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Abstract. The evaluation of medical imaging devices often involves studies that measure the ability of observers
to perform a signal detection task on images obtained from those devices. Data from such studies are frequently
regressed ordinally using two-sample receiver operating characteristic (ROC) models. We applied some of these
models to a number of randomly chosen data sets from medical imaging and evaluated how well they fit using
the Akaike and Bayesian information criteria and cross-validation. We find that for many observer data sets,
a single-parameter model is sufficient and that only some studies exhibit evidence for the use of models
with more than a single parameter. In particular, the single-parameter power-law model frequently well describes
observer data. The power-law model has an asymmetric ROC curve and a constant mean-to-sigma ratio seen in
studies analyzed with the bi-normal model. It is identical or very similar to special cases of other two-parameter
models. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.1.3.031004]
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1 Introduction
To evaluate the effectiveness of an imaging technology,
researchers may perform a controlled diagnostic observer study
where human or model observers use images to differentiate
diseased patients from nondiseased patients or, more generally,
images with a signal from images with no signal.1 Because col-
lecting cases and performing such studies can be expensive, the
numbers of cases and readers in these studies are usually small
or just large enough to detect a modest change in a particular
statistical performance metric. The value of this metric and
its estimated uncertainty are often derived using ordinal regres-
sion to a semiparametric model of the data.2 The area under the
receiver operating characteristic (ROC) curve (AUC) is often
used as such a performance metric because it is reproducible
and likely to predict real clinical performance.

In these studies, each observer gives a rating of his confi-
dence that there is a signal in an image. For example, a radiolo-
gist may give a rating of his confidence that a lesion exists in
a mammogram. The ROC curve characterizes the relationship
between the distribution of the observer’s ratings of signal-
present images and the distribution of ratings of the signal-
absent images.3

There are many semiparametric ordinal regression models
that have been used for modeling observer data and ROC
curves,2,4–8 particularly in medical imaging experiments.
Typically, we utilize these semiparametric models on ordered
categorical observer ratings that we collect from human observer
experiments. The data may be categorical by study design, e.g.,
ratings that run one through five, or the data may be categorical
because the observers gave many images the same rating, e.g.,
0 or 100. For these experiments, semiparameteric models can
give significantly different results from nonparametric ROC

analyses9 and, therefore, we may be interested in the results
of both. In these models, observer ratings themselves are not
assumed to be distributed like these models but can be mono-
tonically transformed to a latent model space with an equal ROC
curve. Some models are chosen because they have desirable
properties. For example, semiparametric models with mono-
tonic likelihood ratios generate concave ROC curves, imply that
the observer is rational, and will not systematically rate images
with a signal or disease lower than those without.

Typically, statisticians use criteria such as the Akaike and
Bayesian information criteria (AIC and BIC) to determine
appropriate models or a number of model parameters for a
data set of interest.10 In general, the number of model parameters
is selected using the principal of parsimony, where simpler mod-
els are preferred and additional parameters are used only if we
can demonstrate that they are needed. We can pose the problem
as a hypothesis test, where the simpler model is the null hypoth-
esis and we reject it for the alternative hypothesis (complex
model) only if the probability of the null hypothesis is signifi-
cantly smaller than the alternative. In the scenario where one
model is a special case of a complex model with more param-
eters, we can estimate these probabilities using the χ2 approxi-
mation for the likelihood ratio test (LRT). The authors know of
no publications that compare different semiparametric ROC
models or numbers of model parameters on observer data
using these standard techniques.

This paper applies some semiparametric models to a number
of studies from medical imaging. We examine AIC, BIC, and
the results of cross-validation. We find that for many observer
data sets, a single-parameter model is sufficient to describe
the data. In particular, the single-parameter power-law model
frequently well describes observer data.

Other authors have noted that the power-law ROC model fits
several data sets well and that a particular form of the power-law
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model suggests a kind of decision making that uses extreme
values.11,12 Interestingly, these models suggest that observers
distribute their ratings such that the lowest ratings are the
most extreme.

2 Models
The ROC curve is the two-dimensional plot of the survival
function of the signal-present observations versus the survival
function of the signal-absent observations, or the plot of all
true positive fractions (TPF) versus false positive fractions
(FPF). Examples of ROC curves are shown in Fig. 1. Here,
we let F0 and F1 represent signal-absent and signal-present
cumulative distributions. Likewise, H0 and H1 represent those
cumulative distributions in a transformed space, and f and h
represent the respective densities. In what follows, we will
use variables x, y, and Λ to represent the values latent ratings
under various models.

In this paper, we examine several two-sample models for F0

and F1: (1) the unequal variance bi-normal model,2 (2) the equal
variance bi-normal model, (3) the bi-gamma model,4,5 and
(4) the power-law model.4,13,14

The paper examines how well these models fit ROC data col-
lected from observer experiments. Note that these are models for
the ROC curves, not the observer ratings, which may differ via
a monotonic transformation. While many other ROC models
exist, the above were chosen because they are common and
because the one-parameter models are special cases of the two-
parameter models. All the above models, except the unequal
variance bi-normal model, have monotonic likelihood ratio
functions f1∕f0 and generate concave ROC curves. In general,
ROC models with more parameters will attain greater likeli-
hoods, i.e., Eq. (3) of Dorfman and Alf2 will have higher values
for models with more parameters. Models with fewer parameters
will be simpler to implement and may offer more statistical
power. Models with only one parameter, such as the power-law
model and the equal variance bi-normal model, offer a one-to-
one correspondence between the model parameter and the AUC.

