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Abstract

There is a consensus in the medical profession of the pressing need for novel antimicrobial agents 

due to issues related to drug resistance. In practice, solutions to this problem to a large degree lie 

with the identification of new and vital targets in bacteria and subsequently designing their 

inhibitors. We consider SecA a very promising antimicrobial target. In this review, we compile 

and analyze information available on SecA to show that inhibition of SecA has a multitude of 

consequences. Furthermore, we discuss issues critical to the design and evaluation of SecA 

inhibitors.

In the last few decades, the global emergence of drug-resistant, especially extensively drug-

resistant and pan-drug resistant bacterial strains has raised severe healthcare concerns [1,2]. 

Bacteria including methicillin-resistant Streptococcus aureus (MRSA), Clostridium difficile, 

Streptococcus pneumonia, Mycobacterium tuberculosis (multidrug-resistant (MDR), 

extensively-drug resistant (XDR) Pseudomonas aeruginosa, Klebsiella species, 

Acinetobacter, Neisseria gonorrhoeae, Campylobacter and Salmonella have been classified 

as ‘High Priority Antibiotic Resistant Bacteria’ by the US Center for Disease Control and 

Prevention. Recently in the USA, the dissemination of carbapenem-resistant 

Enterobacteriaceae and its subtypes such as New Delhi metallo-β-lactamase resistant strains 

have raised added concerns due to the high mortality rates of these new strains [3–5].

The need for new antimicrobials

As one can imagine, the widespread emergence of drug-resistant bacteria has become a 

major public health concern in recent years. The urgent need for new antimicrobial agents 

cannot be overstated and developing drugs with novel mechanisms of action or against new 

targets is more imperative than ever [6,7]. However, any new antimicrobials effective 
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against drug-resistant strains will not be used as the first line of treatment options (for good 

reasons). This means that there is not much money to be made. Therefore, the 

pharmaceutical industry is essentially staying away or at least not focusing on new 

antimicrobials [7]. Other than improved analogs of existing antibiotics, last three decades 

have seen only two new antibiotics (linezolid [8] and daptomycin [9]), whereas 

platensimycin [10] has emerged as a promising clinical candidate.

The focus in the field is on the search for antimicrobials with new mechanisms of action 

and/or against new targets instead of analog design along the lines of existing drugs. To help 

put this review in a broad perspective, we will start by pressing upon the need for novel 

targets with the focus being on SecA. This will be followed by discussions of the challenges 

involved in targeting SecA and screening strategies adopted to circumvent those issues. We 

will also put forth a comparison of known SecA inhibitors and the assay techniques 

employed therein. Our idea is to bring together the scattered pieces of the literature 

dedicated to developing SecA inhibitors and push forward the idea of SecA being an 

indispensable target, discuss the unique advantages of targeting SecA, and address technical 

issues that one has to consider in developing new SecA inhibitors. We hope this review will 

kindle the interests of the scientific community and stimulate more research towards 

designing drugs targeting SecA.

What makes for a good antimicrobial target?

For the discovery of new antimicrobials with the ability to combat drug resistance, novel 

targets are desired. Desirable features of an ideal target should at least include the following. 

First, the target should play an indispensable function in bacterial survival without any 

existing alternative pathways for its mitigation and compensation. Second, a genus-wide 

distribution of the target offers the possibility of developing broad-spectrum antimicrobials. 

Third, the pathogenic target must not have closely related human homologs, so as to 

minimize the potential cytotoxicity issues in humans. Fourth, the target should contribute 

vitally to bacterial virulence and pathogenicity [11,12].

