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Abstract. Hepatocellular carcinoma (HCC) is the most common histological type of primary liver cancer. HCC is
graded according to the malignancy of the tissues. It is important to diagnose low-grade HCC tumors because
these tissues have good prognosis. Image interpretation-based computer-aided diagnosis (CAD) systems have
been developed to automate the HCC grading process. Generally, the HCC grade is determined by the char-
acteristics of liver cell nuclei. Therefore, it is preferable that CAD systems utilize only liver cell nuclei for HCC
grading. This paper proposes an automated HCC diagnosing method. In particular, it defines a pipeline-path that
excludes nonliver cell nuclei in two consequent pipeline-modules and utilizes the liver cell nuclear features for
HCC grading. The significance of excluding the nonliver cell nuclei for HCC grading is experimentally evaluated.
Four categories of liver cell nuclear features were utilized for classifying the HCC tumors. Results indicated that
nuclear texture is the dominant feature for HCC grading and others contribute to increase the classification accu-
racy. The proposed method was employed to classify a set of regions of interest selected from HCC whole slide
images into five classes and resulted in a 95.97% correct classification rate. © 2014 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMI1.1.3.034501]
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1 Introduction

Liver cancer is a leading cause of worldwide cancer death,
and hepatocellular carcinoma (HCC) is the most common his-
tological type of primary liver cancer that develops in liver
cells.' Histopathology—the microscopic examination of human
tissues—is one HCC diagnostic technique. Histopathological
investigations identify benign or malignant lesions and estimate
the histological types and grades of tumors. In particular,
histological grading is used as a scale for estimating tumor
malignancies. Generally, low-grade tumors have good progno-
ses, whereas high-grade tumors indicate low survival rates.
Edmondson and Steiner’s grading is a commonly used standard
for determining the grade of HCC.? It defines the following four
tumor grades: G1, G2, G3, and G4, where G1 is the lowest grade
and G4 is the highest grade. In practice, cancerous regions may
be extracted from non-neoplastic tissue regions. Therefore, we
incorporated the images of non-neoplastic tissues and catego-
rized them as GO. Figure 1 shows these five categories of HCC
histological images. It is very difficult for pathologists to diag-
nose low-grade tumors correctly because of the uneven tumor
growth and similar structural appearances within different tumor
grades. Image interpretation-based computer-aided diagnosis
(CAD) systems partially circumvent these limitations and im-
prove the reliability of manual diagnosis results. Many valuable
studies have been reported on the computational tumor grading
of different types of cancers, such as prostate carcinoma,* renal
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cell carcinoma,”® and brain tumor astrocytoma.”!°® However,

few studies have been reported on the computer-assisted tumor
grading of HCC.!!?

In a whole slide image (WSI) of a biopsy specimen, tumor
regions are erratically distributed, and a selected region of inter-
est (ROI) may contain different types of cells, such as liver cells,
fibroblasts, lymphocytes, endothelial cells, and histiocytes.
Figure 2 shows annotations of the different types of cell nuclei
in an ROI of a hematoxylin and eosin (HE)-stained liver biopsy
specimen. Generally, most of the image processing-based CAD
systems first segment the nuclei and utilize their features for
tumor classification.®'®!" Nuclear segmentation can be accom-
plished by supervised or nonsupervised methods.'* These meth-
ods segment every possible nucleus in the images because the
nuclei in HE-stained biopsy images often appear darker in a pink
background. Since manual HCC grading is performed based on
characteristics of liver cell nuclei, it is important that the com-
putational HCC grading systems classify liver cell nuclei related
to all the segmented nuclei.

This paper proposes a technique that can be used for classi-
fying liver cell nuclei and grading HCC histological images.
An overview of the proposed method is given in Fig. 3.
It contains five modules. First, a textural feature extraction mod-
ule computes the pixel-wise textural characteristics using our
previously proposed multifractal textural feature description
method.'> The computed textural features are used in the
four succeeding modules. The nuclear segmentation module
segments every possible nucleus, including liver cell nuclei,
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Fig. 1 Five categories of hematoxylin and eosin (HE)-stained hepatocellular carcinoma (HCC) biopsy
specimen images. (a) Non-neoplastic tissues: GO. (b)—(e) HCC tumors, Grade 1 to 4: G1-G4.

fibroblast nuclei, endothelial nuclei, histiocytes, lymphocytes,
and so on. The shapes of the nuclei in fibrous regions are irregu-
lar and are located very close to each other or are bound (see
Fig. 2). Moreover, liver cells are not found within fibrous
regions. Therefore, the fibrous region detection and processing
module detects the fibrous regions and excludes the segmented
nuclei within these regions. The results may contain liver cell
nuclei, endothelial nuclei, histiocytes, lymphocytes, and so

Fig. 2 Description of HE-stained liver biopsy image. The image con-
tains different types of cell nuclei and cellular components. Five types
of nuclei have been annotated: Liv: liver cell nucleus, Fib: fibroblast
cell nucleus, LN: lymphocyte, End: endothelium, and H: histiocyte.
Upper part of the blue colored line indicates fibrous region.
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on. The liver cell nuclei classification module classifies these
nuclei into two classes, i.e., liver cell nuclei and others. The
tumor classification module computes the following four cat-
egories of liver cell nuclear feature: inner texture, geometry, spa-
tial distribution, and surrounding texture (part of cytoplasm),
and uses them to classify a given ROI into specific HCC grades.

In the proposed method, modules 3 and 4 subsequently
exclude the nonliver cell nuclei. We investigate the effectiveness
of these modules for HCC tumor classification (refer Sec. 5.3).
In particular, we extract four categories of features: inner texture,
geometry, spatial distribution, and surrounding texture from the
outcome of the modules 2, 3, and 4 separately and employ these
features to discriminate HCC images into two classes: non-neo-
plastic versus neoplastic. The experimental results indicate that
modules 3 and 4 significantly contribute to an increase in the
correct classification rate (CCR).

Finally, we define an HCC grading framework based on
the proposed method by considering domain specific informa-
tion such as irregular distribution of several tumors in an ROI
and specific nuclei structure in G4 tumors (refer Sec. 4.6).
Accordingly, the HCC grading framework classifies a given ROI
in two stages using a random patch-based majority voting
method (refer Sec. 4.6 for details). We utilized this HCC grading
framework to classify a set of HCC ROIs and obtained approx-
imately 95% average CCR.

