estimates.

F ðR̂;RbestÞ ¼ 1∕ZF

XN
i¼1

XN
j¼1

j≠i

X
p∈Ω

Ψbest
ij ðpÞkD̂ijðpÞ

−Dbest
ij ðpÞk2: (22)

3.5 Implementation

The number of equations grows with the cube of the number of
images, N, and linearly with the number of pixels,M. However,
efficient algorithms for solving large-scale linear least-squares
problems exist. We chose the MATLAB® minFunc36 package
for its computation and memory efficiency, particularly when
dealing with large sparse matrices. In particular, we use the
provided limited-memory Broyden–Fletcher–Goldfarb–Shanno
solver with a fixed number of 100 iterations. Furthermore, it can
be observed that the rows of linear equations corresponding to
each principal displacement axis are independent from other

axes. Consequently, such equations are separable and each dis-
placement direction can be solved individually, reducing the
problem size to half in 2-D and a third in 3-D. Note that
these separately solved individual axes still interact with each
other in the iterative scheme when the transformation from
the previous iteration is used to index current displacements.

Despite the above-mentioned implementation optimizations
to reduce memory complexity, solving Eq. (3) at the pixel level
is prohibitive mostly due to memory demand. We, therefore,
solve our CBRR problem on a coarse grid for efficiency and
then interpolate the results. To this end, R and Ψ need to be
downsampled, leading to information loss which we aim to
minimize by using the following full-resolution registration
estimates. Let Rlow be the downsampled original PTS. The rec-
tified PTS R 0

low will then be at the same resolution and can be
used to estimate the update field Δlow ¼ Rlow −R 0

low. We then
upsample Δlow to the original resolution and subsequently
obtain R 0 ¼ R − Δ. This yields registration estimates with
the local details preserved, while the local similarities Ψ are
being computed from the full-resolution registrations.

The overall algorithm then works as shown in Algorithm 1.
Convergence is achieved when the relative change of residual
inconsistency is < 1%. The remaining free parameters consist
of the regularizer weight λ, the width of LNCC window σ,
and the exponent γ.

4 Experimental Results
We evaluated our method in three experiments. We first present
a controlled environment using synthetic data where known
ground truths exist in order to better demonstrate our method.
Subsequently, we present our results on two clinical datasets.

4.1 Synthetic Images

We first evaluated our method using a fully synthetic setup
where images, registrations, and registration errors were con-
trolled. Nine 199 × 199 px2 images were created by randomly
deforming a reference image and adding 50% SNR noise. We
used three different sets of random deformations with varying
complexity. To generate smooth, large-scale deformations, we
randomly sampled b-spline control grid parameters of an 8×8
grid. To ensure diffeomorphisms, the parameters were uniformly
sampled from ½−0.4s; : : : ; 0.4s�, where s is the control grid spac-
ing.37 More complex transformations were generated by using
the same process on 20 × 20 and 50 × 50 b-spline control grids.
We then created three sets of ground-truth transformations, the
first using the transformations from the 8 × 8 grid, the second by
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composing the transformations from the 20 × 20 grids onto the
first, and the last by composing the transformations from the
50 × 50 grid onto the second. Pair-wise registrations were
then analytically computed by inversion and composition as
follows: Let T ri denote the transformation from reference r
to an image i. The pair-wise transformation T ij can then be
computed as

T ij ¼ T ri ∘ T −1
rj ; (23)

as described in Ref. 26. We then randomly generated errors for
each pair-wise transformation as follows: Of a 20 × 20 b-spline
grid, each control point has a varying likelihood f between 1 and
10% to have an error that was uniformly sampled from a variable
range r ∈ f1; : : : ; 9g and then added to the ground-truth trans-
formations. Each set of parameters f and r then creates a
separate PTS, on which we ran CBRR with different grid
resolutions. We then compute the relative improvement of
the average transformation error (ATE), which is the mean of
the Euclidean distance between ground-truth displacements and
error displacements as 1.0 − ATECBRR∕ATEerr, where ATEerr is
the ATE of the input PTS. The resulting improvements can
be seen in Fig. 4. It can be observed that CBRR can correct
a substantial fraction of errors, especially for frequent and
large magnitude errors. However, infrequent and small errors
cannot be corrected well, which is likely due to CBRR’s rela-
tively coarser grid resolution and additionally due to the quad-
ratic penalty that does not penalize very small changes to the