The Sec-dependent protein translocase consists of oligomer complex of SecYEG and 

SecDF•YajC as membrane proteins [13,14] and SecA functions as an ATPase that provides 

the energy for the Sec-dependent protein translocation. When SecA is bound to the SecYEG 

complex, acidic phospholipids and a precursor protein such as proOmpA (the precursor of 

outer membrane protein A), it becomes fully active as an ATPase and a protein translocase 

[14,15]. In all bacteria, SecA plays an essential role as an ATPase in the protein 

translocation machinery. SecA is known to be critical for bacterial survival, and is 

responsible for the secretion of many vital proteins as well as some toxins and additional 

virulence factors [16–19]. Due to the fact that SecA plays an indispensable role in the 

secretion of bacterial toxins, is essential for survival of a broad-spectrum of bacteria, and 

unlike SecYEG there are no SecA counterpart in mammalian cells, SecA makes for an ideal 

target for antimicrobial development. In addition, because SecA is a membrane protein in its 

translocation functional form, there is an added advantage, in other words SecA inhibitors 

can directly access SecA without the need to enter the cytoplasmic space. Thus drug 

permeation and intracellular concentration are less of an issue with these inhibitors. 
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Moreover, most efflux pumps consist of membrane proteins with signal peptides, especially 

in Gram-negative bacteria; thus inhibition of SecA can also be expected to affect the 

assembly of functional efflux. Efflux pumps are an important issue to address in overcoming 

the effect of multidrug resistance (MDR). The majority of bacteria only have one SecA 

homologue, however in some Gram-positive bacteria pathogen, there are two SecA 

homologues [20–28]. SecA1 is the conventional SecA, critical for the secretion of many 

proteins with a Sec-dependent signal peptide, and essential for the viability of bacteria 

[20,29–30]. SecA2 is less conservative than SecA1, involved in secretion of specific 

proteins related with virulence, and is not essential for the majority of bacteria containing 

two SecA homologues [23–25,27,31–32] except in Corynebacterium glutamicum [33] and 

Clostridium difficile [34]. Thus, SecA2 is not a good primary antimicrobial target as the 

conventional SecA (SecA1). SecA2 shares some homology as the conventional SecA and 

has ATPase activity [28,35] but it does not have exactly the same biochemistry property as 

the conventional SecA in terms of SecYEG interaction [28], ATPase activity [36], ADP 

releasing [37] and substrate(s) [28,38]. In the current review, we are focused on how the 

conventional SecA could be a potential drug target.

Key issues in the field include: whether SecA inhibition is sufficient to achieve 

antimicrobial effect; the unique consequence of attenuated virulence factor secretion through 

SecA inhibition; and, whether the functional form of SecA is accessible from the periplasm 

(in Gram-negative) or the extracellular matrix (in Gram-positive), which has implications on 

the ability for SecA inhibitors to bypass the effect of efflux pumps. As is detailed later in the 

text, available information seems to suggest that the answer is yes to all three questions. 

Additionally, because SecA is functional both in solution and in cellular membrane and 

intact SecA has an inhibitory C-terminal domain, the truncated enzyme assay system used 

has direct relevance to the likelihood of success in identifying SecA inhibitors which would 

have antimicrobial effect. Below we discuss in detail about this target, the current state of 

research, and future directions.

SecA is an ATPase, an integral membrane protein & a protein-conducting 

channel

Structure of SecA

In order to achieve a good level of understanding for inhibitor design and the various issues 

to be discussed, it is important that we come to an adequate appreciation of the structural 

features of this protein existing in various forms, its conformational changes and related 

subunit complexation. SecA as the central component of the Sec machinery is conserved 

across bacteria. It functions as an ATPase, assisting in the transport of proteins [39] and 

interacting with other components of the Sec machinery. In E. coli cells, there is relatively 

high concentration of SecA (8 μM) [40], which corresponds to around 13,000 copies per cell 

if assuming a cellular volume of 2.75 μm3 [3,41]. SecA is a soluble protein and localizes 

both to the cytosol and the cytoplasmic membrane [42]. It is believed that most soluble 

SecA forms homodimers in the cytosol [21,24–25,40,43–44]. This dimerization process is 

dynamic, and the dissociation constant was estimated to be in the low μM range (Kd ~ 0.1 

μM) [43]. A more recent study estimated the Kd to be 0.76 nM using an equilibrium 
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technique and dual-color fluorescence-burst analysis (DCFBA) [45]. However, the sensitive 

nature of the dimerization process, which is influenced by many factors such as salt, 

detergents or temperature, has provided debatable results amongst various studies [46]. No 

matter what the specific number for Kd is under a given condition, one thing is clear: these 

numbers are all much lower than the estimated concentration of SecA. Thus one would 

expect that SecA predominantly exists in the dimer form in the cytosol. However, the 

cytosolic form is not directly related to protein translocation and thus would not be the target 

of drug design. Furthermore, the exact implication of inhibiting the cytosolic soluble SecA is 

not well studied.