The paper is organized as follows: Sec. 2 reviews related
works of nuclear segmentation, nuclear classification, and
the computational grading of HCC images. Section 3 describes
the basic materials used in the proposed method. Section 4
illustrates the proposed method, including the textural feature
descriptor, nuclear segmentation, fibrous region detection,
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Fig. 3 Overview of the proposed method.

liver cell nuclei classification, nuclear feature extraction, and
HCC grading. Section 5 provides the implementation details,
experimental results, and discussion. Section 6 presents the
conclusion of the study.

2 Previous Studies

This section briefly describes recent studies related to nuclear
segmentation, nuclear classification, and HCC histological
image grading methods.

2.1 Nuclear Segmentation

Nuclear segmentation is one of the important operations in his-
tological imaging-based CAD systems. A number of nuclear
segmentation methods have been reported in the past.!* They
can be categorized as supervised or nonsupervised schemes.
In general, supervised methods classify image pixels or regions
to localize the nuclei. In addition, they may generate probability
maps by using the classifier’s probability of each pixel or region
for the nuclear class. Nonsupervised methods may utilize one or
more image processing techniques, such as edge detection,
intensity-based thresholding, and mathematical morphology.
Both approaches may utilize contour detection methods, such
as active contour, gradient vector flow, watershed, and level-
set to extract the edges of the segmented regions.

Naik et al.'"* proposed a method to segment lumen, cyto-
plasm, and nuclei regions of prostate histological images.
They used RGB color intensities to describe the pixel’s charac-
teristics (three-dimensional feature vector) and estimated the
parameters of a Bayesian classifier using an annotated dataset.
Subsequently, they computed the pixel-wise likelihood for each
pixel and obtained probability maps for each lumen, cytoplasm,
and nuclei regions. The boundaries of the classified regions were
computed by the level-set method.

Veillard et al.'> described the cell nuclei segmentation
method for HE-stained breast cancer histological images. First,
they performed HE-deconvolution'® on an RGB image. The HE-
deconvolution produced a hematoxylin image, an eosin image,
and a residual image. They utilized several textural feature
descriptors and computed a 180-dimensional feature vector to
describe the pixels’ characteristics. They estimated the probabil-
ity associated with the feature vector of each pixel using the soft-
max function. Consequently, a gray-scale image was obtained,
where the normalized value of each pixel indicated its probabil-
ity of belonging to the nuclear class. Finally, the nuclear boun-
daries were computed by using an active contour model with a
nuclear shape prior.!” Results indicated that this method seg-
mented nearly round-shaped nuclei.

Naik et al.'* utilized only the color intensities to describe the
pixels’ features. However, it is required to acquire pixels’ local
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characteristics to improve the robustness and consistency of the
system. Veillard et al.'> showed that the characteristics of hema-
toxylin image were not adequate to segment the nuclei. As a
consequence, they utilized all decomposed images in the feature
computation. In fact, histological examinations are based on
visual characteristics of the cellular components. Color decon-
volution may distort some important visual characteristics.
This paper proposes a supervised learning-based segmentation
method. It overcomes the limitations of Naik et al.'*’s method
by incorporating the pixels’ local characteristics. We compute
pixels’ characteristics by utilizing a multifractal feature multi-
fractal feature descriptor. In general, the shapes of liver cell
nuclei are varied for different tumor grades. Therefore, no shape
prior information is used in the segmentation process.

2.2 Nuclear Classification

Histological images contain different types of cells. However,
pathological examination is performed based on a specific
type or several types of cells. Therefore, it is necessary that the
CAD system discriminates the cells before applying diagnostic
rules. In practice, most of the cells are distinguished based on
their nuclear characteristics. Several studies have been reported
for nuclear classification in histological images.

Fuchs et al.'® proposed a nuclear detection and segmentation
method for tissue microarrays of renal clear cell carcinoma.
They segmented the true nuclei and nuclei-like structures (false
positive segmented blobs) using a morphological object-based
segmentation method. Then, they computed eight features—
size, ellipticity, shape regularity, nucleus intensity, inner inten-
sity, outer intensity, inner homogeneity, outer homogeneity, and
intensity difference—from the segmented regions and classified
the true nuclei. The authors showed that the result is important
for improving the efficiency of the manual diagnosis process.
However, they classified the nuclei for the purpose of excluding
the false segmentation regions.

A nuclei classification framework was proposed by Kong
et al.'” for HE-stained histological images of diffuse gliomas.
They used a mathematical morphology operation to separate
foreground (nuclei) from background regions. Subsequently,
nuclei regions were extracted by a straightforward thresholding
method and the overlapped nuclei were separated using the
watershed technique. For nuclear classification, they computed
four categories of feature sets such as nuclear morphometry,
region texture, intensity, and gradient statistics from the nuclei
regions. In addition, they utilized characteristics of cytoplasmic
regions by computing textural, intensity, and gradient statistics
from the nuclear surrounding regions. Totally, they have used a
74-dimensional feature vector to describe the characteristic of a
nucleus. They obtained significant classification accuracy for a
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large nuclei dataset. In addition, results indicated that the cyto-
plasmic texture also contributed to improve the classification
accuracy.

Cell nuclear classification is domain oriented process. The
objective of this paper is to perform tumor grading based on
characteristics of the liver cell nuclei. Therefore, we should clas-
sify every possible liver cell nuclei despite to the tumor grade. In
general, shapes of liver cell nuclei are varied with the tumor
grade. Considering the visual observations of HCC histological
images, we empirically decided to used only nuclear textural
feature for classifying liver cell nuclei.

2.3 Computational Grading of HCC

A few studies have been reported for classifying HCC histologi-
cal images.