2.1 Bi-Normal Model

The unequal variance bi-normal model assumes that the distri-
butions of reader ratings can be monotonically transformed to
two normal distributions, one for signal-absent images and
one for signal-present images. This model can be described

by two parameters: the difference of means μ and the ratio of
the standard deviations of the two normal distributions b, e.g.,

F0 ¼ Nð0;1Þ; F1 ¼ Nðμ; σ ¼ 1∕bÞ: (1)

Unlike other models presented in this work, the bi-normal
model does not, in general, have a likelihood ratio f1∕f0 that
is monotonically increasing everywhere. This model is not
proper, in the sense that it does not yield a concave ROC
curve. In this paper, this model is abbreviated as N2.

2.2 Equal Variance Bi-Normal Model

This model is a special case of the bi-normal model where the
two normal distributions are required to have equal standard
deviations, i.e., b ¼ 1. This simpler model results in a concave
ROC curve and, thus, has a monotonic likelihood ratio. This
model is the only model used in this work that is constrained
to be symmetric. All other models assume that one distribution
may have larger variance than the other. In this paper, this bi-
normal model is abbreviated as N1.

2.3 Bi-Gamma Model

The bi-gamma model assumes that the distributions of reader
ratings can be monotonically transformed to two gamma distri-
butions:

f0 ¼
xs−1e−x

ΓðsÞ ; (2)

f1 ¼
xs−1e−x∕β

ΓðsÞβs ; (3)

where s is the shape parameter and β is the scale parameter. In
this model, s > 0, β ≥ 1, and x ≥ 0. When s ¼ 1, the model
becomes a single-parameter exponential or power-law model
as described in the next section. In this paper, the bi-gamma
model is abbreviated as G2.

2.4 Power-Law Model

The power-law4 or exponential3 model assumes a power-law
relationship between the FPF and the TPF, i.e.,

(a) (b) (c)

Fig. 1 Each of the graphs shows the same two power-law receiver operating characteristic (ROC) curves
plotted on three different scales. The solid ROC curve has β ¼ 2, and the dotted ROC curve has β ¼ 5.
The scale in (a) is uniform in probability and demonstrates the characteristic asymmetric or skewed
power curve FPF ¼ TPFβ. FPF, false positive fractions; TPF, true positive fractions. Graph (b) has a
logarithmic probability scale, and here β is the inverse of the slope of the ROC curves. Graph (c)
has a double negative logarithmic scale and logðβÞ is the offset of the ROC curves.
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FPF ¼ TPFβ ¼ 1 − F0 ¼ ð1 − F1Þβ;
where β is the single parameter that measures the degree of sep-
aration between the signal-present and signai-absent distribu-
tions. When the signal-present and signal-absent distributions
are indistinguishable, β ¼ 1, and β > 1 when the signal-present
ratings are higher, on average, than the signal-absent ratings.
Hanley and McNeil15 used the power-law model to calculate
the uncertainty on the AUC.

The power-law ROC curve can arise from the power-law4 or
Pareto models for latent ratings x distributed in the form
FðxÞ ¼ 1 − x−1∕b, where b > 0 and x > 1. For mathematical
convenience, we set b ¼ 1 for a signal-absent distribution F0

and b ¼ β ≥ 1 for the signal-present distribution F1

F0ðxÞ ¼ 1 − x−1; (4)

F1ðxÞ ¼ 1 − x−1∕β: (5)

Note that

FPF ¼ 1 − F0 ¼ x−1 ¼ ðx−1∕βÞβ ¼ ð1 − F1Þβ ¼ TPFβ:

Because the ROC curve is invariant under monotonic trans-
formations of the rating data, a number of pairs of common dis-
tributions that yield the same ROC curves can be constructed
from these power-law forms. In general, if y is the transformed
variable and y ¼ gðxÞ is a monotonic function, then HðyÞ ¼
F½g−1ðyÞ� is the distribution of the transformed variable.
Distributions that give ROC curves equal to the power-law dis-
tributions include the following:

1. The transformation y ¼ gðxÞ ¼ ðln xÞ1∕k yields
Weibull distributions from the power-law distribu-
tions, H0ðyÞ ¼ 1 − e−y

k
, H1ðyÞ ¼ 1 − e−y

k∕β, where
y ≥ 0. For k ¼ 1, the distributions are negative expo-
nentials and are a specific case of the bi-gamma model
where s ¼ 1. For k ¼ 2, the distribution is Rayleigh,
which arises from random sinusoidal noise.3,4

2. The transformation y ¼ gðxÞ ¼ ln ln x yields mini-
mumGumbel or double exponential distributions,16 e.g.,

H0ðyÞ ¼ 1 − exp½− expðyÞ�; (6)

H1ðyÞ ¼ 1 − expf− exp½y − logðβÞ�g: (7)

3. The transformation Λ ¼ gðxÞ ¼ xðβ−1Þ∕β∕β yields like-
lihood ratio distributions.

H0ðΛÞ ¼ 1 − ðβΛÞ β
1−β; (8)

H1ðΛÞ ¼ 1 − ðβΛÞ 1
1−β; (9)

where the likelihood ratio is Λ ¼ h1∕h0 ≥ 1∕β.

