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Abstract. X-ray video fluoroscopy along with two-dimensional-three-dimensional (2D-3D) registration tech-
niques is widely used to study joints in vivo kinematic behaviors. These techniques, however, are generally
very sensitive to the initial alignment of the 3-D model. We present an automatic initialization method for
2D-3D registration of medical images. The contour of the knee bone or implant was first automatically extracted
from a 2-D x-ray image. Shape descriptors were calculated by normalized elliptical Fourier descriptors to re-
present the contour shape. The optimal pose was then determined by a hybrid classifier combining k-nearest
neighbors and support vector machine. The feasibility of the method was first validated on computer synthesized
images, with 100% successful estimation for the femur and tibia implants, 92% for the femur and 95% for the
tibia. The method was further validated on fluoroscopic x-ray images with all the poses of the testing cases
successfully estimated. Finally, the method was evaluated as an initialization of a feature-based 2D-3D regis-
tration. The initialized and uninitialized registrations had success rates of 100% and 50%, respectively. The
proposed method can be easily utilized for 2D-3D image registration on various medical objects and imaging
modalities. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.2.024007]
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1 Introduction

In vivo kinematic analysis using x-ray video fluoroscopy is
applied in the evaluation of joint kinematics for both implanted
and normal joints.!™ Figure 1 shows the fluoroscopic imaging
in the knee during gait analysis. X-ray video fluoroscopy is a
sequence of x-ray images where the metallic implants and the
bone appear much darker than the soft tissues surrounding them,
allowing for direct observation and analysis of their movement
under dynamic and weight bearing conditions. Moreover, fluo-
roscopy is noninvasive and relatively low risk to the patient. A
typical 1-min protocol gives the patient a radiation exposure on
the order of 0.6 to 1.8 “rad equivalent man” (rem).> However,
two-dimensional (2-D) fluoroscopic images do not provide
three-dimensional (3-D) information. A 3-D CAD/computed
tomography (CT)/MRI model is time-consuming (MRI) to gen-
erate and exposes patients to more radiation (CT), but it provides
3-D insight and improves visualization of anatomical structures.
Therefore, it is necessary to fuse the information of the 2-D
images and 3-D volume data by 2D-3D registration.

In clinical practice, it is desired to keep the number of x-ray
fluoroscopic images to a minimum due to cost, acquisition and
computation times, and due to radiation exposure constraints.
Single plane fluoroscopic imaging has been commonly used
to study joint kinematics. Mahfouz et al. illustrated that single
plane registration can be achieved with an in-plane accuracy of
less than 0.091 mm in translation, with an out-of-plane error of
1.376 mm.? Different groups have investigated the use of dual
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fluoroscopy as a method for increasing the out-of-plane regis-
tration accuracy.* However, limited studies have investigated the
differences between the two methods using a consistent 2D-3D
matching setup.’

The key step in 2D-3D registration is to determine the rela-
tionship between the 2-D x-ray image coordinate system and the
3-D model coordinate system. This can be achieved by manual
registration of 3-D data to be fitted to the 2-D x-ray image. This
method, however, is labor intensive and prone to both inter and
intra user variability. An alternative is the use of paired point
analytic registration with point data obtained from either skin
or bone fiducial markers.®® However, skin markers are suscep-
tible to error due to undesired motion between the markers and
the underlying bone, and bone markers are invasive, which lim-
its their use. A third method of 2D-3D image registration is to
iteratively adapt the unknown pose so as to maximize a similar-
ity measure, which reflects the quality of the registration. A
large body of work of 2D-3D registration based on 3-D
model registration to radiographs>°~'! and 3-D kinematic analy-
sis from fluoroscopic images'? has shown satisfactory registra-
tion accuracy. Existing 2D-3D registration methods are often
limited by a small capture range.'® Due to the nonconvex nature
of the similarity measure, such methods can suffer from inaccu-
rate registration results when the initial pose of the 3-D model is
outside the capture range. The objective of this paper is to
develop a method that provides a large capture range for the
2D-3D registration process by comparing a query shape in a
2-D image with a precomputed training model to determine
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Fig. 1 Fluoroscopic imaging in the knee.

the initial pose of the 3-D model. The main advantage of the
proposed method is the ability to search in a large range of pos-
sible solutions making the methods independent of initializa-
tion. Moreover, since the pose estimation processes using X-
ray fluoroscopy in various planes are independent from each
other, our method can be applied to both monoscopic and stereo-
scopic registrations.