Huang and Lai'' proposed a method to classify HCC histo-
logical images on the basis of morphological and textural
characteristics of the nuclei. They performed a mathematical
morphology-based segmentation method followed by the water-
shed and active contour method to segment the nuclear regions.
Subsequently, they computed the feature vector for the entire
image by using the characteristics of the segmented regions.
In particular, they extracted three categories of features from
the segmented nuclei, including the geometric relationship
between the nucleus and the cytoplasm, the geometry of the
nuclei, and the texture of the nuclei. They used five grades of
ROI images of HE-stained HCC biopsies. Each ROI was divided
into 12 nonoverlapping subimages and the majority of the pre-
dictions were used to classify the ROI. With a support vector
machine-based decision-graph classifier, they obtained a
94.54% CCR.

Our earlier study, Atupelage et al.,'? proposed a textural fea-
ture-based HCC classification method. Textural features were
utilized to classify HCC images into five categories (non-neo-
plastic and four grades of tumors). The textural features were
extracted by using multifractal computation. A bag-of-feature
(BOF)-based classification model was utilized to derive a
description for the entire image. The classification model gen-
erated a 300-dimensional feature vector (histogram) for a given
image. Fifty sample patches were selected from a given ROI and
the majority of the predictions (threshold-based majority voting
rule) was taken as the prediction for the entire ROI. Result
showed that 95.03% CCR was obtained for five classes of anno-
tated dataset.

Huang and Lai’s!! method utilized all segmented nuclei for
grading the HCC images. Their results may have been influ-
enced by the characteristics of nonliver cell nuclei, such as fibro-
blast, endothelium, and histiocyte. In addition, they assumed
that the region between neighboring nuclei is entirely occupied
by cytoplasm. In an HCC hitological ROI, a number of tissue
components may exist in between neighboring cells such as fat
and fibrosis. Therefore, the features computed from the geomet-
ric relationship between nuclei and cytoplasm may affect the
accuracy of the entire system. Our earlier study, Atupelage
et al.,'” utilized the entire texture of the image. The feature
description obtained for an image may contained the character-
istics of noninformative regions, such as muscles, fiber, and
fat. Compared to the aforementioned two HCC grading meth-
ods, the present work consists of a more sophisticated descrip-
tion for the structural behavior of HCC histological images. Our
method utilized only the liver cell nuclei in the computation. We
defined a liver cell nuclei feature extraction method following
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the pathological HCC grading rules. In particular, we computed
nuclear inner texture, geometry, spatial distribution features.
Additionally, textural features of nuclear surrounding regions
(cytoplasmic textural features) were also incorporated for
tumor classification. Our random patch-based majority voting
method increases the robustness of the entire framework for dif-
ferent tissue structures, such as existence of multiple graded
tumors in an ROI and large regions of fibrosis or fat.

3 Materials

The textural feature descriptor was extended from our earlier
study that utilized multifractal computations in texture analy-
sis.*'? In this study, we also used multifractal computation to
extract textural features. These features were used in various
modules throughout the entire system. In addition, we incorpo-
rated a BOF-based classification model to describe the textural
characteristics of segmented regions.

3.1 Fractal and Multifractal

The fractal dimension (FD) of an object is a noninteger exponent
that strictly exceeds the topological dimension and is computed
using the Hausdorff-Besicovitch definition.”

Let © be a bounded subset of R", and N,.(®) be the minimum
number of balls (spheres) of radius ¢ that are required to cover ©.
When ¢ tends to 0, the limiting values of N,.(®) follow the
power law N,(®) ~ &%, where dy is a constant, i.e., the FD
of ©

(@) = —tim 12ENV©)] 1)
0 log(e)

Deterministic structures (that are mathematically generated
by recursively applying the same rule) can be characterized
by the same fractal dimension in all scales. In contrast, natural
structures are nondeterministic. Therefore, a single FD may not
be adequate to characterize such structures. Multifractal analysis
is a generalization of fractal analysis that characterizes irregular
natural structures as a spectrum of FDs, i.e., a multifractal spec-
trum. Generally, multifractal computations are performed in two
consecutive steps.

In the first step, we find the local irregularity of a function y
called the “multifractal measure” at a point x of set S, as a non-
integer exponent, which is described by a Holder Exponent

h,(x),

_ i loelulB e} 1

e—0 10g(€) 2 (2)

B (x)

where B(x, €) denotes the closed ball of radius ¢ centered at x.
The multifractal analysis of set S involves computing FDs of
different sizes of level sets of 4,

E), = {x|h,(x) = h}, 3)
where E, is a set of points whose exponents are equal to /. In the

second step, we estimate FD of E’,; for different & of 4, and form
a spectrum d,,, i.e., multifractal spectrum of S,

h~ d,(h) = dim(E}). “)

where dim(E) represents the FD of the set EY,.
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3.2 Muiltifractal Analysis of Digital Images

A digital gray-scale image is a two-dimensional real and non-
negative function; g(x,y), where x and y are discrete spatial
coordinates of the image. Therefore, the fractal and multifractal
definitions given in Sec. 3.1 are modified to be appropriate
for the discrete digital imaging domain. As a consequence, in
Eq. (2), B become a square-window of side length €. B and
h,, are replaced by Q and q,, respectively,

. lo Q(x,y,¢e
(x.5) = lim g{ﬂgog((g)y iy 5)
where Q(x, y, €) represents the window of side length &, which is
centered at (x,y).

The computation of « is described in the following. We
set the values, e =2i+ 1 for i =1,2,3,..., and computed
u[Q(x,y,¢)] for a particular p (definitions of selected multi-
fractal measures are given in Sec. 4.1). Subsequently, log
{u[Q(x,y,€)]} is plotted against log(¢) and the gradient of
the linear regression line is estimated as a. Similarly, we repeat
the computation for every pixel in the reference image and
obtain a matrix having the same dimension, which is called
a feature matrix (or a-image).

In the next step, the entire range of o (from minimum to
maximum) is quantized into R discrete subranges. Let a, be
all of the a values quantized into the r’th subrange. a, may
form a binary value matrix /, , which has the same dimensions
as the a matrix

o 17 - Min S a(x, y) < X Max
Io,(x.y) = { 0, otherwise ’ ©)

where i, and o, represent the lower and upper limits of
the r’th subrange, and a(x, y) is the value at point (x, y) in the a
matrix.