It is the consensus that each SecA protomer contains several substructural domains (Figure 

1). The nucleotide binding domain (NBD) and the intramolecular regulator of ATPase 

activity 2 domain (IRA2) forms the ‘DEAD’ motor, the main catalytic moiety of SecA. The 

ATP binding site of SecA is located at the interface of the NBD and the IRA2 domains. 

SecA is a member of the superfamily II (SF2) DExH/D proteins, the majority of which are 

helicases [47,48]. Other than helicases, to achieve the unique functions of SecA, the 

preprotein binding domain (PBD) and the C-terminal domain are two key domains that 

contribute to SecA substrate specificity. The PBD is composed of two subdomains: an 

antiparallel β strand (stem) connecting PBD and NBD, and a bilobate globular domain 

(bulb) [49,50]. The C-terminal domain is composed of four substructures: the wing domain 

(WD), the α-helical scaffold domain (SD), the intramolecular regulator of ATP activity 1 

domain (IRA1), and a C-terminal linker (CTL).

The structures of SecA (Table 1) have been studied using x-ray crystallography, tNMR 

spectroscopy [52], cryo-EM [53–55], atomic force microscopy and small angle neutron 

scattering (SANS) [33] and small angle x-ray scattering [56]. Most of these studies revealed 

an equilibrium between monomeric and dimeric forms of SecA with one exception, which 

revealed a monomeric structure [57]. Interestingly, in each of the SecA structures, the 

protomer structures are very similar and yet the orientation of each protomer relative to one 

another can be quite different. In most dimers, their C-domains face opposite directions 

creating antiparallel structures (Figure 2A) [51,58–60]; while one has a parallel orientation 

(Figure 2B) [61]. These results further demonstrate the sensitive nature of the dimerization 

process. All these variance further demonstrate the complexity and difficulty of designing 

SecA inhibitors. On the other hand, design of form-specific SecA inhibitors can turn out to 

be an effective strategy for finding potent inhibitors. So far the SecA structures are all from 

soluble form, not membrane form interacting with lipids.

The transport process

As a major component of the bacterial Sec-system, domain organization of SecA was 

revealed by crystallographic structures from different species [51,57–61] and biochemical 

analyses [50,69–72]. Despite the fact that several structural and biochemical studies have 

been done over the last two decades, the exact mechanism of SecA-mediated protein 

translocation is still not fully understood. Some studies have concluded that SecA functions 

as a dimer [44,73–75] while other studies propose that monomeric SecA is the key 

component in protein translocation [65,76–77]. Meanwhile, both monomeric [65,76,78] and 
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dimeric [73,75,78–79] SecA were found to bind SecYEG. Details of the SecA-SecYEG-

mediated secretion process have been discussed elsewhere [63,80–82]. In one prevailing 

view of the transport process, the following events occur (Figure 3) [83–85]: the preprotein 

SecA either directly or via a chaperone protein such as SecB [52,86]; the preprotein bound 

SecA binds to the lateral gate SecY [66] of t he S ecYEG heterotrimeric complex; 

electrostatic gate opens [87] due to allosteric regulation; ADP is released from the SecA 

motor domains [86–88] and SecA C-terminal domain mediated suppression relieves; SecA 

acquires the translocation ATPase activity [15,89]; and SecYEG channel loosens [90] and 

gets ready to push the preproteins across the cytoplasmic membranes. As the final step of 

the secretion, the signal peptide is cleaved by signal peptidase in the membrane leading to 

the release of the mature protein, which gets folded later. In terms of inhibitor design, 

especially when considering using computational approaches to guide the design, it will be 

important to keep in mind of the conformational changes associated with the various steps of 

the transport process.