There is a wide variety of published literature on the topic of
pose estimation based on template matching.'*'” Khotanzad
and Liou'® developed a neural network-based system for recog-
nition and pose estimation of an unoccluded 3-D object from
any single 2-D perspective view. The neural network (NN) clas-
sifier used in this paper may suffer from multiple local minima
and is more prone to over fitting compared with support vector
machine (SVM). Unlike NNs, SVMs have a simple geometric
interpretation and give a sparse solution. Moreover, the compu-
tational complexity of SVMs does not depend on the dimension-
ality of the input space, which is not the case for NN. Therefore,
SVMs often outperform NN in practice where SVMs are less
prone to over fitting and yield a global and unique solution.'®

Banks and Hodge' used the template-matching method to
measure the pose of knee prostheses by matching the projected
silhouette contour of the prosthesis against a library of shapes
representing the contour of the object over a range of possible
orientations. Hoff et al.'” matched the silhouette of the prosthe-
ses components against a library of images to estimate the posi-
tion and orientation of the component. Both methods directly
matched the projected 3-D model image with a template library
of implant models. Moreover, they applied the pose estimation
to implant models, which has limited shape variation when com-
pared to bone anatomy.

Direct implementation of the template-matching method
would require an exhaustive computation time and usage of
memory by comparing the distance between the query and
the entire training examples dataset. Instead, we used a hybrid
classifier to determine the pose of the 3-D model so as to avoid a
blanket search. More specifically, the hybrid classifier combines
k-nearest neighbors (k-NN) and SVM, where k-NN serves as an
attention mechanism, generating an area of interest for the fur-
ther local search by SVM.!>° A set of SVMs, each trained to a
smaller range of poses, decomposes the pose estimation prob-
lem across a large range of poses into a set of subproblems.
Thus, the proposed initialization method is more time and
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space efficient than the conventional direct template-matching
methods. Moreover, our method can be easily adapted for
various anatomical or implant structures and various imaging
modalities.

The rest of the paper is organized as follows. The approaches
are described in Sec. 2. Section 3 provides the experiments and
their results. Finally, Sec. 4 concludes the paper and gives future
prospects.

2 Approach

2.1 Problem Statement

The goal of the proposed method is to estimate the poses of the
3-D model from a single plane fluoroscopic x-ray image based
on a precomputed training set of 2-D contours. This method
helps kinematics in that it can determine 3-D in vivo and weight
bearing kinematics of the knee joint from a single plane fluoro-
scopic image. It also helps biomechanics in that it determines the
orientation of the femur with respect to the tibia so as to deter-
mine the forces and torques acting on the knee joints.

Let S € i3 be the smooth surface of the 3-D model, and
denote X = [x, y, z], X € S to be the corresponding spatial coor-
dinate. Let X, € :> and S, € R be the coordinates and surface
in the 3-D world, respectively. We can locate the S in the camera
reference frame via the transformation 7" such that S = 7(S,)
and the corresponding pointwise expression

X =T(Xy) = RX, + t, (1)

where R € SO(3 is a rotation matrix R = R, X Ry X R,,

0 cosf 0 sinp
0 cosa —sina}, Rﬁ—[ 0 1 0 }

[ sina@ cos a —sinf 0 cosp
cosy —siny 0
{sm y  cos y 0} and t € R is a translation vector,
1
t
ty
t
world.
The proposed method consists of three steps: (1) shape
extraction to extract the 2-D contour of the object of interest
in an x-ray fluoroscopy, (2) shape representation to represent
the shape by normalized elliptical Fourier descriptors (NEFDs),
(3) classification by a hybrid classifier to estimate the pose of the
3-D model. The system framework is illustrated in Fig. 2.