Examples of power-law ROC curves arising from these
distributions are shown in Fig. 1 on three different scales.

3 Model Fitting
This paper examines how well the above four models repre-
sented data from a number of studies listed in Sec. 4. We fit
each data set with each of the four models using two-sample

maximum likelihood (ML) ordinal regression,2,17–19 which is
a typical approach in observer performance studies. The selected
model parameters were those that gave the greatest model like-
lihood. We used three approaches to evaluate the goodness-of-fit
of these ML models: (1) the AIC20 and BIC,21 (2) the LRT, and
(3) cross-validation.

3.1 Akaike and Bayesian Information Criteria

AIC is expressed as 2k − 2 logðLMÞ, where k is the number of
free parameters in the model and LM is the maximum likelihood
of the fit model. It defines a trade-off between the number of
parameters used to fit the data and the likelihood of the fit.
Less parsimonious models are penalized for having more
parameters. Lower values of the criterion indicate better models.

Likewise, BIC is defined as k logðNÞ − 2 logðLMÞ, where N
is the number of independent observations to which the model is
fit. BIC penalizes extra model parameters more strongly than
does AIC.

The true number of free parameters for each model is difficult
to estimate because it depends upon the number and distribution
of the latent threshold parameters in the ordinal regression
procedure. These latent thresholds are parameters that corre-
spond to the boundaries between actual numerical ratings.
These parameters are dependent upon each other because
they are constrained to be ordered and, therefore, they should
not be considered full free parameters. Therefore, exact values
of AIC and BIC cannot be calculated. However, because we
ensured that the number of latent thresholds is the same for
all models for any one particular data set, we made the
assumption that the latent thresholds for all models contribute
the same effective number of free parameters. In that case,
we do know the differences in the number of free parameters
between models, and therefore, the differences in AIC and
BIC can be estimated.

In the situation where two models being compared have the
same number of parameters, such as the power-law and equal
variance bi-normal model or the bi-gamma model and the bi-
normal model, the difference in AIC and BIC is just twice
the log-likelihood ratio, e.g., −2 logðLG2

∕LN2
Þ. In this case,

selecting the model with the lower AIC or BIC is equivalent
to selecting the model with the highest likelihood. A difference
in AIC or BIC ofD ¼ 2 corresponds to one model being eD∕2 ¼
2.7 times more likely than the other.

The bi-gamma (G2) and bi-normal (N2) models have one
more degree of freedom than the power-law (P1) or equal vari-
ance bi-normal (N1) models. In the situation where the two
models being compared differ by one parameter, such as the
G2 and P1 models, the difference in AIC is ΔAICGP ¼
2 − 2 logðLG2

∕LP1
Þ.

AIC and BIC were developed as general rules for determin-
ing which model should be selected given a particular data set.
These rules can be applied to any pair of models, even if no
known statistical test exists for the likelihoods of the models.
For more details about these criteria, the reader is encouraged
to consult the references.

3.2 Likelihood Ratio Test

Wilks22 demonstrated that if the data are distributed like that of a
simpler model M1, and if M1 is a special case of another model
M2 that has p more parameters, then the ML log-likelihood ratio
LLR ¼ 2 logðLM2

∕LM1
Þ is approximately distributed as a χ2
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variable with p degrees of freedom. Therefore, if an observer’s
data are truly distributed in a power-law fashion, then ΔAICGP

will be approximately distributed as 2 − χ21. If we were to select
the model with the lower AIC, then there is a Pðχ21 > 2Þ ¼
0.157 probability that we would violate parsimony and select
the model with one more degree of freedom than necessary.
Likewise, if an observer’s data set of 140 observations is truly
distributed as the equal variance bi-normal model, then the differ-
ence in BIC between a two-parameter ML bi-normal model and a
one-parameter ML bi-normal model will be distributed approx-
imately as logð140Þ − χ21. If we were to select the model with
the lower BIC, then there is a P½χ21 > logð140Þ� ¼ 0.026 proba-
bility that we would not select the true parsimonious model.

Frequently, statisticians treat the extra model parameter as an
alternative hypothesis and the LLR as a test statistic. If the LLR
is greater than 95% of the appropriate χ2 distribution, then we
may reject the simpler model and accept the extra model param-
eter. In this LRT, the LLR threshold is the one-sided 95% con-
fidence interval (CI).

The empirical differences of the log-likelihood, AIC, and
BIC were calculated for each observer and modality for
every study described in Sec. 4. The differences were also
calculated for each of the 4010 data sets in each simulation.
The distributions of these differences are given in Fig. 2, and
the fraction of individual ROC curve fits preferred by each
criterion are given in Table 1.

