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Abstract. The optic nerve (ON) plays a critical role in many devastating pathological conditions. Segmentation
of the ON has the ability to provide understanding of anatomical development and progression of diseases of
the ON. Recently, methods have been proposed to segment the ON but progress toward full automation has
been limited. We optimize registration and fusion methods for a new multi-atlas framework for automated seg-
mentation of the ONs, eye globes, and muscles on clinically acquired computed tomography (CT) data. Briefly,
the multi-atlas approach consists of determining a region of interest within each scan using affine registration,
followed by nonrigid registration on reduced field of view atlases, and performing statistical fusion on the results.
We evaluate the robustness of the approach by segmenting the ON structure in 501 clinically acquired CT scan
volumes obtained from 183 subjects from a thyroid eye disease patient population. A subset of 30 scan volumes
was manually labeled to assess accuracy and guide method choice. Of the 18 compared methods, the ANTS
Symmetric Normalization registration and nonlocal spatial simultaneous truth and performance level estimation
statistical fusion resulted in the best overall performance, resulting in a median Dice similarity coefficient of 0.77,
which is comparable with inter-rater (human) reproducibility at 0.73. © 2014 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JMI.1.3.034006]
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1 Introduction
The ability to model structural changes of the optic nerve (ON)
throughout the progression of disease (e.g., inflammation, atro-
phy, axonal congestion) is significant to characterization of
neuropathic diseases. Hence, accurate and robust segmentation
of the ON has the capacity to play an important role in the
study of biophysical etiology, progression, and recurrence of
these diseases. Considerable work has been done using manual
segmentation techniques on computed tomography (CT) for
investigating pathology. For example, Chan et al. developed
orbital soft tissue measures to assess and predict thyroid eye dis-
ease,1 and Weis et al. described metrics to thyroid-related optic
neuropathy.2 Bijlsma et al. highlighted quantitative extraocular
muscle volumes as an essential target for objective assessment
of therapeutic interventions.3 Manual delineation of ON struc-
tures is time- and resource-consuming as well as susceptible to
inter- and intrarater variability. Automatic quantification of the
location and volumetrics of the ON would allow for larger, more
powerful studies and could increase sensitivity and specificity of
pathological assessments compared with coarse, manual region
of interest (ROI) approaches.

Ideally, automated procedures would result in accurate and
robust segmentation of the ON anatomy. However, current seg-
mentation procedures often require manual intervention due to
anatomical and imaging variability. Bekes et al.4 proposed a

geometric model-based method for semiautomatic segmentation
of the eye balls, lenses, ONs, and optic chiasm in computed
tomography (CT) images and reported quantitative sensitivity
and specificity results from simultaneous truth and performance
level estimation (STAPLE)5 of ∼77%. Qualitatively, this study
reported a lack of consistency with the results they obtain for
the nerves and chiasm. Noble and Dawant6 proposed a tubular
structure localization algorithm in which a statistical model and
image registration are used to incorporate a priori local intensity
and shape information. This study reported mean Dice similarity
coefficient (DSC)7 of 0.8 when compared with manual segmen-
tations over 10 test cases. Unfortunately, the success of auto-
mated techniques is often dependent upon the application,
modality, and image quality.

Atlas-based methods provide a model-free approach to seg-
mentation, which use atlases (pairings of anatomical images
with a corresponding label volume) to segment a target volume.
Other efforts have developed a single-atlas approach targeting
the ON for radiation therapy and reported a mean DSC of
0.4 to 0.5.8–10 Multiple atlases significantly improve the accu-
racy compared with a single atlas.11,12 In a multi-atlas approach,
multiple atlases (existing labeled datasets) are separately
registered to the target image. Label fusion is used to resolve
voxel-wise conflicts between the registered atlases. Although
multi-atlas segmentation promises a robust and model-free
approach to segment medical images from exemplar brain
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images, varied and limited success has been seen for segmen-
tation of the ON with DSC ranging from 0.39 to 0.78.8–10