=

t= . X, is the coordinate of the 3-D model in the 3-D

4

2.2 Shape Extraction

The contour of the object of interest in the x-ray fluoroscopy is
extracted by an active shape model (ASM)-based segmenta-
tion algorithm.?’ ASM represents the global shape constraints
with the dominant shape variation in the training set. The ben-
efit of ASM is that it constrains the search to feasible shapes so
that mis-segmentations such as skin segmentation or segmen-
tation of neighboring bones and foreign occlusions can be
avoided.

The training data are the contours extracted from the binary
images, which are the 3-D surface mesh models projection onto
the 2-D plane at different poses, yielding 1887 training contours.
The contours are then aligned by finding corresponding points
of each contour using statistical atlases, where training contours
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Fig. 2 Flow chart of the initialization system.

with a known point distribution are deformed to match one
another.”>* To segment the x-ray image, we start from the
average contour in the training dataset; search on the normal
profile of each contour point for the greatest gradient; use ASM
to constrain the contour to a feasible shape; and then relax
the constrained points for the segmented contour. Relaxation
is done by a gradient search in the normal profile once

2.3.1 Calculate shape descriptors of the contour

The main idea of the elliptical Fourier analysis is to approximate
a closed contour as a sum of elliptic harmonics. N harmonics are
used to identify the closed contour of k elements. Four coeffi-
cients are used for each harmonic, as given by

k
again with a half profile length. The contour is closed by draw- a. — T Z dxX; oS 2nrt; — cos 2nwt;_ @)
ing a line perpendicular to the major axis of the bone, the direc- " 2n2g? — dt; T T |
tion of which can be represented by the first principal
component of the PCA of the contour points. The flowchart .
of the segmentation algorithm is illustrated in Fig. 3. b T Z dX; sin 2nmt; . 2nxti, 3)
An example of segmentation results is shown in Fig. 4. L Y )  d1; T ’
- T EdY,[ 2nat 2nmt;_
2.3 Shape Representation S 3 dt, [COS ;T P ﬂT i 1]’ @
The shape representation is based on NEFDs developed by Kuhl T G
and Giardina.> Contours are first normalized by in-plane rota-
tion, translation, and scale. NEF]? represents th.e object shape T K dy; [ . 2naxt, dnxt;_,
in a very compact manner and is, therefore, time and space d, = 222 Z d n - T s (5)
efficient. L=y
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Fig. 3 Flow chart of the two-dimensional (2-D) segmentation.

where X; and Y; are the X and Y coordinate values; a; and b;
represent the projection on the semi major and semi minor x
axis, and ¢; and d; similarly represent the projection on the
semi major and semi minor y axis. T = ) ", d; is the length
of the Freeman chain'® of the closed contour, ¢; is the length of i
elements of the chain, and m is the number of elements in
the chain.

The inverse process allows identification of the closed con-
tour from the N coefficients, as given by

X, =X.+ EN cos ti—i—b sin fi (6)
i a i ,
1 c g n T n T
Y, =Y.+ EN ¢, COs ti—f—d sin fi @)
. 1 .
1 c o n T n T

where X, and Y, represent the coordinates of the centroid.
The most significant features of the contour are captured in
the lower frequency terms of the Fourier descriptors. Therefore,
a more concise representation of the contour can be generated by
eliminating the high-frequency terms, as can be seen in Fig. 5(a),
where root-mean-square (RMS) error between the reconstructed
and the original contour of the femur drops as the number of
harmonics increases. Forty harmonics were found to provide
accurate representation for the training shapes according to
Fig. 4 Segmentation result of femur and tibia in an x-ray image. the reconstruction errors shown in Fig. 5(a). The comparison
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Fig. 5 Reconstruction error of NEFD: (a) root-mean-square (RMS) error of reconstructed femur contours
with respect to the number of harmonics, (b) reconstructed femur contours are in red with the number of
harmonics from 1 to 50. The original contour is in blue.

between the original and reconstructed contours from Fourier
descriptors is shown in Fig. 5(b).