Additionally, for the pairs of models where the LRT could be
applied (G2-P1 and N2-N1), we also calculated an overall proba-
bility (p value) of the null hypothesis that all the data in each study
were from the more parsimonious one-parameter model. This p
value is the χ2d cumulative probability of the sum of the LLRs
from all ROC curve fits from that study. Here, d is the adjusted
number of degrees of freedom, which is the number of LLRs multi-
plied by a correction factor. That correction factor is the ratio of the
observed sum of LLR values from simulations to the theoretical χ2

value. The correction factors are very close to one, but are imple-
mented because the LRT is not exact, only approximate.

Even with this correction, we still expect that our overall
p values that are less than 0.5 will be underestimated because
we do not account for correlations among the ROC curve fits
within each study. By merely summing the LLR values, we
assume independence, but because multiple fits from the
same study may involve the same set of readers or patients,23

the LLRs may be correlated. Currently, we know of no imple-
mentations of a two-way random effect analysis for ML LLRs
from a two-sample regression.

3.3 Monte Carlo Cross-Validation

Each set of observer data was randomly divided into two por-
tions: one that contained 2/3 of the observations and another that
contained 1/3. The larger portion of data was used to create a
ML fit for each of the four models. We calculated the likelihood
that the held-out data (the 1/3) came from each model with
those ML fit parameters. This procedure was repeated several
hundred times per observer per study. The signal-absent and
signal-present distributions were sampled independently, so
their relative proportions remained the same.

Models with too few parameters will not be able to represent
the data well and the likelihood on the held-out data will be poor.
Models with too many parameters will overfit the 2/3 training
data set, excessively deviating from the true distribution of rat-
ings, and will not generally perform as well as the true model on

the held-out data. The average likelihoods from these Monte
Carlo cross-validations were compared across models for
each study and are shown in Fig. 3.

4 Studies and Data Sets
The models described in Sec. 2 were compared using AIC, BIC,
LRT, and cross-validation (Sec. 3) on data from eight different
observer studies and two computer simulations. The authors
selected these studies randomly from those available or readily
obtainable from collaborators without consideration of the d
istribution of data. The studies are typical of those found in
medical imaging and are appropriate for comparing semipara-
metric ROC curve fits.

The data from each study consisted of ordered ratings given
to a set of images. Some rating scales had 5 categories, some had
100, and some were between those values. Each rating repre-
sented the confidence with which the observer thought a signal
was present in the image. All data were collected from rating
procedures, not from forced choice or yes-no experiments.
Because observers may differ on their rating scales and ability,
each ROCmodel was fit separately to each observer’s ratings for
each data set, therefore, each observer’s set of ratings had to
include at least 10 signal-present and signal-absent images.
No data sets were excluded based on the form of data distribu-
tions, so comparisons of models on these selected data sets
should not be biased.

We excluded data from observers whose empirical AUC esti-
mates were greater than 0.97 and those less than 0.53. In gen-
eral, data sets with high empirical AUC values, e.g.,>0.97, have
very few overlapping observations and, therefore, give little
information about the form of the signal-present distribution
with respect to the signal-absent distribution. Likewise, when
AUC values are very low, < 0.5, there is little information
about the forms of the latent signal-present and signal-absent
distributions, other than that they are not differentiated.

In most of the studies, the same set of images were evaluated
by all observers in the study. Therefore, multiple ROC curves
obtained from each study are not independent. All study data
sets were completely de-identified both in readers and patients.
For more details about a particular study, the reader may consult
its respective reference.

4.1 Simulations

For reference and validation of our analysis methods, we com-
pared models fitted to simulated data of two known types. One
type of simulation used ratings drawn from power-law (P1) dis-
tributions and the other from an equal variance bi-normal model
(N1). We generated 4000 random data sets for each of these types
of simulations to acquire the distributions of the differences of
AIC and BIC for each pair of models in Sec. 2. Each single
data set was composed of 70 signal-present ratings and 70 sig-
nal-absent ratings. These sample sizes were chosen to be typical
of the real data sets analyzed in this paper. The AUC value for
each data set was randomly chosen between 0.6 and 0.95.

4.2 Virtual Colonoscopy Reader Study

Petrick et al.24 describe a virtual colonoscopy study that
consisted of four radiologists identifying and rating polyps in
virtual colonoscopy images from 44 patients. The radiologists
made two evaluations: one without the use of computer-aided
diagnostic (CAD) software and one with the software. Eight
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Fig. 2 This figure contains eight plots, one for each study. The top two plots are from the power-law (P1)
and normal (N1) simulations, and the lower six plots are from real studies. Each plot shows the empirical
distributions of the differences of Akaike information criterion (AIC) and Bayesian information criterion
(BIC) between each pairing of the four models. There is one such difference for each reader and for each
modality. All distributions are normalized to have the same area, though the real studies have sample
sizes between 8 and 100, and the simulated sample sizes are 4010. At the top and bottom of each plot
are the identifiers of the models being compared. For example, on the far left of each plot is the distri-
bution of the difference of AIC and BIC values between the two-parameter bi-gamma (G2) model and the
two-parameter bi-normal (N2) model. Because lower AIC/BIC values indicate superior fits, a distribution
mostly above zero would indicate superiority of the N2 model. The scale on the left is the difference in AIC
that applies to all six distributions in each plot. The BIC difference scale for the two left-most distributions
is the same as the AIC difference scale because the models being compared have the same number of
parameters. The BIC difference scale on the right applies to the four distributions on the right of each plot.
The densely dotted, narrow, horizontal lines in the plots are at a value of 0 difference in AIC. The sparsely
dotted, thick, horizontal lines are at a value of 0 difference in BIC. The solid curved lines are the prob-
ability density of 2 − χ21. This curve is the approximate expected distribution of the difference of two AIC
values if the upper model represents the actual population and the lower model has an additional param-
eter.22 The dashed horizontal line is the 5% lower confidence interval on that expected distribution.