In 2011, a reciprocating piston model (Figure 4) was proposed by Driessen and co-workers 

[46] as another SecA/SecYEG-dependent translocation pathway model. It divides the whole 

translocation process into two parts. The initiation of protein translocation includes Steps 1–

4 and the translocation cycle is illustrated in Steps 5–9. First, a SecA homodimer binds to 

the SecYEG channel (Step 1) [73,75] initiating the ATPase activity by changing the 

conformation of SecA (Step 2) [15,87]. Within the dimer, one SecA is anchored to SecYEG 

and the PBD of this protomer shows a clamp-like structure caused by a dramatic 

conformational change [65], and the other protomer, in the meantime, only interacts with 

SecYEG [45]. In the cytosol, homotetrameric chaperone protein SecB binds to the mature 

region of newly synthesized preproteins keeping them partially unfolded and transfers them 

to SecA. SecB interacts with both C-termini of the SecA dimer separately (Step 3) [92–95]. 

Subsequently, ATP binds with SecA and triggers SecB release, and the signal sequence and 

the adjacent mature region of the preprotein are pushed into the SecYEG channel forming a 

hairpin-like structure (insertion step, Step 4) [96–98]. Now the initiation part of protein 

translocation is complete.

The second part of the SecA mediated protein translocation starts from Step 5. During this 

step, one of the dimeric SecA protomer powered by ATP hydrolysis dissociates from the 

preprotein and the remaining SecA prevents backsliding of the polypeptide chain in the 

SecYEG channel. In addition, an assumed deinsertion step (Step 6), which is accelerated by 

the proton motive force (PMF) [99–103], is led by the conformational change of SecYEG 

bound SecA during ATP hydrolysis. SecA from the soluble SecA pool in cytosol rebinds to 

the preprotein (Step 7) and to the remaining SecA protomer. This rebinding of preprotein 

segment and subsequent SecYEG bound SecA causes compression of the polypeptide chain 

and forces it into the channel [85,104]. This ATP-independent translocation is responsible 

for the insertion of a 2–2.5 kDa peptide segment (Step 8) [105,106]. Then, ATP binding, 

insertion of SecA into SecYEG and translocation of another 2–2.5 kDa peptide segment 

occurs (Step 9) [65,83–84]. Repeating Steps 5–9 leads to translocation of 4–5 kDa or 25–30 

amino acids in each cycle [100, 105–107] until the preprotein is fully transported.
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The ATPase activity of SecA is regulated by the NBD & the IRA2 domains

Further complicating the picture is the fact that the SecA ATPase activity is regulated by 

various domains. This aspect is important in deciding whether to use the intact SecA or 

some truncated form for activity screening. This aspect will also be discussed in a later 

section. The opening and closing of the nucleotide-binding cleft, which is located in the gap 

between the NBD and IRA2 domains, play a key role in ATPase activity regulation 

[15,71,108]. The complex conformational changes upon binding the DEAD motor and C-

terminal domain of SecA to SecYEG complex control the interactions between NBD and 

IRA2. Binding with lipids or SecYEG in the membrane weakens the interactions between 

the NBD and IRA2 domains and stimulates the ATPase activity. The SecA form with 

elevated ATPase activity with lipids/membranes is named ‘membrane ATPase’ [15,72].

Besides, binding of the DEAD motor and C-terminal domain of SecA to the SecYEG 

complex triggers conformational changes at the interface among the IRA1, PBD and CTL 

domains. These allosteric changes also increase the SecA affinity for signal peptides. 