2.3.2 Normalization

The centroid of the contour is moved to the origin to normalize
translation, calculated by

1 k
Xi/:Xi_F%ZXnv (8)

n=1

1 k
Y{:Y,-—f—%ZY,,. )
n=1

Because the starting point can be chosen randomly and such
a choice impacts the coefficient values, it is necessary to have a
representation which is invariant to the starting point on the con-
tour. This is achieved by rotating the elliptic coefficients until a
shift phase is equal to zero, as given by

a _|a, b,||cosnd
c e,

d, | | sinnf,
where 6, = (1/2)arctg[2(a,b, + c1d,)/a? + 3 — b} —d3] is
the phase’s shift from the first major axis. The rotational invari-
ant can be achieved by aligning the major axis of the first har-
monic of each image to the x axis. The coefficient is normalized
by the following equation:

ay byl |a; bi|| cos ¢y
cxody | | er di || —sin ¢
where ¢ = arctg(c}/aj).

The size invariant is achieved by dividing the length of the
semi-major axis, L, of the first harmonic:

by
dy

= %

—sin nd,

cosnf; |’ (10)

= %

sin ¢1
cos ¢y |’

)
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L=\/a®>+

The invariance of translation, starting point, rotation, and size
allows an efficient representation of all the possible shapes.

12)

2.4 Estimate Out-of-Plane Rotation by a Hybrid
Classifier

A hybrid classifier was used to estimate the out-of-plane rota-
tion. We consider the estimation of the out-of-plane rotation in
the framework of measuring similarities or equivalently distan-
ces to the training shapes by a combination of k-NN and SVM
classifiers. k-NN is a nonparametric classifier. An object is clas-
sified by a majority vote of its neighbors, with the object being
assigned to the class most common among its k-NNs.2® While
k-NN is natural in this kind of problem, it suffers from high
variance in the case of limited sampling. Moreover, since the
NN classifier uses all the instances in the training set, it is com-
putationally expensive. The alternative is SVM, which models
the nonlinear structure of the data by mapping the data onto
the high dimensional kernel space and only seeks to model
the boundary of the classes. But SVM involves time-consum-
ing optimization and computation of pairwise distances, which
makes it difficult to classify a large number of classes. We thus
combine k-NN and SVM to improve the overall performance.

Since k-NN is used for the coarse search, only 5-deg incre-
ment instances are used. The Euclidean distance (Ed) is used to
measure the similarity between objects and is computed as given
below:

N-1

2 ($4i = SBi)zv

i=1

Ed(A, B) = (13)

where Ed(A, B) is the Euclidean distance between instance
descriptors A and B, and s,; and sg; are the i’th NEFD of
instances A and B, respectively.
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SVM provides a good generalization for pattern classifica-
tion problems without incorporating problem domain knowl-
edge. Recall that in a two-class SVM classification problem,
we want to find a hyper plane that separates the two classes
with a maximal margin.”’ When it is not possible to linearly
separate the two classes, kernel function is used to map the
data into a high dimensional space where the data are linearly
separable. Given training vectors x; € R",i = 1,..., [, and their
label vector y € R such that y; € {1,—1} and the mapping
¢(x;), SVM solves the following optimization problem.

1 d (T d(x. _E
1 , yil@' p(x;) +wy) 2 1=,
gégzw a)—l—Ci:Zlf, s't'{éizo,iZL..-,l, ,

(14)

where @ is a weight vector and @y is the threshold, ¢(x;) maps
x; into a high-dimensional space and C > 0 is cost coefficient,
which represents a balance between the model complexity and
the approximation error. When the constraint conditions are
infeasible, slack variables &; can be introduced.

There are different choices of kernels depending on their
application at hand. An appropriate selection of the kernel
may drastically affect the final classification performance.
The radial-basis function (RBF) kernel (or Gaussian kernel)
is the most commonly used kernel. Glasner et al. reported a
good performance of the RBF kernel?® in the pose estima-
tion problem. We used a Gaussian RBF kernel, ®(x; - x;) =
exp(—7lJx; —x, ).