Then, we compute the FD for each I, , according to
Hausdorff-Besicovitch definition. Many algorithms have been
proposed to compute the FD. Each method has its own theoretic
basis for estimating the parameter N according to Eq. (1).%?
Among them, the algorithm “box-counting” is chosen because
of its efficiency, accuracy, and ease of implementation.”* The
box-counting algorithm estimates the FD as follows. The entire
image may be covered using a grid of side length &', then count
the number of nonempty boxes N,/(/,,). We defined the FD of

fla,) as

. log[N£’<Ia,)]
flar) = L) log(e") ™
We compute N,/ (I, ) fore’ =2,4,6,..., and plot them in a
log-scale. Subsequently, f(a,) is estimated by computing the
gradient of the linear regression line, which is the FD of I, .
Similarly, we obtain the FD for every binary image that corre-
sponds to each a,, and form the multifractal spectrum. In addi-
tion, for each element in the a matrix, there is a value (FD) in the
multifractal spectrum which leads to a matrix called the f(a)
feature matrix (or f(a)-image) having the same dimension as
the a matrix.
The computation showed that the « features observed the
pixel’s local behavior with respect to the neighborhood and
the f(a) features contained the pixel’s spatial characteristics.
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3.3 BOF-Based Classification Model

BOF-models are a promising approach for characterizing the
visual content of the images (or regions). The key ideas behind
the BOF classification model are the construction of a codebook
and representation of the image by a simple frequency analysis
of the codewords in the image. Generally, a codebook is a col-
lection of distinct feature vectors that are called codewords,
in which the most representative patterns are coded. These
codewords are used to represent the pixel’s characteristics. In
particular, every pixel is assigned to a certain index of the code-
word, where the codeword has a minimum Euclidean distance to
the pixel’s feature vector. This process may be called labeling.
The frequency analysis of the codewords in an image or a region
results in a histogram, in which each bin represents a codeword
in the codebook and its value indicates the frequency of the
codeword (labels) contained in the image. If different sizes of
images or image regions are used, the areas of the histograms
are different. Therefore, it is necessary to normalize the histo-
grams. From a statistical point of view, this normalization turns
the histogram into a probability distribution function, in which
the sums of the total observations are equal to 1.

The codebook should contain an optimal number of discrimi-
native codewords to obtain a higher classification performance
in the classifier. Different codebook optimization (feature-
selection) methods have been reported.>*® Among them,
we empirically selected the mutual information (MI) codebook
optimization technique. Definition of the MI method is des-
cribed as follows. For a given M classes of dataset and n
number of codewords (codebook), MI(¢, ¢) indicates the corre-
lation between codeword r and class ¢.” We compute the
class-specific scores for each codeword as Ml,,(t) = >_¥
P,.(c;)MI(t, c;), where P,(c;) represents the prior probability
that the observed data falls in class c;. Subsequently, we
obtained most discriminative codewords by eliminating the
codewords whose class-specific scores are less than a given
threshold (see Yang et al.>* for detailed information).

The proposed method used different codebooks for the
fibrous region detection, liver cell nuclei classification, and
nuclear feature extraction modules.

4 Methodology

This study describes an extended version of our previously pro-
posed liver cell nuclei classification and HCC grading tech-
niques.?” There are several contributions of the proposed
method, such as utilizing multifractal computations for nuclear
segmentation, fibrous region detection, and liver cell nuclei
classification. Furthermore, we extracted the following four cat-
egories of nuclei features: inner texture, geometry, spatial dis-
tribution, and surrounding texture and utilized them for HCC
grading. To the best of our knowledge, there have been no stud-
ies that have performed liver cell nuclei classification and used
them for grading HCC histological images.

This section illustrates the details of each module shown in
Fig. 3 and that of the HCC grading framework.

4.1 Textural Feature Extraction Module

The features presented in a and f(a) matrices are dependent on
the multifractal measure y used in Eq. (5). Therefore, different
multifractal measures can be utilized to describe the texture
from different viewpoints. In this study, we utilized the follow-
ing four multifractal measures: maximum: ., minimum:
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HMin» SUMMation: pg,,, and Ndiff: pungir as defined in Egs. (8),
(9), (10), and (11), respectively.?®** These four measures ob-
served the disparity of the gray intensities from four different
viewpoints:

Hyiax [2(m, 1, €)] = (gflggg(k, 1), ®)

Hyiin[Q(m, 1, €)] = (k{gg}yg(k, ), &)

psum[Q(m,ne)] = > gk, D), (10)
(k,1)eQ

max k,l) — min « gk,
ﬂNdiff[Q(man,g)] _ [ (k.)eQ g( ) (k.)eQ g( )]

&€
L

where i()[Q(m,n,e)] represents the measurement at point
(m,n). Q(m, n, €) is the square window with side length & cen-
tered at point (m, n). Q* represents all of the nonzero pixels of
Q. g(k, 1) is the gray intensity at point (k, ).

In this study, we computed a and f(a) for each R, G, and B
color channel using four multifractal measures, which yielded a
24-dimensional feature space. Subsequently, we combined the
R, G, and B color intensities with the multifractal features and
constructed a 27-dimensional feature space. As a consequence,
each pixel of an image can be characterized by a 27-dimensional
feature vector in the feature space. The proposed feature descrip-
tion is graphically illustrated in Fig. 4.

4.2 Nuclear Segmentation Module

Nuclear segmentation was performed as a supervised learning
scheme for pixel-based classification. We utilized a training
dataset, in which the nuclear and background regions were man-
ually annotated by several experts. The annotated nuclei were
selected from different types of cells and the background regions
were randomly selected. We computed the features of each pixel
in the annotated regions and trained a random forest classifier
for two classes {C,,, Cy, }, where C, and Cy, stand for the nuclear
and background classes, respectively. Let x be the feature vector
of a given image pixel. P¢, (x) and P, (x) are the classifier’s
probabilities that x belongs to C,, and Cy, respectively, where
P¢ (x) 4 Pc (x) = 1. We computed P (x) for every x in
the given image and visualized these values to gray scale

R -
G — -

Color image v
I R et
a-features flo)-features
@
&)
&

({04

Multifractal
features

Fig. 4 Textural feature description.
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[0, 255], in which high intensity values represent the nuclear
regions and vice versa. Subsequently, we eliminated noises
and refined the nuclear boundaries using a morphological
closing operator with a 3-pixel radius disk-shaped structural
element. The boundaries of the detected nuclear regions were
computed using the level-set contour estimation method.*
We further refined the segmentation results by eliminating the
regions of size (number of pixels) <50 pixels. Intermediate
results of nuclei segmentation process are graphically illustrated
in Fig. 5.