input transformations. This results in small, new errors, which,
on average, can be larger than the errors of the original input
registration, even though they are very small in absolute terms.
CBRR, especially when using a coarse grid, is also challenged
by complex underlying true transformations. In those cases,
however, a substantial fraction of large deformation errors can
still be corrected, and the performance can be improved using
higher-resolution grids.

4.2 2-D MR Images

For the second experiment, we simulated medical images with
known correspondences. We used 19 mid-saggital slices of brain
MRI with 481 × 374 px2 resolution and isotropic spacing of
0.3 mm. In order to obtain a dataset with existing and known
dense correspondences, we generated such data using Markov
random field (MRF) based registration38 as shown in Fig. 5. We
then used the well-known diffeomorphic demons algorithm39 and
an MRF-based algorithm38 to mutually re-register all 19 images,
resulting in 342 registrations for each method. We solved CBRR
separately for both of these sets using a coarse grid with 2.4 mm
spacing (downsampling the input PTS by a factor of 8).

We first evaluate different choices of λ and γ, the results of
which are presented in Fig. 6(a). σ was fixed to 4 mm. While a
small improvement can even be seen without using the local
weights (γ ¼ 0), the performance of CBRR improves substan-
tially for appropriate choices for those parameters (γ ¼ 10,
λ ¼ 0.5), which we use throughout all remaining experiments.
Note that in the limit cases, CBRR either finds the identity trans-
forms (without any regularization) or the input transforms. We
further evaluate how the number of images affects CBRR per-
formance, where results can be seen in Fig. 6(b). A convergence
pattern can be observed from about eight images onward.

Quantitative results by comparing with the analytically com-
puted ground truth are given in Table 1. It is observed that ATE
improves by > 45% while the inconsistency C is reduced con-
siderably. We show one example case for each registration
method in Fig. 7 (left), where CBRR is seen to improve the
original registration in both cases.

We compare CBRR to straightforward locally weighted aver-
aging (LWA), which fuses all indirect transformations T ik ∘ T kj
and the direct transformation T ij. The local weights are com-
puted using the same LNCC technique as in CBRR, but param-
eters have been tuned separately (σ ¼ 8, γ ¼ 30) to not put the
LWA method at a disadvantage. We also compared CBRR to
Correcting Local Errors using Registration Consistency
(CLERC),31 which is a preliminary version of the technique pre-
sented in this paper. The main difference is that CLERC uses no
iterative updates and a different numerical solver. This differ-
ence can partly be observed in Fig. 8, where the CLERC results
shown in Table 1 are similar to CBRR after the first iteration,
with remaining differences caused by a different numerical
solver. CBRR then typically converges after about five to six
iterations. As shown in Table 1, CBRR outperforms CLERC
and LWA in all metrics for all experiments. We elaborate on
the differences between CLERC and CBRR later in Sec. 4.5.
We also compare our method to our own implementation of
assessing quality using image registration circuits (AQUIRC),19,20

which computes a dimensionless measure of local registration
error magnitude which can be correlated with the true local
error magnitudes. It is observed that the magnitude of the updates
computed by CBRR correlate substantially stronger with the true
error magnitudes in comparison to AQUIRC.

Algorithm 1 Outline of the proposed consistency-based registration
rectification algorithm.