Penalty parameter C in Eq. (14) and y in the kernel function
are two of the most important parameters. C, a regularization
parameter, affects the tradeoff between maximizing the margin
and minimizing the training error. Both C and y determine the
number of support vectors. Since SVM only models the boun-
dary between each class, the number of support vectors impacts
the training time and accuracy. y also affects the amplitude of
the Gaussian function and therefore affects the generalization
ability of SVM.?’ The technique used to determine its optimal
parameters is a grid search using a cross-validation'® that
searches the optimal parameters by a coarse grid search with
an exponentially growing sequence of (C, y) with C =
275, ....,25 and y =273,....,21 followed by a finer grid
search to find the one giving the highest accuracy.

Since SVM is a two-class classifier, commonly used methods
to extend the two-class classifier into multiclasses include one-
against-all method, one against one,! and directed acyclic
graph.®> We use the one-against-one method®! in this paper.

Scaling of the feature vectors is also one of the important
factors affecting performance.'® The training set was normalized
by scaling it into [0, 1] and then test data were normalized with
the same degree of scaling.

2.5 Estimate In-Plane Rotation

Equation (11) in Sec. 2.3.2 provides an approximation of the in-
plane rotation by aligning the major axis of the first harmonic of
each contour, which is a rough approximation of the real shape.
Therefore, a more accurate method is discussed here to deter-
mine the in-plane rotation by the angular difference between
the best matching contour in the training set and the testing con-
tour through Procrustes analysis.**
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ezest = ezinput - 9A~ (15)

Before Procrustes analysis, corresponding points across con-
tours must be established using statistical atlases, as with the
corresponding point procedures discussed in Sec. 2.2.

3 Experiments and Results

Three sets of experiments were performed to validate the pro-
posed method. In the first set of experiments (Sec. 3.2), com-
puter simulated images were used to estimate the 3DOF
transformation parameters (rotation in x, y, and z axes). A com-
parison was made among the accuracy of three different classi-
fiers. In the second set of experiments (Sec. 3.3), we further
tested the initialization method with x-ray images. In the
third set of experiments (Sec. 3.4), the initialization of 6DOF
transformation parameters (translation in x, y, and z axes; rota-
tion in x, y, and z axes) was followed by a feature-based 2D-3D
registration algorithm. A comparison of performance between
initialized and uninitialized registrations was made to test
whether the proposed method leads to improved registration.

3.1 Training Data

Two datasets were used for training and testing. The first is jour-
ney cruciate substituting (BCS) prostheses (Smith and Nephew,
Memphis, Tennessee)** composed of 33 femoral and tibial
implants. The implants were laser scanned using a Digibot
III machine (DIGI-BOTICS Austin, Texas), which recorded
the vertices on the implants’ surface. The second dataset is
William M. Bass Donated Skeletal Collection of 100 femurs
and tibias from the University of Tennessee’s Anthropology
Department. CT scans of the knees were made at levels ranging
from 120 mm proximal to the joint to 120 mm distal to the joint.
These scans were made at 1-2 mm intervals and the volumetric
data of the knee joint were constructed at 0.5 mm interpolation
in the transverse plane. Segmentation of the CT-scanned bone
was automatically performed by applying a thresholding filter to
the slices which isolated the bone from the background. Manual
intervention was conducted only when the thresholding filter
failed. An example of the 3-D models is depicted in Fig. 6.

() ()

Fig. 6 Three-dimensional (3-D) models of knee bone and implant:
(a) 3-D knee implant; (b) 3-D knee bone.
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Wu, Fatah, and Mahfouz: Fully automatic initialization of two-dimensional-three-dimensional medical image registration. . .

— xt=-3, yt=30, =517
— Xt=-49, yt=63, 2t=-481

FD value

0.8

06

0.4

02

0

0.2

0.4

0.6

0.8

I — Xt=-3, yt=30, =517 |
— xt=-49, yt=63, 2t=-481
:._‘ Lvlw[‘/‘x‘,.ﬂﬁ P U SNy Sy Sy S S Sy S ——
0 210 4;3 5‘0 8‘0 160 1210 1130 160
the ith FD
(b)

Fig. 7 Perspective effect by comparing two poses with the greatest variation in translation and fixed
rotation during deep knee bending (DKB): (a) projected shapes; (b) NEFD of the projected shapes.