We explore the development of a more reliable multi-atlas
technique for the segmentation of the ON, eye globe, and
muscles on clinically acquired CT images. Our emphasis is
on characterizing algorithms that function across a wide variety
of clinically acquired images as opposed to less translational
algorithmic innovations. This manuscript is organized as fol-
lows. First, we evaluate three current nonrigid registration algo-
rithms: (1) NiftyReg; (2) Automatic registration Toolbox (ART);
and (3) ANTS Symmetric Normalization (SyN) deformable
registration algorithms. Second, we evaluate six label fusion
algorithms: (1) majority Vote (MV); (2) STAPLE; (3) spatial
STAPLE (spSTAPLE); (4) locally weighted vote (LWV);
(5) nonlocal STAPLE (NLS); (6) nonlocal spatial STAPLE
(NLSS), and present implementation details of each algorithm.
For each method, we present quantitative and qualitative perfor-
mance characteristics. Finally, we evaluate the performance of
the optimal pipeline on a large dataset to demonstrate its
robustness.

2 Methods

2.1 Data Set

CT imaging from 183 thyroid eye disease patients was collected
for a total of 543 image volumes. Of the patients selected, 81%
are females and 70% are Caucasian with ages ranging from 9 to
83 with an average age of 49. As part of a larger study of thyroid
eye disease, CT scan volumes of these patients were clinically
collected from 2003 to 2011 using a wide variety of settings and
scanners from Philips, GE, Picker, and Marconi. The dataset
was anonymized during image retrieval from the radiology
archives; detailed CT acquisition parameters are not available.
An arbitrary subset of 30 scan volumes from 30 distinct patients
was selected to guide development and algorithm evaluation.

On the selected scan volumes, “ground truth” segmentations
were performed by experienced raters using the Medical Image
Analysis Processing and Visualization (MIPAV) software pack-
age13,14 for the full length of the left and the right ONs, eye
globes, and two pairs of extraocular muscles on all the subjects.
A single rater labeled all CT scan volumes and a second rater
labeled an overlapping subset of 15 scan volumes. Raters were
graduate students in medical imaging who were trained by radi-
ology faculty and supervised by ophthalmology faculty. Raters
worked on Dell T3500 workstations with dual 22 inch high-
definition displays and Wacom Intous tablet input devices.
Boundary definitions for all structures were obtained according
to the signal intensity differences in the images. The remaining
scan volumes were used for evaluation of the final algorithm.

Clinically acquired CT data for the ON often varies in the
target field-of-view [Figs. 1(a)–1(d)], ranging from whole
head to more localized images of the orbit with slice thicknesses
ranging from 0.4 to 5 mm (Table 1).

2.2 Development Methods

An outline of the proposed algorithm can be seen in Fig. 2.
Briefly, we localize the ON using an affine registration of the
bony structures to define a reduced field of view ROI around
these structures. Multi-atlas segmentation is then performed
on the reduced field of view image volumes using nonrigid
registration and statistical label fusion.

The first step in the multi-atlas pipeline is to identify the gen-
eral region of the orbits from within any clinically acceptable
fields of view. The bone structure for each image is identified
using an experimentally determined threshold at the minimum
intensity increased by 30% of the range of intensities. Pairwise
affine registration is then performed between the bone thresh-
olded images using the Aladin algorithm15,16 from the NiftyReg
package.

The labels are transformed to the target space using the afore-
mentioned affine registrations. Propagated labels are then aver-
aged over the number of atlases to obtain a probability image for
each target. To estimate the approximate centroids of the ocular
structures, voxels are identified as those where >90% of the
atlases contain ON labels. This set of voxels is then partitioned
into two groups, the left and right ON regions, using k-means
clustering. The centroids of these clusters are extended by
40 mm, a field of view determined experimentally, in all three
dimensions to obtain the ON ROI.

Final registrations are computed by performing pairwise
nonrigid registration deforming the cropped atlas to the cropped
target. Note that for all registration steps, the target image (i.e.,
dataset to be labeled) was considered as fixed. Three nonrigid
registration methods were evaluated: (1) NiftyReg with normal-
ized mutual information and the bending energy used to construct
the objective function; (2) ART17 with default parameters; and
(3) ANTS SyN deformable registration18 with cross correlation
similarity metric window of radius 2, a Gaussian regularizer

Fig. 1 Clinically acquired CT images are shown for four representa-
tive subjects (a–d). Note the variation in field of view and pose.

Table 1 Variability in slice thicknesses for the manually labeled sub-
set of 30 subjects and the full dataset.