Data: R, X , λ, γ, σ

Result: R 0

t←0

R0←R

while not-converged and t < tmax do

Compute Ψt using Eqs. (7)–(11)

Update Ψbest and Dbest according to Eq. (21)

Downsample Rt and Ψt

forall the axes d do

Form matrix Ad and vector bd using Eqs. (17)–(22)

Rt
d ¼ min jAdx − bd j2

end

Rt← ∪d Rt
d

Upsample Rt

t←t þ 1

end

R 0←Rt
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4.3 3-D CT Segmentation

The next experiment was performed using a clinical dataset of
15 3-D CT head scans from different individuals, with
160 × 160 × 129 pixel2 resolution and 1 mm spacing. All
images were mutually registered using demons-, MRF- and
advanced normalization tools (ANTs)40-based registrations,

yielding a total of 210 transformations for each registration algo-
rithm. Postregistration target registration error (TRE) was com-
puted using 12 manually placed landmarks, which were placed
at anatomically identifiable locations on the jawbone and the
skull for all images. In addition to TRE, we also evaluated ana-
tomical overlap of manually segmented mandibles using Dice’s
coefficient, mean surface distance, and Hausdorff distance. Note

Fig. 4 Relative improvement using CBRR on synthetic data using random ground-truth deformations of
varying complexity, additive random errors with variable magnitude and frequency, and varying CBRR
grid resolution.

(a) (b) (c)

Fig. 5 Data generation for the two-dimensional (2-D) MR experiment. (a) First, image X 1 is registered to
the remaining images X i , resulting in transformationsT1;i . (b) Then, X 1 is deformed using the estimated
transformation and 50% SNR Gaussian noise (ζ) is added, generating new images X 0

i . Pairwise trans-
formations T i;j between all X 0

i are known analytically through the registrations from X 1. (c) The image set
fX 1; X 0

2; : : : ; X
0
Ng is then used as the experimental dataset and the known dense correspondences Ti ;j

as the ground truth in evaluation.
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that, in contrast to the above experiments, in this current experi-
ment with actual interpatient registrations, neither consistency
nor dense correspondences can be guaranteed. Indeed, in
these 3-D CTs, the presence and number of teeth vary substan-
tially among the scanned individuals. We solved CBRR using
a coarse grid with 8 mm spacing using the same parameters as
the 2-D MRI experiment above (λ ¼ 0.5, σ ¼ 4 mm, γ ¼ 10).
Results are given in Table 2, in which a significant (ρ < 5%)
improvement in both TRE and segmentation metrics using
CBRR can be observed. A larger improvement is observed
for the demons registrations, which has a poorer initial perfor-
mance. We show an example of corresponding postregistration
and post-CBRR segmentations in Fig. 9, and the distributions of
segmentation overlap before and after CBRR can be seen in
Fig. 10. Here, it is clearly observable that CBRR substantially
improves the worst-case segmentation quality induced by the
input PTS, while best-case Dice overlap can be slightly reduced.
In the case of the demons registration algorithm, segmentation
quality is substantially improved for all registrations.

We also compared CBRR to a traditional group-wise regis-
tration method. We used the medical image registration toolkit
which is publicly available.41 It implements a well-known
group-wise registration method in which the images are itera-
tively registered to an evolving group mean. We used the default
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Fig. 7 CBRR of Markov random field (MRF) (top) and demons (bottom) registration on the 2-D MRI data.
Shown are, from left to right, target image, deformed source, true registration error, error of rectified
registration, and the source image deformed by the rectified registration. The hue of the color in the
error visualizations indicates its orientation, while the saturation corresponds to the error magnitude.

Table 1 Average transformation error (ATE), inconsistency C, and
Pearson correlation ρ of estimated and true registration error magnitude
for the two-dimensional MRI experiments using simulated transforma-
tions before and after using consistency-based registration rectification
(CBRR). We also compare CBRR to locally averaged weighting (LWA),
an earlier version of this work [correcting local errors using registration
consistency (CLERC)] presented in Ref. 31, and assessing quality using
image registrationcircuits (AQUIRC),19whichcomputesadimensionless
estimate of registration error, which can be correlated with the true error.