To generate the training set, the 3-D models were rendered
on the 2-D plane by a software developed by the authors? using
a 3-D graphic library (Open Inventor, TGS, San Diego,
California). A coordinate system was established with the x
axis pointing to the left, y axis pointing upward, and z axis
pointing out of screen. The impact of the perspective effect
on the projected shape was analyzed by comparing the
shape variation between two poses with a different translation
and fixed rotation during deep knee bending (DKB). The two
translational values were set by the first and last poses of the
DKB, respectively. As can be seen from Figs. 7(a) and 7(b),
neither the shape nor the NEFD varies significantly for these
two poses. In addition, in-plane rotation does not lead to any
variation in the projected shapes. Therefore, we represent the
shape by out-of-plane rotation (around x and y axes) only,
while the translation and in-plane rotation (around z axis) are
normalized by NEFD.

The 3-D models were rotated in 1-deg increments about the x
and y axes while fixing the position and in-plane rotation. The
rotational range is x € [190,170], y € [-20,20] for the femoral
implant; x € [-15,5], y € [-15,20] for the tibial implant;
x € [-80,—-40], y € [-175,-150] for the femur; and x €
[80,110], y € [-30,0] for the tibia. At each orientation, the 3-
D models were rendered as a binary image so that only the sil-
houettes are visible.

3.2 Experiments on Simulated Data

Computer simulated data of femoral implant, tibial implant,
femur, and tibia were generated by rendering the 3-D models
onto the 2-D plane at known poses to validate the accuracy

the three axes will lead to an mTRE of 0.8—1.0 mm,*¢ estimates
with an angular error smaller than 4 deg can be safely considered
successful. The capture range was defined as the 95% success
range as was proposed in Ref. 13.

Ten-fold cross-validations were performed to test the perfor-
mance of the initialization method. For femoral and tibial
implants, 28 patients’ data were used for training and five
patients’ data for testing. For femur and tibia, 90 patients’ data
were used for training and 10 patients’ data for testing. Each
patient’s data contains an equal number of poses as class labels.
Table 1 presents the estimates by the initialization method for
femoral implant, tibial implant, femur, and tibia. By setting
the success threshold as the 4-deg angular difference between
estimated and gold standard poses,'>* 100% of the femoral
and tibial implants; 92% of the femur and 95% of the tibia esti-
mation were successful.

A comparison of performance among single k-NN, single
SVM, and k-NN-SVM is presented in Table 2. The performance
improves significantly from single k-NN to k&-NN-SVM. k-NN-
SVM also outperforms single SVM. Moreover, k-NN-SVM is
much faster to train because each SVM only involves samples in
the local neighborhood, and the number of classes for k-NN-
SVM is much smaller than that of single SVM.

Table 1 Root-mean-square (RMS) error of synthetic data experi-
ments with k-NN-SVM classifier using 10-fold cross validation
(90% patients for training and 10% patients for testing).

of the estimates provided by the hybrid classifier. The rotational Succiss
parameters of the testing data were in the same range as training Xr(deg)  Yr(deg)  Zr(deg) rate (%)
data in the x and y axes and varying in the range of a 40 deg Femoral implant  1.24 £0.99 0.75+0.59 1.13+1.12 100
difference along the z axis. The increment was 1 deg for each of

the three axial rotations. As an error measurement, we measure Tibia implant 0.73+0.66 0.44+0.45 1.85+1.86 100
the absolute angular difference between the estimated pose and

the ground-truth data in each axis. Reported initial mis-registra- Femur 3.02+1.76 2.32+1.83 1.66+1.16 92
tions leading tomsgcce'ssful registrations are in the order of 4— Tibia 1454155 2744194 153+123 95
11 mm mTRE™“ Since a rotation of 1 deg around one of
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Table 2 Average error of tibia pose estimation by k-NN, SVM, and k-
NN-SVM classifier (90% patients for training and 10% patients for
testing).