Slice
thickness (mm) ≤0.4

>0.4 &
≤0.5

>0.5 &
≤1.0

>1.0 &
≤2.0

>2.0 &
≤2.5

>2.5 &
≤3.0

>3.0

Atlas images 2 8 1 4 12 2 1

All images 3 97 86 101 153 60 43

Journal of Medical Imaging 034006-2 Oct–Dec 2014 • Vol. 1(3)

Harrigan et al.: Robust optic nerve segmentation on clinically acquired computed tomography



with σ ¼ 2, and max iterations of 30 × 99 × 11, 3 resolution lev-
els with max iteration of 30 at the coarse level, 99 at the middle
level and 11 at the nest level, and step size 0.5.19 Atlas labels are
transferred to the target coordinate space using the deformation
fields and nearest neighbor interpolation. Finally, label fusion is
used to generate the final segmentation.

The following label fusion algorithms were evaluated:
(1) MV11,12,20 with log-odds weighting;21 (2) STAPLE;5 (3)
spSTAPLE;22 (4) LWV21 with a decay coefficient of 1 voxel;
mean surface distance (MSD) similarity metric for the target
and atlas intensities; standard deviation of the assumed intensity
distribution, σi ¼ 0.5; (5) NLS;22 (6) NLSS, an extension to the
NLS framework, allows for the estimation of a smooth spatially
varying performance level field. Parameters for all of the
STAPLE algorithm variations are shown in Table 2.

Algorithm comparison was done using leave-one-out cross-
validation, which generated 29 label volumes for each target

image. The 29 propagated labels were then fused to obtain the
segmentation for each structure. Quantitative accuracy was
assessed using the DSC,7 Hausdorff distance (HD),23 and MSD.
The HD metrics were computed symmetrically in terms of dis-
tance from the expert labels to the estimated segmentations and
vice versa. All the fusion algorithm implementations are avail-
able in the Java Image Science Toolkit (JIST).24,25

2.3 Evaluation Methods

The complete thyroid eye disease dataset was loaded into an
institutional eXtensible Neuroimaging Toolkit (XNAT) archive26

and the leading algorithm was executed fully automatically
using all 30 manually labeled scan volumes as atlases.
Following Fig. 2, each of the 30 manually labeled datasets
was registered (warped) to match the unlabeled target image;
statistical fusion was used to combine the registered labeled

Fig. 2 Flowchart of the optic nerve (ON) robust registration and multi-atlas segmentation pipeline. The
left (yellow) and right (red) ONs are enclosed within the two pairs of muscles, which connect to the eye
globes. The left and right eye globes and muscles are seen in purple and green, respectively.

Table 2 Parameter values used for variations of the STAPLE algorithm.

Algorithm

STAPLE Spatial Nonlocal

Performance
parameter

Initialization
decay

Half-window
size (mm)

Global
bias

Search
neighborhood (mm)

Patch
neighborhood (mm)

σi
(mm)

σd
(mm)

STAPLE 0.95 0.5 — — — — — —

SpSTAPLE 0.95 0.5 3 × 3 × 3 0.25 — — — —

NLS 0.95 0.5 — — 2 × 2 × 2 1 × 1 × 1 0.5 1.5

NLSS 0.95 0.5 3 × 3 × 3 0.25 2 × 2 × 2 1 × 1 × 1 0.5 1.5
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datasets from the atlas subject to form a label estimate for each
target image. Out of the total 543 scan volumes, there were 12
high-resolution scan volumes (0.3 × 0.3 × 0.4 mm) with large
ON field of view, which were excluded from consideration
due to technical constraints, such as cluster memory and
wall-time settings. From the remaining 531 scan volumes, 30
were used for training and algorithm development and were
therefore excluded from algorithm evaluation. In total, the algo-
rithm is evaluated on 501 scan volumes. Note that all labeling
was performed on 3-D volumes.

The volumes of the automatic segmentations were calculated
for the ON and the eye globe structure to identify outliers. To
isolate the outliers, we plot the label volumes of the 501 auto-
matically segmented volumes and the 30 manually segmented
volumes against the slice thickness, which serves as a proxy
for image quality.