Consequently, binding of the signal peptide near the stem region of the PBD-NBD interface 

is suggested to cause a large rotation of the bulb domain, which drives trapping of the first 

amino-terminal segment of mature preprotein domains [64,69,86]. This binding further 

increases the ATPase activity of SecA and converts it into a translocation ATPase. At this 

stage, the C-terminal domain inhibition effect is totally relieved and the gate 1 salt bridge is 

opened at the base of the DEAD motor [87]. Next, the DEAD motor ADP affinity is lost 

while the IRA2 detaches from the NBD and becomes disordered [87,109]. ADP released 

from the DEAD motor induces the PBD (with the trapped preprotein) conformational 

changes [50,109–110] and the dissociation of SecB [92]. Later, ATP binds to the empty 

nucleotide-binding cleft, and brings subsequent conformational changes that cause insertion 

of SecA along with bound pre-protein into the SecYEG channel. Finally, ATP hydrolysis 

drives a small segment of the preprotein release from SecA into the SecYEG channel [66]. 

The SecA returns to the NBD-IRA2 tight interaction state that forces SecA to exit the 

SecYEG channel while the PBD moves further along the pre-protein chain [83,84] and 

reattaches onto the following pre-protein segment, which causes ADP release and allows a 

new round of ATP binding and hydrolysis [111].

SecA functions as a protein-conducting channel in the membrane

SecA exists in two forms: a soluble and a membrane form. The membrane SecA interacts 

with phospholipids and integrates into membranes. The previously mentioned models for 

protein translocation view SecYEG as the core of the protein conducting channel in the 

membrane with SecA as a motor to transport proteins across the membrane (Figure 3, 

Wickner’s Model) [83]. However, in a major breakthrough that suggests an additional 

alternative model, it was found that SecA alone in liposomes can function as a protein-

conducting channel [112] to promote protein translocation and ion-channel activity (Figure 

5) [113]. This model [114] is strongly supported by earlier findings that SecA can integrate 

into the membrane in two forms, SecAM and SecAS [115–117], and can form ring-like pores 

structures in lipids [53,55,118] that provide the physical basis for the protein-conducting 

channel. In this model, the asymmetric SecA dimer is essential for functions; the membrane 

SecAM protomer function as the channel, while the SecAS as ATPase powering precursor 
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peptides through the SecAM. The SecA-alone channels can be reconstituted with SecYEG to 

function as the prevailing SecA-SecYEG channels [119]. The finding that SecA functions as 

a protein-conducting channel as well as ATPase in the membrane strongly supports the 

notion that SecA is accessible from the periplasmic space (Gram-negative) extracellular 

matrix (Gram-positive) by inhibitors, to be discussed below. Although the Tai model is not 

considered the prevailing model, increasing amount of evidence seems to agree with this 

model of a second SecA channel. It is entirely possible that SecA has more than one 

functional form and does not have to exist in one uniform model in bacteria. Therefore, all 

the proposed models are not mutually exclusive.

Established methods to test inhibitory effects on the functions of SecA

Because SecA is a membrane protein, exists in multiple forms interacting with many 

components, and is also soluble, developing appropriate assays that are robust and reliable, 

and accurately reflect the physiological state of the target is not an easy task. However, such 

assays are crucial for the inhibitor development effort.

Presently, there are several ways to test SecA inhibition (Table 2). The ATPase activity can 

be examined using different forms of SecA in solution, such as intrinsic SecA (regulated 

ATPase), truncated SecA without the C-terminal inhibitory sequence in solution (e.g., 

EcN68, unregulated ATPase), SecA in membrane (membrane ATPase), and SecA in 

complexation with SecYEG and precursor in membrane (translocation ATPase) [15]. There 

is also an electrophysiology/channel activity assay developed, which closely mimics the 

physiological conditions of opening channels [123,124]. The most important assays 

reflecting the whole translocation process are of course the inhibition of precursor 

translocation across the membrane vesicles [125] and liposomes [119]. Assaying inhibition 

of each form of SecA provides a partial understanding of the targeted SecA form; however, 

these assays when combined together can be used to obtain a reliable and more accurate 

understanding of the actual form/stage of protein translocation inhibited. Finally, the 

antimicrobial growth assay is used to correlate the enzyme inhibitory activity to bacterial 

protein secretion and growth in cells. It is important to emphasize that SecA inhibition 

studies do need to involve all different methods in order to achieve a thorough 

understanding of the ability for these inhibitors to inhibit SecA ATPase. The following 

section provides a detailed discussion of these assays.