Demons Markov random field
(MRF)

ATE ρ C ATE ρ C

Registration 3.50 — 2.53 1.92 — 1.85

+ LWA 2.34 0.60 1.78 1.83 0.69 1.87

+ CLERC (Ref. 31) 2.66 0.74 0.86 1.28 0.85 0.65

+ CBRR 1.64 0.84 0.35 0.88 0.91 0.22

+ AQUIRC (Ref. 19) — 0.47 — — 0.64 —

Note: Bold numbers indicate best results in each category.
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parametrization, which utilizes residual complexity42 as the sim-
ilarity measure. The results for this comparison are given in
Table 2. While the group-wise registration outperforms the plain
pair-wise demons algorithm, using CBRR is seen to yield the
best result in all cases and for all evaluation metrics.

4.4 Four-Dimensional Liver MRI Motion Estimation

We also evaluated our method on motion estimation from four-
dimensional (4-D) MRI. Images of a 4-D sequence are typically
registered to one reference frame, e.g., exhale, and pair-wise
transformations and subsequently an estimate of the motion
can be inferred from those.26 Other studies have shown that
it is beneficial to initialize such registrations with the transfor-
mation of the previous image in the sequence.43 Using CBRR,
we compute all pair-wise registrations for all images in a
sequence, which then includes both the direct registrations
between the reference frame and the remaining frames, as well
as the sequential registrations. CBRR can then update the result-
ing PTS where consistent correspondences are guaranteed to
exist. We use four sequences of the abdomen for our evaluation,
which were recorded using the technique described in Ref. 44.
Each sequence contains 11 breathing phases (images) with a
spatial resolution of 1.37 × 1.37 × 4 mm3, ∼370 ms temporal
resolution, and a mean image size of 164 × 189 × 23 voxels.

Fifty-two landmarks were placed manually at anatomically
identifiable positions, such as ribs, vertebrae and vessel bifurca-
tions in the liver, kidneys, and lungs, for one exhale and
two inhale images in each sequence. Registration quality can
then be assessed in terms of mean TRE between the ground-
truth and transformed landmarks for all image pairs where land-
marks are available. We used two registration methods for
each sequence: ANTs40 as it delivers state-of-the-art results on
many public datasets, and a parametric total variation (PTV)
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Table 2 Quantitative evaluation of CBRR and comparison to group-wise registration on the three-dimensional (3-D) CT dataset. Mean TRE, mean
surface distance (MSD), Hausdorff distance (HD), and inconsistency C are given in mm.

3-D CT

TRE Dice MSD HD C Total run time (h)

Reg-demons 9.25� 4.22 0.65� 0.15 1.27� 1.19 17.86� 8.83 8.14 140

+ CBRR 7.16� 2.19 0.75� 0.09 0.58� 0.36 14� 5.65 1.07 þ2.5

Reg-MRF 5.25� 1.95 0.84� 0.06 0.34� 0.29 11.43� 4.86 5.67 39

+ CBRR 4.66� 1.20 0.86� 0.03 0.22� 0.10 9.72� 3.65 1.12 þ2.5

Reg-ANTs 6.02� 3.35 0.85� 0.11 0.49� 0.68 12.27� 5.99 6.43 105

+ CBRR 4.70� 1.60 0.89� 0.04 0.17� 0.12 8.79� 3.48 1.13 þ2.5

Group-wise reg. 8.1� 2.86 0.75� 0.10 0.97� 0.61 22.64� 4.30 0.0 26

Note: ANTs, advanced normalization tools.
Note: Bold numbers indicate best results in each category.

Fig. 9 Surface distance of ground-truth jawbone segmentation to
(a) MRF registered source and (b) subsequent CBRR. Best viewed
in color.
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registration method, which was specifically developed consid-
ering the sliding motion that occurs during breathing in
abdominal imaging.45 Figure 11 shows one CBRR loop of
exhale-inhale-inhale using PTV, and the resulting dense incon-
sistency and extrapolated TRE before and after CBRR, which
was run on deformations that were downsampled by a factor
of 4. The grid spacing was kept as isotropic as possible, resulting
in a spacing of 5.48 mm3. CBRR parameters were the same as
for the other experiments with γ ¼ 10, σ ¼ 4, and λ ¼ 0.5.
Table 3 shows quantitative results, where a substantial and
significant (ρ < 5%) improvement in TRE can be observed.
Interestingly, the CBRR TRE results of both registration
methods are very similar to each other, despite the substantial
difference in input TRE. Figure 12 visualizes the change in
registration error per landmark for both registration methods
before and after using CBRR. It can be observed that the
worst-case performance is especially improved, reducing the
maximum TRE by up to 60%.