4.3 Fibrous Region Detection and Processing
Module

Fibrous region detection was performed as a supervised learning
scheme for patch-based classification. Images in the training
dataset were divided into 32 X 32 pixel nonoverlapping patches
and annotated into the following two classes: fibrous and other
(background). The textural features of a patch were encoded as a
histogram using the BOF model. We trained a random-forest
classifier with the annotated dataset. A given image was divided
into nonoverlapping patches and each patch was classified using
the trained classifier. The noises (false positives) contained in
the results were further refined with a nonlinear filtering
approach as follows.

Let the outcomes of the classifier be {C, C}. The probability
of a given patch b; being classified to class C is Pc(b;). Let
eight neighborhoods of b; be bf?, k=1,2,3,...,8. The refined

prediction, R.q(b;) is defined as

. (b
Rpea(b7) = { €. Plb) > menlPe(bi)] (12)

C, otherwise

We illustrated the intermediate steps of fibrous region detec-
tion graphically in Fig. 6.

Subsequently, all segmented nuclei that overlap with the
fibrous regions are eliminated.

4.4 Liver Cell Nuclei Classification Module

The outcome of the previous module may contain liver cell
nuclei, lymphocyte, histiocytes, endothelial cell nuclei, and
so on. This module classifies these segmented nuclei regions
into two classes: liver cell and other nuclei. An annotated dataset
(a set of nuclei that was labeled as liver cells and others) is uti-
lized for training the classifier. We empirically decided to use
only the textural features of the segmented regions. As a con-
sequence, the texture of each annotated nucleus was coded into a
normalized histogram using the BOF model. These histograms
were used to train a random-forest classifier. The trained clas-
sifier was used to classify segmented nuclei in the experimental
dataset. A graphical example of classified nuclei is shown
in Fig. 7.

4.5 Nuclear Feature Extraction

A histopathological investigation of HCC grading is performed
according to the different characteristics of the liver cell nuclei.
We generalized these characteristics into the following three
categories: texture (chromatin structures), geometry, and spatial
distribution. Furthermore, this investigation incorporated the
textural characteristics of the nuclear surrounding areas. With
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Fig.5 Nuclear segmentation (intermediate results). (a) Inputimage. (b) Pixels’ prediction probabilities for
nuclear class (probability map). (c) Result of morphological closing operator. (d) Nuclear contours.

(e) Final refined result of nuclear segmentation.

these four categories, we computed 115 features for a given
HCC histological image.

451 f,: Textural features

The textural features of the segmented nuclear regions were
extracted using the BOF model. We computed the textural fea-
tures of the segmented regions (nuclei) in a given image and
normalized histogram using 50 codewords of a codebook. As
a consequence, we obtained a a 50-dimensional feature vector
to describe the nuclear texture in the entire image.

4.5.2 f,: Geometrical features

We observed the geometrical features from the size, shape, and
circularity of individual nuclei. For a given nucleus, the area is
the total number of pixels in the segmented region, the perimeter
is the length (number of pixels) of the nuclear contour, and the
circularity is perimeter? /(4x X area). Typically, a sample image
(size: 1024 x 1014 pixels) contains a large number of nuclei and
the segmented (and classified) results may contain a few false
positives (outliers). Therefore, we computed three percentiles;
5%, 50%, and 95% for each geometrical feature. Consequently,

Fig. 6 Fibrous regions segmentation. (a) Input image. (b) Classifier predictions (shaded in red). The
black arrows shows the noise. (c) Final refined result.
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(b-1)

(b-2)

Fig. 7 Computational annotations of nuclei segmentation and classification. (a-1) and (b-1) HCC images
of 1024 x 1024 pixels. (a-2) and (b-2) High resolution images of the selected regions (black square) in (a-
1) and (b-1), respectively. Fibrous regions are shaded in red. Annotations of nuclear contours; fibroblast
nuclei: white, liver cell nuclei: green, and other nuclei: blue.

a nine-dimensional feature vector was obtained to describe the
geometrical features of the nuclei in the entire image.

4.5.3 f5: Spatial distribution features

Pathologists often observe the spatial distributions of liver cell
nuclei for diagnosing the HCC. We observed these features from
two different parameters; density (= number of nuclei/area) and
FD (= complexity of the configuration patterns of the nuclear
distribution). A given HCC histological image may have con-
tained regions of fiber, fat, muscle, and so on. These regions
may interrupt the spatial distributions of the liver cells in an
ROIL. To minimize the effect of these regions in the computation,
we randomly located 50 subwindows that were sized
256 x 256 pixels within the image and computed the density
and FD for each patch. This computation is summarized as
follows:

n patch = 0; //total number of patches
while n patch <= 50 do

patch = random patch;

area = 256 X 256;
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if patch overlaps with fibrous region then
overlapped area = number of overlapped pixels;
overlapped ratio = overlapped area / area;
if overlapped ratio >40% then
continue to next patch;
end if
area = area — overlapped area;
end if
density = number of nuclei/area;
FD = compute FD for the patch;
npatch = npatch + 1;
end while
For a given patch, we obtained a nuclear configuration pat-
tern as a binary image (nuclear region: 1 and background: 0) and
computed the FD using a box-counting method. This feature
described the complexity of the nuclear configuration patterns
over the entire patch.

We computed three percentiles; 5%, 50%, and 95% for each
density and the FD features. As a consequence, a six-dimensional

Oct-Dec 2014 « Vol. 1(3)



Atupelage et al.: Computational hepatocellular carcinoma tumor grading based on cell nuclei classification

feature vector was generated to describe the spatial distribution
patterns of the nuclei in the entire image.