Journal of Medical Imaging 031004-5 Oct–Dec 2014 • Vol. 1(3)

Samuelson and He: Comparison of semiparametric receiver operating characteristic models on observer data



total ROC data sets were fit, one for each reader and reading
mode. This study will be abbreviated as VCRS.

4.3 Digital Breast Tomosynthesis Reader Study

In a study by Rafferty et al.,25 14 radiologists gave ratings on
breast images from 312 patients, 48 of whom had confirmed
malignant breast cancer lesions. Each radiologist gave two rat-
ings for each patient, one using only mammography and one
using mammography and tomography, leading to 28 different
ROC data sets. This study will be abbreviated as DBTRS.

4.4 Volumetric Detection Tasks Reader Study

In a study described by Platiša et al.,26 10 to 12 observers gave
ratings to simulated multislice and single-slice images generated
with several different noise backgrounds. After the exclusions
for extreme AUC values, a total of 101 ROC data sets were
fit to the four models. Between 64 and 94 image ratings were
used to construct each curve. This study will be abbreviated
as VDTRS.

4.5 Digital Resolution Reader Study

In a study by Chan et al.,27 seven radiologists examined images of
112 microcalcification clusters that were digitized from mammo-
grams at four different resolutions. Sixty-five of the clusters were
benign. The radiologists rated how likely it was that each calci-
fication cluster was malignant based on the image. This resulted
in 28 ROC data sets. This study will be abbreviated DRRS.

4.6 Breast Mass Reader Study

In a study by Sahiner et al.,28 10 radiologists rated breast images
from 67 patients that contained breast masses, 35 of which were
malignant. The radiologists first read mammograms, then added
three-dimensional ultrasound volumes, and then read both
images with the assistance of a CAD device. All reader-modality
permutations yield 30 different ROC data sets. This study will
be abbreviated BMRS.

4.7 Magnetic Resonance Image Reader Study

In a study by VanDyke et al.,29 five radiologists interpreted
single spin-echo magnetic resonance images (SE MRI) and

Table 1 This table gives the percentage of fits that favor the first of the two listed models based on a particular criterion for each study. For
example, the number in the upper left indicates that Akaike information criterion (AIC) and Bayesian information criterion (BIC) favored the
bi-gamma model over the bi-normal model for 60.5% of the power-law simulations. These numbers are the percentages of each distribution
in Fig. 2 below the finely dotted lines (AIC), coarsely dotted lines (BIC), and dashed lines [95% confidence interval (CI)]. In Sec. 3.2, we approxi-
mated the values in the asterisk cells as 15.7, 2.6, and 5.0%.

Models Criteria P1 Sim N1 Sim VCRS DBTRS VDTRS DRRS BMRS MRIRS

G2-N2 A/BIC 60.5 22.2 12.5 75.0 34.7 53.6 50.0 70.0

N1-P1 A/BIC 13.3 83.2 50.0 7.1 59.4 3.6 46.7 10.0

N2-P1 AIC 15.4 71.9 62.5 10.7 38.6 0.0 33.3 0.0

BIC 2.8 45.8 50.0 0.0 11.9 0.0 6.7 0.0

G2-P1 AIC 18.5* 71.6 50.0 14.3 35.6 7.1 26.7 0.0

BIC 3.5* 42.6 25.0 0.0 7.9 3.6 6.7 0.0

CI 6.0* 52.2 25.0 0.0 9.9 3.6 10.0 0.0

N2-N1 AIC 76.1 16.8* 37.5 92.9 32.7 64.3 30.0 70.0

BIC 50.6 2.9* 37.5 42.9 15.8 21.4 13.3 30.0

CI 59.1 5.4* 37.5 82.1 17.8 35.7 13.3 60.0

G2-N1 AIC 78.2 10.2 37.5 92.9 26.7 64.3 30.0 80

BIC 53.2 2.1 37.5 46.4 11.9 25.0 13.3 40

Number of fits 4010 4010 8 28 101 28 30 10

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
A

ve
ra

ge
 L

ik
el

ih
oo

d

P
1 

S
im

N
1 

S
im

M
−

C
A

D

S
−

C
A

D

V
D

T
R

S

D
R

R
S

B
M

R
S

V
C

R
S

D
B

T
R

S

M
R

IR
S

●

●

● ●

●

●

●

●

● ●

● P1 Model
G2 Model

N2 Model
N1 Model

Fig. 3 This figure plots the relative average likelihood of each of the
four models on the 1/3 of the data held-out during cross-validation for
each study in this paper. The average likelihoods of all models are
divided by the likelihood of the model with the highest likelihood for
that study, i.e., the likelihoods are normalized, so the model with
the highest likelihood is scaled to 1. The shaded studies on the left
are the simulated data sets provided for reference.
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cinema-mode magnetic resonance imaging (CINE MRI) images
of 114 patients, 45 of whom had an aortic dissection. This gave
10 different data sets to be fit with ROC curves. This study will
be abbreviated MRIRS.