ATPase assay

The assay involves determination of free inorganic phosphate formed as a result of ATP 

hydrolysis. In doing so, the malachite green colorimetric method is most commonly used 

[126–128]. In screening for potential inhibitors, the most obvious one is the use of the whole 

SecA in determining how an inhibitor modifies the ATPase activity. However, whole SecA 

is in a regulated and closed-state largely controlled by its regulatory/inhibitory C-terminal 

(C34) domain. Therefore this is a minimally active state of SecA. Thus, results generated 

using the whole SecA do not truly reflect the ability for the inhibitor to inhibit the fully 

active ATPase, which is the case when SecA is in membrane and in live bacteria. Another 

assay method uses truncated SecA with only the catalytic domain (N68) in solution (e.g., 

EcSecAN68, unregulated ATPase Figure 6). Because of the lack of the inhibitory C-terminal 
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domain, this assay is very sensitive. It has also been demonstrated that results from assays 

using the truncated form parallels that of membrane SecA assays [125]. Another way of 

avoiding the intrinsic inhibition effect of the C-terminal domain is by using a mutant with 

elevated intrinsic activities. For example, in EcSecA residue W775 is important for the C34 

regulation [134], which is located at the interface of the SD and the IRA1 domains (Figure 

3). Replacing the bulky tryptophan with a small hydrophobic alanine weakens the 

interaction of the SD and the IRA1 domains and elevates the intrinsic ATPase activity by 

fivefold compared with the wild-type EcSecA [109,134]. Therefore, using this mutated 

W775A EcSecA allows the benefit of the full-length enzyme without the intrinsic inhibition 

effect of the C-terminal domain [63].

SecA-LacZ reporter assay

This assay makes use of autogenously regulated SecA expression [129]. The design was 

based on the belief that under normal protein secretion in E. coli, SecA controls its own 

expression, by binding to its own mRNA, blocking the translation active site and inhibiting 

its expression. On the other hand, inhibition of protein secretion dissociates the SecA-

mRNA complex and causes an up-regulation of SecA. This screening strategy involves 

identification of compounds that enhance SecA expression through inhibition of protein 

secretion, presumably due to SecA inhibition or inhibition of any member of Sec machinery. 

Therefore, this screening strategy can be used to identify inhibitors of various components 

associated with Sec machinery functioning such as SecB, SecDF and SecYEG as well as 

SecA. However, it should be noted that there are other factors that could also regulate SecA 

expression as discussed in one review [135].

Antisense-mRNA based assay

The strategy involves using an antisense mRNA to bind selectively to the mRNA regions 

encoding SecA, thereby blocking its translation [124]. This decreased translation causes 

subsequent sensitization of bacteria towards SecA inhibitors. A two-plate agar based 

differential sensitivity assay including the antisense sequence RNA (AS-RNA) sensitized 

strain and the wild type controls are used to compare the differences in growth inhibition.

Protein translocation assay

Various in vitro functional assays have been developed to examine the protein transport 

activity of SecA. One method involved monitoring SecA-dependent translocation of 

AlkProPhoA(Cys-)3 [130] through SecYEG bearing membrane vesicles. Translocation of 

the preprotein is assayed measuring accessibility to protease K. A similar assay used 

proOmpA [131,127] translocation through membrane vesicles expressing SecYEG. 