4.5.4 f,: Surrounding textural features

Generally, the nucleus is covered by the cytoplasm. The outer
margin of the cytoplasm defines the cell membrane. During
tumor progression, the nuclear region becomes larger and the
cytoplasm region becomes narrower. In addition, the cytoplas-
mic texture may also vary during tumor progression. These
changes may be visually observed. Utilizing the textural char-
acteristics of cytoplasmic texture may be significant for increas-
ing the accuracy of HCC grading. Since it is very difficult to
precisely locate cell membranes in HE-stained images, we
acquired a region of fixed-distance radius surrounding the
nucleus.

The segmented nuclear region is eroded using a disk-shaped
structural element with a 10-pixel radius and the eroded region is
used to compute the surrounding textural features. The similar
textural feature extraction process is used as described in
Sec. 4.5.1. Consequently, the surrounding textural features
were also represented as a 50-dimensional feature vector.

4.6 HCC Grading

Generally, different grades of tumors are arbitrarily distributed
in a WSIL. A selected ROI may also contain several tumor cells.
Pathologists examine the entire ROI and assign a label (tumor
grade) on the basis of the majority of tumor tissues that appeared
in the ROI. For example, an ROI that is annotated as G2 may
contain G1 and G3 tumors, as well as smaller amounts of inter-
mediate grade tumor cells that are between G1 and G2 and G2
and G3. In addition, the same class of tissues is often localized
(e.g., small regions of G3 tumors may exist in an ROI that
labeled as G2). By observing these circumstances, we incorpo-
rate a patch-based classification and a threshold-based majority
voting technique into the HCC grading framework. As a con-
sequence, a given ROI is classified as described below.

We select 16 nonoverlapped patches of size 512 X 512 to
cover the ROI and 34 patches of the same size from randomly
selected locations. Based on the prediction of each patch in the
ROI, we estimate the final prediction (grade) of the ROI using a
threshold-based majority voting rule.

Let #; be the total number of predictions of class i out of 50
samples in an ROI. The percentage of the probability of that ROI
being categorized into class i is

t.
P; = - x 100%. 1
= 55X 100% (13)

For a given threshold 7, if maximum(P;) > 7, then the ROI
is labeled as class i, otherwise it is labeled as non.

In practice, G4 tumors can be easily detected because of their
specific structural appearances such as relatively larger nuclei
and very narrow cytoplasm. In most cases, it is difficult to
see the boundary of the nuclei because they visually overlap
each other. This behavior overburdens the nuclear segmentation
process. Nuclear shape estimation and postsegmentation meth-
ods may partially solve this problem.'>!° However, estimating
the nuclear morphological features, spatial distribution features,
and surrounding textural features using these methods may not
be accurate for G4 tumors. To circumvent this limitation, we
perform the HCC grading in two stages; (i) stage 1: a given
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ROI is classified using nuclear textural features (f;) into two
classes; G4 (G4 tumors) and O (stands for “Others,” in which
GO, G1, G2, and G3 are categorized into one class) and (ii) stage
2: If the ROl is classified into class O in stage 1, then it performs
a multiclass classification (GO, G1, G2, and G3) using the tex-
tural (f;), morphological (f»), spatial distribution (f3), and sur-
rounding textural (f,) features. We applied the threshold-based
majority voting rule at each stage.

5 Experiments and Results

This section describes the experimental dataset, implementation,
evaluation strategies, and discussion of the results.

5.1 Data Acquisition

A set of HE-stained liver biopsy specimens were obtained
from 109 HCC patients. Each specimen was scanned as a WSI
at a magnification of 20X using a scanner (Nano-Zoomer;
Hamamatsu Photonics K.K., Hamamatsu City, Shizuoka,
Japan). The size of the WSI was 33,600 x 21,000 pixels. Sev-
eral experienced pathologists examined the WSIs and selected
several ROIs from neoplastic and non-neoplastic tissue regions.
ROISs selected from non-neoplastic regions were grouped as GO
and others were grouped into four classes; G1, G2, G3, and G4
according to Edmondson and Steiner’s HCC definition.? We
selected several ROIs from the GO, G1, G2, and G3 categories
for annotations. The rest of the images contained 93, 72, 67, 48,
and 25 ROIs for the GO, G1, G2, G3, and G4 categories, respec-
tively. ROI selection, grading, and annotation (nuclear region,
fibrous regions, and liver cell nuclei) were performed in parallel
by the pathologists. Ambiguous ROIs and annotated regions were
clarified and confirmed by an association of several pathologists.

5.2 Implementation

The multifractal features of the nuclear textures were computed
according to the definitions given in Sec. 3.2. In particular, a-
features were computed according to Eq. (5) by setting € as 1, 3,
5,..., 13 and normalizing to the range [0, 1]. Subsequently, the
a range (minimum to maximum) was quantized into 70 discrete
subranges and 70 binary images were obtained. The FD of each
binary image was computed according to Eq. (7) by setting &’ as
1,2,4,...,16. a and f(a) features were computed for each R,
G, and B color channel using the multifractal measures defined
in Sec. 4.1.

To detect fibrous regions, the codebook was computed using
the annotations of the fibrous and background regions. We ran-
domly selected 50,000 pixels from fibrous and background
regions and their feature vectors were clustered into 500 clusters
using a k-means algorithm. The most discriminative 50 code-
words were selected using the MI feature selection method
(see Sec. 3.3). In particular, we compared the classification
accuracies and the computational performance of the classifier
with different sizes of codebooks. Experimental results indi-
cated that 50 codewords of the codebook provide optimal result
for fibrous regions classification. A similar approach was used
to generate the codebook for liver cell nuclei classification,
in which the annotations of the liver cells and other nuclei
were used.

For f feature extraction, we selected 50,000 nuclear pixels
from the GO to G4 categories and clustered them into 500 clus-
ters. The optimal 50 codewords were selected with the MI fea-
ture selection method for the five classes (GO to G4). Since we
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utilized f for classifying G4 versus the others (GO to G3), the
codebook construction of f; incorporated G4 images. The code-
book for f, was computed in a similar manner as that for f, in
which randomly selected pixels of the nuclear-surrounding areas
of the GO to G3 categories were used. During the codebook opti-
mization, we performed several classification experiments using
a small dataset for different sizes of codebooks. We selected the
optimal codebooks by comparing the efficiency and accuracy.

