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Abstract

NADPH/NADP+ homeostasis is critical for countering oxidative stress in cells. Nicotinamide 

nucleotide transhydrogenase (TH), a membrane enzyme present in both bacteria and mitochondria, 

couples the proton motive force to the generation of NADPH. We present the 2.8 Å crystal 

structure of the transmembrane proton channel domain of TH from Thermus thermophilus and the 

6.9 Å crystal structure of the entire enzyme (holo-TH). The membrane domain crystallized as a 

symmetric dimer, with each protomer containing a putative proton channel. The holo-TH is a 

highly asymmetric dimer with the NADP(H)-binding domain (dIII) in two different orientations. 

This unusual arrangement suggests a catalytic mechanism in which the two copies of dIII 

alternatively function in proton translocation and hydride transfer.

Nicotinamide nucleotide transhydrogenase (TH) is an integral membrane protein that can 

utilize the proton motive force for hydride transfer from NADH to NADP+ forming NADPH 

(1): NADH + NADP+ + H+
out ↔ NAD+ + NADPH + H+

in, where “out” and “in” 

respectively denotes the space outside the prokaryotic plasma membrane and cytosol (or 

mitochondrial intermembrane space and matrix in eukaryotes). The resultant NADPH is 
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utilized for amino acid biosynthesis and by glutathione reductase and glutathione peroxidase 

to remove reactive oxygen species (2). Mutations in Nnt genes, which encode for TH, are 

correlated with familial glucocorticoid deficiency of the adrenal cortex (3). Mice with 

mutations in the Nnt genes exhibit glucose intolerance and impaired secretion of insulin, as 

in type-2 diabetes (4, 5).

Functional TH exists as a dimer (6), where each protomer contains three domains: a 

hydrophilic NAD(H)-binding domain (dI), a transmembrane domain (dII), and a hydrophilic 

NADP(H)-binding domain (dIII) (Fig. 1A). Despite topological variations of TH subunits 

across species (Fig. S1), dIII is always a C-terminal extension of dII. Hydride transfer 

between NAD(H) and NADP(H) occurs across the dI-dIII interface; proton translocation is 

across dII. One proton is translocated across the membrane per hydride transferred between 

nucleotides (7).

Structures of hydrophilic dI and dIII were previously solved for TH isolated from bovine (8) 

and human (9) mitochondria as well as from Rhodospirillum rubrum (10) and Escherichia 

coli (11). Co-crystallization of dI with dIII results in an asymmetric heterotrimer (dI)2:dIII 

(12, 13). Here, we determined the structures of the dimeric (dI)2 and the heterotrimeric 

(dI)2:dIII from Thermus thermophilus (Tt) TH (Fig. S2A; Table S1). In each of the 

heterotrimer structures, the NADP(H)-binding site of dIII is near the NAD(H)-binding site 

of one copy of dI, poised for direct hydride transfer. If a second copy of dIII were present 

and obeyed local 2-fold symmetry, there would be a steric clash between the two copies of 

dIII (12, 13) (Fig. S2B). The structures, therefore, present a fundamental puzzle: how the 

second copy of dIII is oriented in the intact enzyme (14, 15), and how hydride transfer at dI-

dIII interface is coupled to proton translocation across dII, approximately 40 Å away (6, 16). 

Solving the structures of dII and the intact enzyme from Tt TH addresses these questions.

Tt TH is encoded by three genes (α1, α2, β): α1 encodes dI; α2 encodes the first three 

transmembrane (TM) helices of dII; and β encodes nine TM helices of dII linked with dIII 

(Fig. 1B). Based on sequence alignments, two helices (TM1, TM5) present in TH from some 

species are missing in Tt TH dII (Fig. S3). To determine the crystal structure of dII, we 

made a construct that expresses the α2 gene and a truncated version of β gene in which dIII 

is replaced by a histidine tag (Fig. 2A). The resulting dII contains 12 TM spans and 

crystalizes as a symmetric dimer with a 2-fold axis normal to the membrane plane (Fig. 2B; 

Table S2). The topology is consistent with previous studies of TH from different species, so 

the fold of dII observed in Tt TH is probably universal (17) (Fig. S3).

Each dII protomer constitutes a proton pathway where helices TM3-4, TM9-10, and 

TM13-14 arrange as a hexagram (Fig. 2C). Conserved motifs located at a level 

corresponding to the middle of the membrane are found within the interior of the hexagram 

on TM3 (NXXH/S), TM9 (NXXG or HXXV) and TM13 (NXXT/S) (Fig. S4). In the Tt dII 

structure, α2N39 (TM3), βN89 (TM9), βS132 (TM10) and βN211 (TM13) form a hydrogen-

bond network (Fig. 2D). Of specific interest is βN89 (TM9), this residue is at the equivalent 

position as E. coli βH91, which has been identified as important for proton translocation by 

mutagenesis studies (2, 18, 19). Two other residues that have been implicated in proton 

translocation in E. coli TH are βS139 (20) and βN222 (18), which are equivalent to βS132 
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(TM10) and βN211 (TM13) in Tt TH. No ordered water molecules are observed in the 

structure; hence, this may correspond to an occluded conformation of the proton channel.