4.8 Artificial Observers—CAD Data Sets

In addition to the studies with human readers, we include data
from two artificial observers. One is the CAD software designed
to mark masses on ultrasound and x-ray mammography images
used in the reader study by Sahiner et al.28 The study is the same
as described in Sec. 4.6. This study will be abbreviated M-CAD.

The other artificial observer is a software CAD designed to
identify sclerotic metastases in computed tomography (CT)
images of the spine.30 The CAD software was applied to images
from 38 patients with bone lesions. For our analysis, each
patient image was divided into six regions, with 130 of those
regions containing metastases and 98 containing none. This
study will be abbreviated S-CAD.

Each artificial observer output continuous ratings, but these
scores were finely discretized18 to facilitate the ordinal regres-
sion routines used for reader data. Each artificial CAD observer
yielded only single point estimates, rather than distributions, of
differences in AIC and BIC. The ROC data and model fits of
these are shown in Fig. 4.

5 Results

5.1 Differences in AIC and BIC and the LRT

The distributions of all the differences in AIC and BIC for each
of the studies are shown in Fig. 2. For each study, the distribu-
tions of differences of each possible pairing of models are pre-
sented along the vertical axes.

The fractions of the distributions above the finely dotted, hori-
zontal zero line are the fractions of differences in the AIC that
favor the models listed across the top of the plot over the models
listed on the bottom. The fractions of AIC differences below this

line, and, therefore, showing preference for the model listed
across the bottom, are given in Table 1 on the rows labeled AIC.

The fractions of the distributions above the coarsely dotted,
horizontal zero lines are the fractions of differences in BIC that
favor the model listed across the top. Note that this coarsely dot-
ted line is in a different position for the two model comparisons
on the left of each plot than the four on the right, because the
four histograms on the right compare models that differ by one
parameter. Fractions of BIC differences below this line are given
in Table 1 on rows labeled BIC.

For the model pairings where one model is a special case of
a more complex model, a dashed horizontal line indicates the
approximate 95% one-sided lower CI for LRT. The percentages
of fits below these thresholds are tabulated in Table 1 on rows
labeled CI.

5.1.1 Simulations

The differences of AIC and BIC for the simulated data sets (the
top two plots in Fig. 2) are distributed almost exactly as
expected, validating much of the methodology and analysis
routines used in this work. Each plot demonstrates that the
model that best fits the data according to the AIC and BIC is
the model that was used to generate the simulations.

For the P1 simulation, AIC and BIC differences fall almost
entirely on the P1 side of the dotted lines. As noted in Sec. 3.2,
the AIC differences between the G2 and P1 models very closely
follow the 2 − χ21 distribution, which is drawn on the plot as a
solid curved line. Table 1 shows that 18.5 of the AIC differences
were below zero (with ∼15.7% expected from the χ2 approxima-
tion) and 3.5% of the BIC differences were below zero (with
2.6% expected), and 6.0%� 0.37% were below the approximate
5% lower CI. These values were very similar for the differences of
the N2 and N1 models for the N1 simulation.

These observed percentages are close to the expected χ21 rates,
but they differ because (1) the χ21 form assumes a large sample
size and is only approximate and (2) the ML LLR found by the
ordinal regression algorithm is also only approximate. The agree-
ment between the χ21 approximation and the observed rates is
sufficient for the purpose of determining which model is most
appropriate for a single ROC curve fit. However, when we cal-
culate an overall p value for a study based on the sum of many
LLRs, the discrepancy can lead to abnormally small p values.
For example, the sum of all 4010 LLRs between the G2 and
P1 models for the P1 simulation is 4509, which when computed
as a deviate of the χ24010 distribution has a cumulative probability
of 4 · 10−8. To avoid this problem when calculating the overall
p value for each study, we correct the χ2 degrees of freedom by
the factor 4509∕4010 ≃ 1.12, as described at the end of Sec. 3.2.
For the N2-N1 model comparison, this correction factor is 1.05.
These corrections force an overall p value of 1/2 for the model-
specific simulation studies in Table 2.

5.1.2 Reader data

The lower six plots in Fig. 2 show the distributions of
differences of the AIC and BIC for the human observer studies.
For the digital breast tomosynthesis reader study (DBTRS), the
digital resolution reader study (DRRS), and the magnetic reso-
nance image reader study (MRIRS), the bulk (70 to 90%) of
the AIC differences between the two-parameter models (G2

and N2) and the one-parameter bi-normal model (N1) are neg-
ative, so AIC implies that G2 and N2 are superior choices to N1.