Xr (deg) Yr (deg) Zr (deg) Success rate (%)
k-NN-SVM 1.45+1.55 2.74+1.94 153 +1.23 95
k-NN 290+ 1.75 4.24+2.06 2.09 +1.22 81
SVM 1.71+1.58 3.06 £2.17 1.54+1.24 95

3.3 Experiments on X-Ray Images

Experiments were performed using x-ray fluoroscopic images
acquired using a high-frequency pulsated video fluoroscopy
unit. As the largest motion of the knee occurs in the flexion
and anteroposterior translation, fluoroscopic imaging was con-
ducted in the sagittal plane. The modern fluoroscopic systems
allow video capture at a rate as high as 60 Hz. The fluoroscope is
modeled as a perspective projection image formation model,
which treats the fluoroscope sensor as consisting of an x-ray
point source and a planar phosphor screen upon which the
image is formed. The x-ray images had a resolution of
640 x 480 pixels. Screenshots of the x-ray images are shown
in Fig. 8.

Contours were automatically extracted using the segmenta-
tion algorithm mentioned in Sec. 2.2. The overall performance
of the method was evaluated by calculating the absolute angular
difference between the pose estimated using the proposed
method and the ground truth, which is manual fitting.
Twenty x-ray images in a series of fluoroscopic images during
DKB were used for validation from both datasets. The average
error of femoral implant, tibial implant, femur, and tibia is

(a) (b)

Fig. 8 Fluoroscopic x-ray images: (a) femoral and tibial implant;
(b) femur and tibia.

Table 3 Average error of experiments on x-ray images. Twenty x-ray
images for each case.

(a)

Fig. 9 Overlay of the estimated 3-D model on the 2-D x-ray image:
(a) femoral and tibial implant, (b) femur and tibia.

shown in Table 3, where all the prediction poses are within
the tolerance angle of 4 deg. An overlay of the estimated 3-
D model on the 2-D x-ray image is shown in Fig. 9.

3.4 Feature-Based 2D-3D Registration Experiments

Experiments were conducted to show the benefit of initialization
for 2D-3D registration by comparing the results of initialized
and uninitialized registrations. The feature-based 2D-3D regis-
tration algorithm was implemented with a normalized cross-cor-
relation similarity measure? and optimization was performed by
simulated annealing. Registrations with a final error smaller than
1 deg were regarded as successes. The uninitialized registration
used both the randomly selected starting pose and the middle of
the angle range as its initial pose, while the initialized registra-
tion used the pose estimated by the proposed initialization
method. Translation in the x and y axes was estimated by the
center of the contour. Translation in the z axis was estimated
by comparing the scale ratio of the testing contour with the
one of the known pose.*?

A comparison between the result of uninitialized and initial-
ized registrations was made using 10 cases of femoral implant,
tibia implant, femur, and tibia, as shown in Table 4. Initialized
registration had a success rate of 100%. In contrast, the proba-
bility of success for uninitialized registration remained as low as
around 50% for the initial pose at the middle of the angle range
and around 10% for a randomly selected initial pose.

3.5 Speed of the System

The time required for pose estimation was about 5 s on average
and the time required for training SVM models was about 15 h.
The method was implemented using a combination of C++ and
MATLAB® and a 2.7 GHz computer with 8 GB of RAM was
used for all of the experiments. Compared with the similar pose
estimation study using SVM in the literature,’” whose registra-
tion time is 375.3 s and training time is 473.2 s, our method has
an obvious advantage in the pose estimation speed. The training
of SVM models with our method requires a longer time,*” but it
is an offline process thus does not impact the performance of the

Xr(deg) Yr(deg) Zr(deg) online pose estimation. The training speed can be improved by
) parallelizing the training process in the future.
Femoral implant 1.10+0.57 0.70 £0.82 1.10+0.31
Tibial implant 0.70 £ 0.51 0.42 +£0.53 1.75+0.42 4 Discussions and Conclusions
We developed a pose estimation method as an initialization for
Femur 0.60 +1.00 1.3+£1.49 0.80+0.63 2D-3D registration. More precisely, an ASM-based segmentation
Tibia 150 4 0.52 1.90 4 0.32 14125 method was applied to extract the 2-D contour from x-ray
: : : : : images. Normalized elliptical Fourier descriptors were used
Journal of Medical Imaging 024007-8 Apr=Jun 2015 « Vol. 2(2)
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Table 4 Results of initialized and uninitialized registrations.