Based on previous cysteine crosslinking studies, a salt bridge between E. coli βD213 and 

βR265 has been postulated and implicated as important for both proton translocation in dII 

and NADP(H) binding in dIII (18, 20, 21). The structure shows that this Asp-Arg salt bridge 

is formed between the equivalent residues in Tt TH, βD202 (TM13) and βR254 (“hinge 

region” connecting dII and dIII), and is positioned on the membrane surface adjacent to the 

entrance of the proton channel (Fig. 2E).

Using the structures of the dI dimer, the dII dimer and the dIII subunits, the crystal structure 

of Tt holo-TH was solved at 6.9 Å resolution by molecular replacement in Phaser (22) (Fig. 

3A; Table S3). In the 200 kDa holo-TH dimer, two copies of dIII are positioned between the 

dI and dII dimers in different orientations (Fig. S5A). One copy of dIII (dIII-A) has its 

NADP(H)-binding site “face-up” to interact with the NAD(H)-binding site of dI-A as in the 

(dI)2:dIII heterotrimer structures (Fig. S2A). The second copy of dIII (dIII-B) occupies the 

space between dI-B and dII-B, but remarkably, it is flipped over 180° with its NADP(H)-

binding site “face-down” toward dII-B. Though the structures of the “hinge region” between 

dII and dIII are unknown, both orientations of dIII can be accommodated by the full-length 

linker in all species (Fig. S5B).

To confirm the existence of the two dIII orientations in holo-TH, pairs of cysteine residues 

were inserted into holo-TH for crosslinking experiments using the purified enzyme 

solubilized in detergent. The structure predicts that residue βD284 (dIII) should be at the 

interface with dII in the face-up conformation, but at the interface with dI in the face-down 

conformation. Residue βD284 was replaced by a cysteine (βD284C) in combination with a 

cysteine placed in dI (α1T164C) and/or dII (α2V28C). SDS-PAGE analysis (Fig. 3B) 

showed that dIII can crosslink either to dII, forming the α2+β product, or to dI, forming the 

α1+β product. The crosslinks were largely reversed by β-mercaptoethanol (β-Me). Activity 

measurements showed that hydride transfer from NADH to NADP+ and then back to an 

NAD+ analogue (so-called cyclic activity), which is not coupled to proton translocation (23), 

is minimally influenced by the crosslinking (Table S4). In contrast, hydride transfer from 

NADPH directly to the NAD+ analogue, which is coupled to proton translocation (24), is 

decreased by crosslinking and is increased after disrupting the crosslinks. Although the data 

are not quantitative, it is clear that the face-down conformation of dIII is present in the 

active form of holo-TH, and is consistent with the importance of domain dynamics for 

catalytic function (21).

In addition to crystallography, we performed single-particle cryo-electron microscopy (cryo-

EM) imaging of detergent-solubilized Tt holo-TH, yielding a structure at 18 Å resolution 

(Figs. 3C, S6). The structure shows that the enzyme is an asymmetric dimer: one copy of 

dIII is more disordered than the other.

Previous biochemical data have shown that mutations in a conserved Asp residue in the 

NADP(H)-binding site of dIII, E. coli βD392, abolish both hydride transfer and proton 

translocation (16); and the rate-limiting step in forward catalysis is the release of the product 
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NADP(H) from dIII (23). The holo-TH structure provides mechanistic implications of how 

dIII can be involved in proton translocation: the face-down conformation of dIII brings Tt 

βD378 (equivalent to E. coli βD392) (16) and regions of dIII that regulate NADP(H) 

binding, including loops D and E (14, 25), close to the surface of the proton channel and the 

Asp-Arg salt-bridge (Fig. 4A). Hence, it is reasonable that the face-down conformation of 

dIII is competent for proton translocation, whereas its face-up conformation allows hydride 

transfer (Fig. 4B). The division-of-labor assignation works into the binding-change model of 

the catalytic cycle proposed by Jackson and colleagues (26). The model is consistent with 

previous biochemical determinations: 1) TH exhibits half-of-the-sites reactivity such that 

inhibition of one protomer within the dimeric enzyme inhibits the second protomer (23, 24, 

27); 2) There are “open” and “occluded” conformational states of dIII via its loops D and E, 

summarized in (26). The model assumes that dIII is mobile, which is a reasonable 

hypothesis because previous cysteine mutations of the Asp-Arg salt-bridge (Fig. 2E) lead to 

crosslinking and inhibition of both proton translocation in dII and NADP(H) binding in dIII 

(21). The membrane domain is proposed to have a single buried protonatable site (in most 

cases, a histidine in TM3 or TM9), and this residue can either be a) deprotonated and 

occluded, b) accessible to protonation by “outward-facing” or, c) accessible to protonation 

by “inward-facing”. We speculate that changes in dIII, which include the protonation state 

of Tt βD378 (E. coli βD392) (28), the conformation of loops D and E (14, 25), and the redox 

state of NADP(H), are coupled to conformational/protonation changes in the membrane 

domain coupled to proton translocation (Fig. 4C).