Malachite green is used to quantify the ATP consumption by energy-motor SecA during the 

translocation process. Instead of membranes, proteoliposome reconstitution system of 

purified SecYEG and SecA has also been established to demonstrate the involvement of 

these proteins in translocation. A SecA-liposomes translocation assay without SecYEG as 

protein-conducting channel has also been developed [123]. It was found that SecA forms 

ring-like structures upon binding to anionic phospholipids, inserts into the membrane and 

thus can alone promote the translocation of proOmpA or OmpA into E. coli 
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phospholiposomes, at an optimal concentration of 1–2 μM, 10 times higher than SecYEG-

containing membranes. The in vitro translocation efficiency of proteins was similarly 

determined by their inaccessibility to proteinase K, and amount of translocated protein was 

analyzed by Western blotting followed by quantification.

Protein ion-channel activity assay

The protein/ion channel activity assay developed by our lab [113,133] is a semiphysiological 

assay for electrophysiological measurements of protein-channel. The sample mixture is 

injected into the dark pole site of oocytes using Nanoject II injector and the ion current is 

recorded for 1 min, 3 h after the injection. It truly mimics the cell’s physiological conditions, 

is easy to use with multiple oocytes (n = 20–30) for each variable, requires nanogram 

amounts of materials and studies the translocation by exogenous SecA through membrane 

vesicles/liposomes embedded in individual oocytes. Due to their large size, oocytes can 

easily accommodate various manipulations and electrode penetration and the recording 

noise is very low due to the large number of channels measured in such experiments 

(calculated to be 200,000–1,000,000 channels) [133]. It is important to emphasize that the 

results from the truncated SecA assay and the electrophysiology oocyte assays seem to 

parallel that of antimicrobial results, which adds further support to its near physiological 

nature.

Reported SecA inhibitors

The suitability of SecA as a target for the development of antibacterial agents has been 

increasingly recognized [118, 125, 129–131] and thus there have been efforts in developing 

SecA inhibitors. For a detailed discussion, readers are referred to an extensive review 

written by Segers et al. [91], which discusses in-depth information available on small-

molecule SecA inhibitors. One special point that we would like to make is the possibility of 

SecA to be accessible by inhibitors from the periplasm (Gram-negative) or the extracellular 

matrix (Gram-positive). This means the SecA inhibitors may have the ability to bypass the 

effect of efflux pumps and hence can potentially diminish drug resistance caused due to 

efflux pumps, that is, the MDR issues.

Tables 3 & 4 provide a comparative summary of the various inhibitors that have been 

reported and the screening strategies employed therein. Prior to the recent efforts, inorganic 

azide at mM range [136–139] (1, Table 3) was the only known SecA inhibitor and the SecA 

binding mechanism of sodium azide has been extensively probed [84,106,140]. However, 

sodium azide is unlikely to be developed for therapeutic applications given its human 

toxicity and inhibitory activity against a diverse array of other enzymes [141–145].

Later on, through virtual screening, random screening and natural product isolation, 

inhibitors of various structural classes have been identified. An imino-containing synthetic 

lipophilic compound [129] (2, Table 3) and CJ-21058 (3, Table 3), a natural product isolated 

from CL47745 (unidentified fungus), were found to inhibit SecA.

Another report of a natural product SecA inhibitor employed the antisense-based screening 

method, as discussed above. Pannomycin (4, Table 3) (from the extract of a leaf-litter fungus 
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Geomyces Pannorum) was found using antisense-based screening method [124]. 

Pannomycin was shown to possess antibacterial activity, although; no direct in vitro SecA 

inhibition was reported.

Efforts in our lab led to the discovery of the first ever synthetic SecA inhibitors, as shown in 

Figure 7. An in silico screening of small molecule ligand libraries (~115,000 compounds) 

was carried out using structure-based virtual screening methods against the E. coli 