To further evaluate the accuracy of the results, we performed
principal component analysis (PCA)27 on the images. All 501
test scan volumes and the 30 manually labeled atlases were
affine registered to a common quality analysis space (one of
the initial scan volumes) for comparison. Using the centroid of
these labels, all the images were cropped around the ON ROI.
PCAwas then performed using two approaches. First, PCAwas
performed on the central two slices of the registered intensity
images (i.e., where the ON was present), and the first several
modes were visually investigated. Second, the label sets on
the registered images were transformed into level sets via
Euclidean distance transform on two central slices, and PCA
was performed on the slice-wise level sets. Finally, all automatic
segmentations were manually examined to identify any other
segmentation failures.

3 Results

3.1 Development Results

The accuracy of various permutations of registration methods
followed by label fusion algorithms was evaluated using
leave-one-out approach over the 30 ground truth images.
Quantitative results of this comparison are presented in Fig. 3
for the three different structures considered (ON, globes, and
muscle). SyNANTS registration followed by NLSS label fusion
provided the most consistent results with a median DSC of
0.77 for the ON. Complete results of DSC, HD, and MSD
can be seen in Table 3. Detailed statistics characterizing all of
the approaches are summarized in Table 4. The optimal combi-
nation of registration and label fusion (ANTs SyNþ NLSS) can
be clearly seen to outperform all other combinations in the last
column of Table 4. The ONs were segmented with approxi-
mately �20% accuracy by volume, whereas the globes and
muscles were more stable with �12.5% accuracy by volume
(Figs. 4 and 5). There was a slight tendency for oversegmenta-
tion, as noted by the positive bias in nerve volumes and visibly
larger nerve boundaries compared with the manual segmenta-
tions in Fig. 4.

3.2 Inter-Rater Reproducibility

A subset of 15 images with similar variability in slice thick-
nesses as in the original dataset was selected from the manually
labeled atlas, for assessing inter-rater reproducibility. Each of
these scan volumes was labeled by a second experienced
rater, and the segmentations were compared using DSC, HD,

MSD, and relative volume difference. Results can be seen in
Table 5.

3.3 Evaluation Results

The segmentations are evaluated by examining label volumes to
identify outliers. Segmentations whose volumes are not similar
to that of the rest of the segmentations and that of the manual
atlases are likely to be outliers (extreme values) on the volume
measurements and PCAmaps. Figure 6 shows failures as a func-
tion of ON volume and eye globe and muscle volume. Note
that the algorithm was successful for the majority of scan vol-
umes, and failures have a tendency to occur at the extremes.

Results from the first PCA, using intensity images, can be
seen in Fig. 7(a). Results from the second PCA, using registered
labels, can be seen in Figs. 7(b) and 7(c) for the left and right ON
labels, respectively. Failures, cases in which the segmentation
produced undesirable results, are marked in green. Both meth-
ods of performing PCA clustered failures as outliers. PCA on
the label level sets distinguished more outliers. Note that one of
the scan volumes of the initial 30 atlases with >5 mm slice
thickness was poorly registered and appeared as an outlier; how-
ever, this image resulted in a reasonable segmentation.

All automatic segmentations were manually examined to
identify 33 failed segmentations; these failures were also appar-
ent as outliers in the PCA analyses. Two subjects with tumors in
the ON region resulted in oversegmentation in 17 of the 33 fail-
ure scans. Note that the 183 patients were retrieved by ICD code.
The graduate student raters manually reviewed each of the auto-
matically labeled datasets to determine if the algorithm resulted
in catastrophic failures. For the failure cases, we reviewed the
images with an ophthalmologist to identify the characteristics of
the images that led to the failures. Failures could be grouped in
one of four ways: (1) two subjects with tumors in the ON region
resulted in oversegmentation in 17 of the 33 failure scan vol-
umes [Fig. 8(a)]; (2) the ROI cropping failed in 2 of the 33 fail-
ures due to extreme rotation of the image during acquisition,
as our cropping direction was only along the horizontal and
vertical axes [Fig. 8(b)]; (3) scan volumes with excessively
large field of view (included the abdomen/pelvis, 12 of the
33 scan volumes) were not properly affine registered to the
atlases resulting in incorrect segmentations [Fig. 8(c)]; and
(4) 2 of the 33 failed datasets were found to be missing the
ON in the acquired field of view [Fig. 8(d)].