In general terms, we postulate that the two halves of the TH dimer cycle out of phase 

between occluded and open states of dIII that are coordinated to inward-facing and outward-

facing conformations of the proton channel. After hydride transfer reaction, dIII becomes 

occluded in the face-up orientation, whereupon it flips to the face-down orientation without 

NADP(H) exchange with the solvent pool of NADP(H). For the forward reaction (NADPH 

product with a proton translocated inward), the interaction between the occluded dIII and the 

membrane domain converts dII from the deprotonated occluded state to become outward-

facing, followed by the conversion of dIII to the open state, switching dII to inward-facing 

and eventually flipping up of dIII. Dissociations of both NADPH from dIII and the proton 

from dII to the solvent are required for the catalytic cycle to proceed. For hydride transfer in 

the reverse direction, the sequence of events is similar except that dII proceeds from proton-

occluded→inward-facing→outward-facing (Fig. S7). The proton motive force is coupled to 

the dissociation of NADP(H) and, therefore, to the equilibrium for hydride transfer between 

NAD(H) and NADP(H).

Supplementary Material
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Fig. 1. TH function and structure
(A) Schematic representation of TH function. The NAD(H)-binding domain (dI) and the 

NADP(H)-binding domain (dIII) catalyze hydride transfer. Proton translocation occurs 

through the transmembrane domain (dII). “In” represents prokaryotic cytosol or 

mitochondrial matrix, and “out” is the space outside the prokaryotic plasma membrane or 

mitochondrial intermembrane space. (B) A Tt TH protomer is encoded by three genes (α1, 

α2, β): α1 encodes dI; α2 encodes three transmembrane (TM) helices of dII; β gene encodes 

the remaining nine helices of dII, the hinge region, and dIII. TM1 and TM5 of dII are 

missing in Tt TH.
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Fig. 2. Structural details of proton channel
(A) Schematic diagram of the Tt dII construct used for crystallization, labeling 

transmembrane (TM) helices, cytoplasmic loops (CL) and periplasmic loops (PL). The Tt β 

gene was truncated at CL8 by a histidine tag (red font). Residues filled in orange form 

hydrogen bonds within the proton pathway. Residues filled in green form a conserved salt-

bridge. Residues in grey outlines are disordered in the crystal structure. (B, C) Atomic 

model of the dII dimer viewed from (B) within the membrane and (C) from the periplasm. 

TM3, TM9-10 and TM13 form the proton channel. TM2 is at the dimer interface. (D) 

Residues α2N39 (TM3), βN89 (TM9), βS132 (TM10) and βN211 (TM13) form a hydrogen-

bond network (black dotted lines). (E) Asp-Arg salt bridge formed by βD202 (TM13) and 

βR254 (CL8) is located on the membrane surface adjacent to the proton channel opening 

(red asterisk).
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Fig. 3. Structural asymmetry of holo-TH
(A) Crystal structure shows two orientations of dIII: “face-up” dIII-A (green) and “face-

down” dIII-B (magenta) with respect to their NAD(P)H-binding sites. Nucleotides, NAD(H) 

in dI and NADP(H) in dIII, are modeled as black spheres based on the heterotrimer structure 

(11, 12). Subunits sandwiching dIII-A and dIII-B are respectively labeled as A and B. 

Underlined labels mark the mutations used for crosslinking experiments. (B) SDS-PAGE 

shows the crosslinking of dIII in two orientations. The table on top describes samples in lane 

1–10. For the wild-type enzyme (lane 10), subunits α1 and β each run with the same 

apparent molecular weight (MW) of about 45 kDa; the α2 subunit shows a faint band at 

10kDa. βD284C on dIII can either crosslink with α1T164C in dI (lanes 1 and 3) forming 

α1+β, or with α2V28C on dII (lanes 1 and 5) forming α2+β. The presence of β-Me largely 

eliminates the crosslinking (lanes 2, 4 and 6). (C) Cryo-EM structure reveals an asymmetric 

dimer: one copy of dIII exhibits weaker density than the other.
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Fig. 4. Possible role of face-down dIII in proton translocation
(A) Regions of dIII that regulate NADP(H) binding, namely loop D, loop E and Tt βD378 

(green asterisk), are close to the proton channel opening (red asterisk) and the Asp-Arg salt-

bridge (blue asterisks). dII is shown as surface. NADP(H) is modeled as black spheres. (B) 

“Division of labor” of enzymatic activities within a TH dimer: one half of the dimer carries 

out hydride transfer and the other translocates proton. (C) Coordination between dII and dIII 

in one half of the TH dimer for the forward reaction. A proton is represented by a red cross. 

Two halves of the TH dimer cycle out of phase; for simplicity of representation, the other 

half is shown in grey and remains unchanged.
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