4.5 Discussion

We experimentally demonstrated that CBRR improves (2,1)-
consistency on a variety of different input data and using differ-
ent pair-wise registration methods. In addition to the consistency
improvement, CBRR was shown to yield improved transfor-
mations in terms of average transformation error, TRE, and

segmentation overlap. As can be seen in Fig. 10, such improve-
ments mostly affect poorer pair-wise registrations (lower per-
centile) in the case of a relatively well-performing initial
registration, e.g., using MRFs. In contrast, if the initial registra-
tion is poorer as in demons registration algorithm, the Dice
overlap increases among all but the top percentiles. This is
attributed to the higher initial inconsistency of poorer registra-
tions, which yields more space for improvements via registra-
tion rectification.

Besides an improvement in pair-wise alignment, the results
of CBRR are particularly interesting for group-wise methods,
such as atlas generation. As shown in Table 2, CBRR can out-
perform group-wise registration quantitatively. A typical quali-
tative result of group-wise registration is the resulting mean
image, which represents the center of the distribution. Here,
a sharp mean image is an indicator for the successful alignment
of all images to such a mean. We present mean images using
registrations from CBRR and group-wise registrations in Fig. 13.
Since CBRR does not directly return the center of the distribution,
the images are in the reference space of one randomly chosen
image for better comparison. It can be seen that the CBRR mean
is much sharper than the group-wise mean, indicating that
group-wise registration could not align the images satisfactorily
in this task.

Note that CBRR yields satisfactory results in all tests with
a uniform parametrization. Note that further experiment-specific

Fig. 11 Inconsistency and TRE of one loop of sequence 1 before and after using CBRR for the para-
metric total variation registration method. Mid-sagittal slices are shown for MRIs, inconsistency, and TRE
extrapolated using thin-plate splines. CBRR was computed on a longer sequence using 11 images and
110 registrations in total.
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improvement is possible, in particular by adjusting λ to incor-
porate prior knowledge on the expected error. Different choices
of the local similarity metric can also be beneficial, especially
for multimodal data.

CBRR can also be interpreted as a detection method for
inconsistency-based registration errors. Based on the difference
between the estimated and the original registrations, one can

estimate local error magnitudes. These estimations can be
evaluated through ground-truth local-error magnitudes for
experiments for which those are known. This allows for a com-
parison with AQUIRC,19,20 which computes a dimensionless
measure of local error magnitude based on (3,0)-consistency.
We used our own implementation of their technique, the results
of which were presented in Table 1. Note that CBRR could also
be adapted to utilize (3,0)-consistency, but would require an
additional approximation (c.f. Sec. 3.3) for the additional trans-
formation composition, which would make the implementation
more complicated and the solution less robust. The error mag-
nitudes estimated by CBRR correlate more strongly with the
true error magnitudes in comparison to AQUIRC, in addition
to surpassing our earlier algorithm CLERC.31 Additionally,
both CLERC and CBRR estimate actual error vectors in contrast
to the dimensionless measure being reported by AQUIRC. The
difference in performance between CBRR and CLERC can
mainly be explained through the additional iterative refinement
in CBRR, which improves the approximation in Eq. (12). An
additional benefit of CBRR is that it requires that only registra-
tion variables be estimated, in contrast to registration and error
variables in CLERC. This makes it computationally more effi-
cient and easier to parametrize since one less parameter is
required.

Table 3 Quantitative evaluation of CBRR on the four-dimensional liver MRI sequences. The average run time is the average time required to
process one of the sequences with 11 breathing phases of 3-D MR.