For the f| and f, feature computation and liver cell nuclei
classification, we normalized the histograms by dividing the fre-
quency of each bin by the total observations (number of pixels
in the region). The MATLAB random forest implementation
method®' was used for classification throughout the entire
experiment.

In the evaluation, a k-fold cross-validation was performed
with respect to the ROIs. In addition, sample patches that were
obtained from an ROI were indexed into a single fold to separate
the training and testing datasets.

We computed CCR, precision, recall, and F-measures as
evaluation statistics for the experiments.’>*3

5.3 Evaluation of the Proposed Method

The proposed method contains multiple processing modules
(see Fig. 3). This section describes several experimental evalu-
ations that confirm the significance of the processing modules
and the entire approach.

We primarily evaluated modules 3 and 4 individually. In
module 3, we utilized 14,520 fibrous region blocks and 55,383
background blocks. Using the textural features of each block,
we performed two-class classification and obtained the average
precision and recall of the cross-validation as 80.72% and
74.10%, respectively. The annotated dataset of module 4 con-
tained 2585 liver cells and 2027 other types of nuclei. We com-
puted the textural features of the segmented regions (of the
annotations) and performed two-class classification. Results
showed the average precision and recall for cross-validation
are 95.17% and 97.13%, respectively.

In the proposed method, module 1 extracts the textural fea-
tures and they are used in every other module. Module 2 seg-
ments all possible nuclei, module 3 refines the results of module
2 by excluding the nuclei in fibrous regions and module 4 clas-
sifies the liver cell nuclei. Module 5 computes the nuclear char-
acteristics and performs the tumor classification. In particular,
modules 3 and 4 consecutively exclude the nuclei that are
not examined by pathologists in HCC grading. Therefore, it
is necessary to evaluate the impact of modules 3 and 4 for
tumor classification. We experimentally evaluated the signifi-
cance of modules 3 and 4 by utilizing the outcomes of modules
2, 3, and 4 in tumor classification. This process is graphically
illustrated in Fig. 8. It contains three pipe-line paths; each path
acquires the outcomes of module 2, 3, and 4 and performs tumor
classification. In addition, we described four categories of
nuclear features for tumor classification; f;: inner texture, f,:
geometry, f3: spatial distribution, and f,: surrounding texture.
Module 5 computes these nuclear features from the outcomes
(segmented regions) of its preceding module.

In practice, it is difficult to accurately segment the nuclei in
G4 (see Sec. 4.6). Therefore, we excluded G4 ROI in this evalu-
ation. For simplicity, each pipeline path performs a two-class
classification of non-neoplastic (GO) versus neoplastic tissues
(G1, G2, and G3). To acquire higher efficiency in the experi-
ments, each ROI was divided into four nonoverlapping
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Module 1 Module 1 Module 1
! l !
Module 2 Module 2 Module 2

! l
Module 3 Module 3
L
Module 4
l
Module 5 Module 5 Module 5

Pipeline path 1 Pipeline path 2 Pipeline path 3

Fig. 8 Overview of the evaluation framework. The dataset is classi-
fied in three pipeline paths. Each pipeline component indicates a cor-
responding module in Fig. 3. Module 1: textural feature extraction,
module 2: nuclear segmentation, module 3: fibrous region detection
and processing, module 4: liver cell nuclei classification, and module
5: tumor classification.

subimages of 1024 x 1024 pixels and a 1120 images dataset
was used.

In the first experiment, we investigated the significance of
each feature set, while comparing the classification results of
each pipeline path. Detailed results of the first experiment are
tabulated in Table 1 and the summary is given in Fig. 9.

In the second experiment, we utilized combined nuclear fea-
tures (see Sec. 4.5). The numerical results and receiver operator
characteristic (ROC) curves of this experiment are shown in
Table 2 and Fig. 10, respectively.

The last experiment performed HCC classification according
to the description given in Sec. 4.6. The five classes of the ROI
image dataset were used for this experiment (see Sec. 5.1). G4
ROIs were classified in the first stage and other ROIs (GO to G3)
were classified in the second stage. ROI’s classified as “O” (see
Sec. 4.6) in stage 1 were elected for stage 2 classification. In
each fold of the cross-validation in stage 2, we explicitly
excluded the misclassified G4 ROI from the training process.
To maintain consistency in the experimental results, we
employed the misclassified G4 ROIs into a randomly selected
iteration of the cross-validation. Final classification results for
threshold, T = 70% are shown in a confusion matrix form in
Table 3. The second column shows the total number of images
used in each class, and the spanned column “Predictions” shows
the predictions of each subimage. For example, the third row
indicates that 67 ROIs were labeled as G2; there were 63
ROIs that were correctly classified, one ROI was classified as
Gl1, two ROIs were classified as G3, and one was categorized
as non. Thus, the CCR that was obtained for the G2 category
was 94.03%.

5.4 Discussion

The individual performances of modules 3 and 4 were examined
using fibrous regions and liver cell nuclei annotations, respec-
tively. The precision and recall obtained for module 3 are
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Table 1 Two-class classification results of three pipeline paths for
each feature set.

Feature set CCR (%) Precision/recall F
Pipeline path 1 f4 91.18 +£0.76 0.91/0.81 0.90
fo 78.21 +£2.27 0.76/0.78 0.77
fa 85.63 +2.90 0.84/0.82 0.83
fa 78.75 + 0.51 0.79/0.76 0.78
Pipeline path 2 f4 94.32 +1.01 0.92/0.93 0.93
fo 88.43+0.13 0.89/0.86 0.87
f3 90.09 + 0.88 0.86/0.89 0.88
fa 82.73 +2.40 0.85/0.81 0.83
Pipeline path 3 f4 95.79 +2.78 0.95/0.92 0.94
fo 92.84 +0.13 0.91/0.89 0.90
fa 91.57 +£2.02 0.91/0.92 0.91
faq 83.66 + 0.63 0.82/0.85 0.83

slightly smaller: 80.72% and 74.10%. Marking the exact boun-
daries of fibrous regions is a very difficult process (see Fig. 2).
We performed block-based detection to maintain the perfor-
mance of the system. In this approach, the blocks located
on the boundary of fibrous regions may be misclassified. The
nuclei located in these regions may be excluded in module 4.
Therefore, falsely detected fibrous regions may not affect the
final tumor grading results. Liver cell nuclei classification is per-
formed by using only the textural features. The liver cell nuclei
classification module obtains very high precision and recall as
95.17% and 97.13%, respectively, for the annotated dataset.
Considering the overall performance of the classifier (latency
and accuracy), we decided to use only textural features for
discriminating liver cell nuclei.