Fig. 4 : ROC curves of the two computer-aided diagnostic (CAD)
observers described in Sec. 4.8. The upper curves are from the mam-
mography CAD. The lower curves are from the spinal CAD. The open
circles and triangles are the categorized empirical ROC data. All other
curves are semiparametric fits to those empirical data as described in
the legend. Note that the power-law model and the two-parameter
models are very similar for both CADs, and both data sets depart
substantially from the single-parameter normal model.
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However, the BIC differences, which penalize the extra param-
eter more strongly than AIC, split across the zero line, favoring
the two-parameter models for some observers, but not for others.
Both AIC and BIC differences between the two-parameter mod-
els (G2 and N2) and the one-parameter power-law model (P1) are
largely positive. Indeed, the DBTRS, DRRS, and MRIRS distri-
butions look very similar to the simulated P1 distributions.
Likewise Table 1 shows that the two-parameter models are
preferred at very similar rates in the real and simulated studies.
In a model selection scenario or hypothesis testing scenario, we
would select a less parsimonious two-parameter model for almost
none of the data sets from these studies.

AIC implies that the volumetric detection tasks reader study
(VDTRS) and the breast mass reader study (BMRS) favor sin-
gle-parameter models (N1 and P1) over two-parameter models in
general. BIC shows an even stronger preference for single-
parameter models. There is no clear preference between the sin-
gle-parameter models, with the table showing that the AIC and
BIC prefer N1 to P1 for ∼50% of the fits. Table 1 demonstrates
that in a hypothesis test only 10% of the data sets would be
assigned the less parsimonious two-parameter G2 model over
the P1 model.

The virtual colonoscopy reader study (VCRS) is more
ambiguous. Most of the difference distributions are bimodal.
All criteria show a strong preference for the N2 model for
some data sets. The ROC curves for this study (not shown) dem-
onstrate the N2 model’s ability to form large hooks that fit
certain readers’ data very well. Some fits in this study were
degenerate. This is also the only study that shows a clear pref-
erence of one two-parameter model (N2) over the other (G2).

Table 2 gives the overall adjusted p values for each study.
Because of the low probabilities in the N2-N1 row, we see
that there is some evidence in each reader study that the N1

model is not sufficient for fitting all the curves in that study.
The second row shows us that in four of the six reader studies,
there is no statistically significant evidence of using a model
less parsimonious than the P1 model for any of the model fits.
While the majority of ROC curves from VCRS and VDTRS are
sufficiently fit by the P1 model as determined by most criteria
(Table 1), the studies have some very extreme observer data sets
(VCRS) or a very large sample size (VDTRS) that make the
detection of observers with non-P1 curves possible.

5.1.3 CAD observers

Table 3 gives the differences in the AIC between models for the
CAD observers. For both CAD data sets, the differences in AIC
showed a preference for the two-parameter models over the sin-
gle-parameter bi-normal model. However, the power-law model
was even more preferred, with AIC values 1.5 to 2 units below
the two-parameter models. Differences in BIC values were even
larger, and p values for the LRT between the G2 and P2 models

were 0.89 and 0.51 for the M-CAD and S-CAD, respectively,
indicating no evidence of a model less parsimonious than P1.

5.2 Cross-Validation

The Monte Carlo cross-validation results are similar to the
results using the information criteria. Figure 3 gives the normal-
ized average likelihoods from the held-out data for each of the
four models for each study.

As expected, the models from which the data were simulated
gave the best cross-validation results. While the two-parameter
models fit the data as well as the single-parameter models, they
often overfit the training data, leading to a lower likelihood on
the held-out data.

For VDTRS and BMRS, the N1 model was superior, closely
followed by the P1 model. The N2 model was superior for the
VCRS study, with the P1 superior for all rational concave ROC
models. VCRS is the only study where cross-validation indi-
cated a preference for a less parsimonious two-parameter
model. The P1 model was superior for all other data sets tested.
Based on this sample of studies, we would first consider the
power-law model when presented with a new set of data.

6 Discussion

6.1 Power-Law Model

Overall, our results show that the power-law model fits reader
study data better than other models investigated. This is also true
of the artificial CAD observers. This result has also been noted
with several other study data sets that are not provided here.
Therefore, in this discussion, we further examine the properties
of the power-law model. While the two-parameter models
almost always attained higher likelihoods than the power-law
model, the AIC, BIC, and cross-validation indicate that the
extra parameter is not usually needed. Models with more param-
eters may be justified for larger data sets, but not for most of
the typically sized sets presented here.

DeCarlo12 points out that these power-law distributions are
minimum value distributions. This can be seen as follows.
FPFðXÞ ¼ TPFðXÞβ ¼ ½1−F1ðXÞ�β ¼

Qβ
i¼1P1ðxi > XÞ, where

P1ðxi > XÞ is the probability that the i’th latent signal-present
rating is greater than X. If the observations xi are independent,

Table 2 This table gives the overall adjusted p values for each study. Under the null hypothesis that the data come entirely from the one-parameter
model rather than the two-parameter model, these p values would be uniformly distributed. The values were adjusted such that the daggered cells
are 1/2. Starred 0. values are <10−9.

Models P1 Sim N1 Sim VCRS DBTRS VDTRS DRRS BMRS MRIRS

N2-N1 0.� 0.494† 7 · 10−5 0.� 3 · 10−6 1 · 10−9 3 · 10−4 7 · 10−5

G2-P1 0.500† 0.� 0.017 0.751 4 · 10−4 0.979 0.101 0.985

Table 3 Differences in the AIC values between models for the
computer-aided diagnostic (CAD) observers. Larger values indicate
superiority of the second model in each pair.