Average error
(deg)

Average error (deg)
(obvious failure removed)

Initialization registration

Correct
registration (%)

Correct
registration (%)

Average
error (deg)

Uninitialized registration (starting point at the middle of the angle range)

Femur implant Xr 5.03+7.07 0.83+0.61
Yr 9.72 +12.08 0.76 +0.85
Zr 1.94 +£2.92 0.83 £ 1.31
Tibia implant Xr 2.67 £4.91 0.5+0.74
Yr 0.98 +1.43 089+14
Zr 1.96 +4.01 0.24 +£0.34
Femur Xr 8.29 +16.97 0.47 £0.57
Yr 1.23+2.33 025+0.4
Zr 2.08 £3.52 0.63 +0.86
Tibia Xr 0.82+1.18 0.26 £ 0.45
Yr 0.36 +0.69 0.09 +£0.16
Zr 4.34 +£7.62 0.85 £+ 1.31
Uninitialized registration (random starting point)
Femur implant Xr 25.36 +£1.32 1.60 £ 1.98
Yr 29.98 +23.54 0.45+0.35
Zr 14.29 +12.25 0.85+0.78
Tibia implant Xr 19.55 + 38.01 1.40+£1.98
Yr 13.81 £ 14.65 1.65+1.91
Zr 18.81 +24.29 0.85+1.20
Femur Xr 8.66 + 14.41 1.43+2.23
Yr 9.46 + 13.59 0.00 + 0.00
Zr 26.33 +37.36 1.46 +2.48
Tibia Xr 20.71 £ 20.87 0.8+0.7
Yr 7.96 +11.37 0.9+1.13
Zr 12.85+17.36 1.4+£1.56

30 0.00 +0.00 100
0.00 +0.00
0.01 £0.03
40 0.14+0.13 100
0.12+0.13
0.01 £0.06
60 0.26 +£0.98 100
0.09£0.18
0.46 +0.96
50 0.01+£0.17 100
0.01 £0.03
0.27 £0.17
10
10
20
0

to represent the shape of the 2-D contour. Then a hybrid clas-
sifier integrating k-NN and SVM estimated the pose of the 3-D
model. Our experimental results demonstrated the reliability of
the proposed initialization method for 2D-3D registration.
Automatic initialization is necessary for 2D-3D registration
because different initial guesses do not generate a unique sol-
ution for the knee position using the automatic 2D-3D registra-
tion method.> The proposed method generates an accurate
automatic estimation of the initial pose, leading to improved
accuracy in the following 2D-3D registration. Moreover, partial
occlusion occurs in fluoroscopic images due to the overlapping
between femur and tibia. The proposed method is robust to the
occlusion by segmenting the fluoroscopic images based on the
data from the statistical atlas. Our method was applied to 2D-3D
registration of femur, tibia, femur implant, and tibia implant
in this paper, but it can be easily extended for various medical
objects and imaging modalities for both monoscopic and
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stereoscopic registrations. Reliable 2D-3D registration opens
up many exciting possibilities such as preoperative planning,
intraoperative navigation, and diagnosing purposes by comparing
different sources of data such as CT, MRI, and x-ray fluoroscopy
images where the visualization of the anatomy is fundamental.

The limitation to the initialization method is that its resolu-
tion is limited by the increments of the training data (1 deg in
each direction). Therefore, this method is only suitable for ini-
tialization purposes. However, it can search in a large range of
possible solutions, leading to a capture range as large as the
domain of the training data. Moreover, the proposed initializa-
tion method does not need any information from the 3-D model
during testing. Another limitation is related to mirror and circu-
lar symmetry, which leads to similar 2-D projection images at
symmetric views. Currently, the proposed method does not
address such cases, though this can be solved by including con-
textual information about the motion of the adjacent elements of
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the joint to distinguish between symmetric poses. The reason for
the choice of angle range in this paper is to cover the domain of the
clinical problem being addressed in the current application. It is
not method dependent and can be easily expanded to larger ranges
for different applications. The training time is also an issue, which
can be improved by parallelizing the training process.
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