In manual HCC investigations, the characteristics of liver cell
nuclei are mainly examined because they are significantly varied
with tumor progression. The proposed method segmented every
possible nucleus and subsequently excluded the nonliver nuclei
in modules 3 and 4. The impact of excluding insignificant infor-
mation should improve the accuracy of the classification and

100
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Fig. 9 Two-class classification for each pipeline path using each fea-
ture set.
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Table 2 Two-class classification results for pipeline paths 1, 2, and 3.

CCR (%) Precision/recall F
Pipeline path 1 93.21 £ 1.52 0.92/0.93 0.93
Pipeline path 2 94.38 +2.40 0.93/0.94 0.93
Pipeline path 3 97.85 +1.62 0.97/0.97 0.97

this was obvious in the experimental results. As indicated in
Table 1 and Fig. 9, the CCR and other statistics of each feature
set increased continuously from pipeline path 1 to pipeline path
3. Furthermore, the ROC curves in Fig. 10 indicated that for a
false positive rate of 0.02, pipeline paths 1, 2, and 3 have
obtained true positive rates of 0.80, 0.82, and 0.95, respectively.
In addition, Table 2 shows that pipeline paths 1, 2, and 3
achieved 93.21%, 94.38%, and 97.85% CCRs, respectively.
These results implied that excluding nuclei within fibrous
regions contributed to improve the accuracy by a small degree
and eliminating nonliver cell nuclei also contributed to improve
the accuracy by a slightly larger degree. In fact, it is difficult to
isolate the nuclei in fibrous regions because these nuclei may be
very closely located or bound together. Utilizing these nuclei for
liver cell nuclei classification (module 4) may increase the false
detections of the classifier. Therefore, it is important to exclude
the segmented nuclei in fibrous regions prior to the liver cell
nuclei classification module. The results suggested that every
processing module contributed significantly to improve tumor
classification.

Table 1 and Fig. 9 further describe the significance of the
proposed nuclear feature extraction method. The nuclear texture
feature (f) achieved the highest classification accuracy for each
pipeline path. The CCR of geometrical features (f,) achieved
the highest increment. In fact, different types of nuclei had dif-
ferent geometrical properties, e.g., fibroblast nuclei are shown as
thin-long shapes and lymphocytes are shown as small-circular
shapes. These characteristics highly influenced the f, features
and this was clear from the results as well. Generally, the nuclear
surrounding texture (cytoplasmic texture) is not employed for
manual HCC grading. However, our investigation indicated
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Fig. 10 Receiver operator characteristic curves for pipeline paths 1,
2, and 3.
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Table 3 HCC grading classification results for ROls (T = 70%).

Predictions

Grade #ofROIs GO G1 G2 G3 G4 non CCR (%)

GO 93 90 2 0 0 0 0 96.77
G1 72 1 70 O 1 0 0 97.22
G2 67 0 1 63 2 0 1 94.03
G3 48 0 0 2 46 O 0 95.83
G4 25 0 0 0 1 24 0 96.00
Total 305 95.97

that feature set f, contained significant discriminant information
with respect to tumor classification by achieving approximately
83.66% CCR for pipeline path 3.

In practice, regions of WSIs are investigated by pathologists.
Since WSIs are extremely large, the ROIs should be reasonably
large for investigation. These ROIs may contain different grades
of tissues. Pathologists grade these ROIs based on the majority
of tumor grade present within the ROI. We imitate this mecha-
nism by incorporating a threshold-based majority voting rule
into our HCC grading system. It is intuitive that utilizing
only nonoverlapped patches for majority voting may not be rea-
sonable, because some important tissue patterns (structures)
may be divided among these patches. Therefore, we additionally
selected 36 randomly located patches from an ROI. Table 3
shows the classification results of the ROIs. It shows the signifi-
cance of the proposed methodology for practical usage. The pro-
posed HCC classification framework derives an interactive CAD
system in which the pathologists can change the threshold in
real-time and perform sophisticated investigation before the
final decision. In addition, it requires manual investigation
for the ROIs that are categorized as “non.” Therefore, incorpo-
rating a threshold-based majority voting method improves the
reliability of the entire system.

6 Conclusion

HCC tumor grading is important because low-grade tumors have
good prognosis and low-grade cancer patients have high sur-
vival rates. Manual low-grade HCC tumor diagnosing is crucial
because these tumors have similar characteristics to non-neo-
plastic tissues. Image interpretation-based CAD systems have
been developed to automate the HCC diagnosing and improve
the consistency of the diagnostic results. Generally, HCC
is graded according to the characteristics of liver cell nuclei.
Therefore, it is important that the CAD system utilizes the char-
acteristics of the liver cell nuclei in the computational HCC
grading.

This paper proposed a liver cell nuclei classification and
nuclei feature extraction method for the grading of HCC histo-
logical images. For a given histological HCC ROI, the proposed
method segmented every possible nucleus and classified the
liver cell nuclei. Subsequently, it computed four categories of
features: texture, geometry, spatial distribution, and surrounding
texture from the liver cell nuclei and used them for HCC grad-
ing. Results showed the significance of excluding liver cell
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nuclei for HCC grading. In addition, we evaluated the signifi-
cance of nuclear features and results indicated that nuclear tex-
ture contained the dominant characteristics for HCC grading.
Other features also contributed to an increase in the accuracy.
We defined the automated HCC classification framework by
considering the domain-specific information. In particular, we
classified the patches in a given ROI. The decision was obtained
by the threshold-based majority voting rule. In particular, the
ROIs drawn under the threshold require manual pathological
investigation. These routines improve the reliability and practi-
cal usage of the proposed method. Finally, the proposed method
was utilized for grading a set of annotated HCC ROIs into five
classes and obtained approximately 95.97% CCR.
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