Average TRE per sequence (mm)

Total mean Avg. run time (h)1 2 3 4

Without reg 10.99� 6.58 3.91� 1.92 5.64� 3.29 11.12� 6.26 7.95� 7.73 —

Reg-ANTs 5.95� 7.20 1.49� 1.36 1.26� 1.24 6.30� 6.70 3.75� 5.50 10

+ CBRR 2.31� 2.83 1.42� 1.17 1.13� 0.92 2.27� 1.85 1.81� 1.91 þ3

Reg-PTV 2.50� 3.51 1.58� 1.85 1.18� 1.02 2.89� 3.28 2.04� 2.70 2

+ CBRR 1.94� 1.83 1.47� 1.41 1.10� 0.77 2.20� 1.89 1.68� 1.60 þ3

Note: PTV, parametric total variation.
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Fig. 12 TRE before and after CBRR on the 4D Liver MRI sequences for (a) ANTs and (b) PTV deform-
able registration. Each point shows the error for a single landmark before (x axis) and after (y axis)
CBRR. Note that points below the y ¼ x line indicate a reduction in error using CBRR.

Fig. 13 Mid-coronal slices of the mean images of the 3-D CT dataset
for (a) group-wise and (b) CBRR registration. For CBRR, one image
was chosen as reference to which all images were aligned for aver-
aging. We deformed the group-wise mean to the same image to allow
a better comparison.
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Still, the bottleneck of the proposed CBRR algorithm is its
large memory requirement since all the displacement variables
are estimated simultaneously. This contrasts with the AQUIRC
approach,19 which can independently solve for the error at
every spatial location. In our experiments, the memory utiliza-
tion reached up to 15 GB for the 3-D CT segmentation experi-
ment. The main factor for this is the number of nonzero entries
in A, which is proportional to N3M, where M denotes the
number of coarse grid points. Note that we keep only the
downsampled pair-wise registrations in memory while reloading
the full-resolution registrations only on demand. We imple-
mented our CBRR prototype in C++/ITK. Constructed systems
of equations are solved using the minFunc solver called via
the MATLAB® engine interface for C++. The equation system
itself is not particularly large in memory, requiring ∼6 GB

including all auxiliary variables for the 15 3-D CT image prob-
lem. However, a significant memory overhead is needed in
MATLAB® for passing and solving the problem. Therefore,
using a dedicated C++ solver might be one approach to reducing
memory demands. Additionally, our experiments showed
that satisfactory results can be already achieved with a limited
number of images (c.f. Fig. 6). For instance, reducing the num-
ber of images from 15 to 7 in the 3-D case would reduce the
memory requirements by a factor of 8. One advantage of
CBRR is the speed with which all pair-wise registrations are
updated. One full iteration, which updates 210 3-D registrations,
takes about 30 min, including the computation of pair-wise local
similarities. This is ∼80 times faster than computing all the
pair-wise registrations using MRFs. Since the proposed
approach is likely to be used in an offline fashion, it would
be reasonable to trade off run time for decreased memory
usage, thereby also allowing for more images and/or higher-res-
olution transformations.

A strong point of CBRR is that it is independent of the used
registration algorithm and imposes no restrictions on the spatial
smoothness of the transformations. This also enables its appli-
cation in challenging scenarios as in registration with sliding
motion, as can be seen from the results on the 4-D MRI experi-
ment, where substantial improvements are seen both for a
smooth (ANTs) and for a sliding-motion enabled registration
method.

5 Conclusions
We presented a population-based method for refining
pair-wise registrations by reducing their inconsistency
(CBRR, software will be made available46). By formulating
the task as a linear least-squares problem, we obtain an efficient
algorithm that is able to resolve such inconsistencies in groups
of up to 15 3-D images simultaneously, which is, to the best
of our knowledge, not possible with any other technique. In
contrast to group-wise registration, our method is arguably
better suited for interpatient registration, as correspondences
need not be perfect across all images. Instead, a trade-off is
achieved, balancing group-wise consistency and pair-wise vis-
ual similarity. Experimentally, our approach was shown to be
able to not only increase consistency, but also improve segmen-
tation overlap in atlas-based segmentation, and target registra-
tion error in both inter- and intrapatient registration, where
the latter is an important problem, e.g., for breathing motion
estimation.
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