4 Discussion
The proposed multi-atlas segmentation pipeline provides consis-
tent and accurate segmentations of the ON structure despite var-
iable field of view and slice thickness encountered in clinically
acquired data. Segmentation error is comparable with the inter-
rater difference observed when different human raters manually
label the structures. Human raters achieved a reliability DSC of
0.73 versus 0.77 for ANTS SyN and NLSS. Note that the pro-
posed approach is similar to the best-reported performance of
other ON segmentation algorithms on CT (with DSC ranging
from 0.39 to 0.788). The primary advantage of this work is
the focus on evaluation in the context of a large, retrospective
clinical records study in which data acquisition was not stand-
ardized. Methods targeting “wild type” data are becoming
increasingly important as imaging science seeks to leverage
large archives of clinically available data that are individually
acquired with standard of care but have substantive variations

Journal of Medical Imaging 034006-4 Oct–Dec 2014 • Vol. 1(3)

Harrigan et al.: Robust optic nerve segmentation on clinically acquired computed tomography



in scanner hardware, acquisition configuration, and data
reconstruction. This work builds upon previous algorithms by
showing that the robust registration framework is able to con-
sistently handle the high variability of clinical data acquisition
scope in terms of both field-of-view and voxel resolution. The
“wild-type” success rate was 93.4% (468 of 501). None of the
failure cases is especially worrying as the extremes of field of

view (very large and missing the ON) and presence of orbital
tumors was beyond the design criteria. The proposed approach
could be used to provide analysis context (i.e., navigation), volu-
metric assessment, or enable regional nerve characterization
(i.e., localize changes).

There are opportunities for further algorithm refinements
using the recent advances in segmentation postprocessing such

Table 3 Performance statistics of NLSS fusion and SyN diffeomorphic ANTS registration.

Region

DSC MSD HD

Mean Median Range Mean Median Range Mean Median Range

ON 0.74 0.77 0.41 0.64 0.55 2.03 3.75 3.33 6.86

Globes/muscle 0.84 0.86 0.19 0.62 0.58 0.78 5.27 5.04 4.74

Fig. 3 Quantitative results of the evaluation of nonrigid registration and label fusion algorithms on
the ONs and globe structure show that SyN diffeomorphic registration followed by NLSS label fusion
is the most consistent performer across all 30 subjects.
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Fig. 4 Quantitative results of the subject-wise volume measurements between manual and automatic
segmentations.

Fig. 5 Qualitative results for the optimal multi-atlas segmentation approach for seven subjects are
shown. For a typical subject, the top rows compare manual and automatic results for a representative
2-D slice. The bottom rows show pointwise surface distance error of the label fusion estimate for the ONs
and the eye globe structure. The proposed multi-atlas pipeline results in reasonably accurate segmen-
tations for the ON structure. However, slight oversegmentations of the ONs can be observed in certain
cases (subjects 4 and 7) supporting the results in the volumetry section (Fig. 4).

Table 5 Inter-rater reliability in terms of DSC, HD, MSD, and relative volume difference metrics evaluated on 15 datasets with similar variability as
in the original dataset.

Metric DSC Sym. HD (mm) Sym. MSD (mm) Rel. Vol. Difference

Optic nerves 0.73 � 0.042 2.90� 0.485 0.49� 0.107 0.27� 0.205

Globes and muscles 0.85� 0.027 4.94� 0.613 0.54� 0.151 0.11� 0.067
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as incorporation of shape priors in the label fusion estimation
framework, intensity-based refinement,28 or learning-based
correction of mislabeled voxels.29 Other areas that could be
improved include increasing algorithm robustness to reduce
the number of failures, including a segmentation of the optic
chiasm (which is of interest in many applications) and simplify-
ing the pipeline to reduce computation time.

Although this is an early work using the NLSS algorithm,
development for statistical fusion is not an aim of this work.
All algorithms are available in open source via the JIST NITRC
projects. The fusion parameters discussed herein are specified
within the JIST user interface and were set based on prior

experience with brain imaging or as programmatic defaults.
Other tools are available in open source from their respective
authors as indicated in the methods section; an automated
program (i.e., “spider”) that combines these tools for
XNAT is available in open source through the NITRC project
MASIMATLAB.30
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