G2 − N2 N1 − P1 N2 − P1 G2 − P1 N2 − N1 G2 − N1

M-CAD −0.13 3.00 2.11 1.98 −0.88 −1.01

S-CAD −0.16 5.85 1.73 1.57 −4.12 −4.28
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then
Qβ

i¼1 Pðxi > XÞ is the probability that all the xi values are
greater than X and the probability that the minimum x observa-
tion is greater than X. So the signal-absent distribution, F0ðXÞ ¼
1 − FPFðXÞ is distributed as the minima of β signal-present
observations. Therefore, one interpretation of the power-law
model is that readers give scores to signal-absent images that
are distributed as the minima of a certain number (β) of sig-
nal-present images.

6.2 Comparison with Other Models

6.2.1 Bi-normal model and the mean-to-sigma ratio

When analyzing data with the bi-normal model, previous
authors31 have demonstrated that the slopes and intercepts of
ROC curves on a normally transformed scale are not the same
for different perceptual tasks. But authors have found that the esti-
mated mean-to-sigma ratio, r̂ ¼ μ̂∕ðσ̂ − 1Þ, of a large number of
perceptual tasks is roughly constant,3,14,32 with μ and σ defined in
Eq. (1). The mean-to-sigma ratio is defined as the difference in
means divided by the difference in standard deviations.33 These
authors point out that the ratio r is between 3 and 5, roughly 4,
and is constant across a range of AUC values.

To compare the bi-normal model to the power-law model, we
fit the bi-normal model to very large simulated power-law data
sets with 40,000 observations. Estimates of the parameters μ and
σ from these fits give a bi-normal model that, in some sense, best
mimics the corresponding power-law model. The estimates
â ¼ μ̂∕σ̂, the intercept of the bi-normal ROC curve, b̂ ¼ 1∕σ̂,
the slope of the bi-normal ROC curve, and r̂, the mean-to-
sigma ratio, are shown for a range of AUC values in Fig. 5.
The values of â and b̂ vary with AUC, but r̂ is fairly constant
with a value of r̂ ≃ 3.1. The power-law model gives a mean-to-
sigma ratio that is constant across AUC values, just like findings
of authors of other studies.

Figure 6 displays box plots representing the distribution of r̂
for each of the different featured studies. Due to the difference in
the denominator of the mean-to-sigma ratio, its value is highly
variable, particularly on small data sets. For this reason, our fig-
ure does not show all whiskers or outliers in the plot, only the
centers of the distributions. Our data are consistent with other

reported mean-to-sigma ratios. The median r̂ of all the data is
3.0 and the mean is 3.1. The mean-to-sigma ratio fit from power-
law data in the previous paragraph is consistent with the average
bi-normal mean-to-sigma ratio of our sample of studies and is
consistent with the measured values of other authors. Therefore,
it is likely that the power-law model would fit data well from
many other studies.

6.2.2 Maximum signal model

Under the argument that images consist of a number of visual
stimuli, and that observers give their rating to the most obvious
signals or targets in an image, the distributions of signal-absent
ratings and signal-present ratings should be distributed as

H0ðyÞ ¼ ΦMðyÞ; (10)

H1ðyÞ ¼ ΦM−1ðyÞΦðy − dÞ;
where Φ is the normal cumulative distribution function and the
assumed distribution of the individual stimuli.33,34 For M ¼ 1,
the model is an equal variance bi-normal model where μ ¼
d. At moderately large M (104), this model becomes similar
to a power-law model in the shape of the ROC curve for
a wide range of d. The similarity of the power-law and maxi-
mum-signal models is shown in Fig. 7 for a typical range of
AUC values.
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Fig. 5 Maximum likelihood estimates of parameters of the bi-normal
model from fits to very large power-law data sets as a function of the
AUC value from which those data sets were drawn. The parameters
are the mean-to-sigma ratio [r̂ ¼ μ̂∕ðσ̂ − 1Þ], the intercept of the bi-nor-
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Fig. 7 Comparisons of the ROC curves of the power-law model and
the maximum signal model for M ¼ 104 as discussed in Sec. 6.2.2.

Journal of Medical Imaging 031004-9 Oct–Dec 2014 • Vol. 1(3)

Samuelson and He: Comparison of semiparametric receiver operating characteristic models on observer data



6.3 Summary

Semiparameteric models for ROC curves are frequently used to
fit data from observer studies in medical imaging. These models
may be more powerful than or complementary to nonparametric
methods. Few comparisons of these semiparametric models
using standard statistical techniques are known in the literature.
This paper made such comparisons on a sample of published
imaging studies.

We found that the single-parameter power-law model fits the
data from many signal-detection reader studies well. For many
data sets in medical imaging, less parsimonious models with
additional parameters are not justified based upon cross-valida-
tion or AIC or BIC. In the majority of studies that we examined,
there was no statistical evidence that more complex models
should be used. The form of the power-law model is consistent
with other models and data sets found in the literature.
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