SecATPase. The top ranked compounds were further tested for in vitro inhibition of ATPase 

activity against E. coli N68. Two modest inhibitors (Figure 7, 9 and 10) showed IC50 values 

in the range of 100 μM [148]. For a rationally guided design, the two hits obtained were 

docked into the enzyme active site and binding interactions were examined to aid in further 

structural optimization, which led to the isoxazolecarboxamide series (9). In the second 

series (10), different aryl structures flanking the central ring led to 5-cyano-6-aryl-2-

thiouracils derivatives D and E (5a and 5b, Table 3). A simplified ‘monomer’ series of 

compounds was also prepared to understand the core structural need for inhibition. The 

compounds were tested in vitro using EcN68 SecA and the whole EcSecA [146]. Bacterial 

growth inhibition studies were done with an outer membrane leaky mutant NR698 having 

increased drug permeability [149] and wild-type E. coli strain MC4100. The result showed 

that the dimer series compound 5a possess low micromolar inhibition (IC50 = 2 μM), which 

is 50-fold more potent than the hit compound 9 (IC50 = 100 μM). For growth inhibition, the 

‘monomer’ compound 5a exhibited the most potent activity against NR698 (IC50 = 20 μM), 

whereas the ‘dimer’ compound 5b did not exhibit significant antimicrobial activities. 

However, neither 5a nor 5b showed inhibition effects against wild type E. coli strain 

MC4100. Such results suggested that the permeability of 5a against NR698 and 5b against 

MC4100 might be a key factor [139].

After the publication of 5-cyano-6-aryl-2-thiouracil inhibitors, of a series of thiazolo [4, 5-d] 

pyrimidine derivatives (6, Table 3) was reported as SecA inhibitors [130]. Their screening 

strategy involved using an in vitro malachite green method and recombinant E. coli or S. 

aureus SecA. The compounds were also tested for inhibition of protein translocation using 

E. coli preprotein AlkProPhoA(Cys-)3 translocation through SecYEG containing membrane 

vesicles. Compound 6 was reported to have an IC50 value of 135 μM against EcSecA 

intrinsic ATPase and 200 μM for SecA translocation ATPase.

Due to the existence of SecA in different forms, it is truly important to screen inhibitors 

against various forms of SecA to seek correlation with antimicrobial results. Such 

correlation would indicate that inhibition of SecA was conducted within a state similar to 

that of physiological form in bacteria. Therefore, in one study, we used assays to 

individually assess inhibition by Rose Bengal (RB) and Erythrosine B (EB) on different 

SecA forms and found that the SecA inhibition results from channel activity assay and 

truncated SecA inhibition correlate with antimicrobial results the best. Specifically, 

inhibition assays involved truncated/unregulated SecA, regulated SecA (intrinsic, 

membrane-bound and translocase), SecA-mediated protein translocation and the 

antimicrobial growth inhibition using an outer membrane-leaky mutant NR698 and wild 

type strains [125]. As seen in Table 4 (8a and 8b), there are large differences in the 

sensitivity shown by different forms of SecA ATPases towards inhibitors. Such differences 

Chaudhary et al. Page 10

Future Med Chem. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



could largely be due to the effect of conformational changes affecting binding. The intrinsic 

SecA ATPase, which is the native and regulated form, shows higher IC50 values for RB (25 

μM) and EB (21 μM) other forms of SecA. The membrane-bound form shows IC50 of 5 μM 

for RB and 12 μM for EB. The translocation ATPase shows IC50 values of 0.9 μM and 10 

μM for RB and EB inhibition, respectively. The effect of inhibitors on SecA-dependent 

protein translocation of precursor proOmpA into the membrane vesicles was also studied. 

Both RB and EB were found to inhibit its translocation with IC50 values of 0.25 μM and 4 

μM, respectively. We know that Sec dependent protein translocation maintains normal 

physiology and is crucial for viability; therefore the effect of inhibitors on bacterial growth 

was studied. The MIC values observed for Gram-negative bacteria (E. coli > 1 mM) are 

much higher than for Gram-positive (B. subtilis, 3.1 μM) and the leaky mutant (E. coli 

NR698, 3.1 μM), suggesting that outer membrane acts as a barrier to inhibitor permeability. 

More recently, we reported improved RB analogs showing inhibition in SecA ATPase, ion-

channel and bacterial growth assays [150]. Compound 8c (Table 4) shows ion-channel 

inhibition with IC50 of 2.5 μM and several fold enhanced antimicrobial potency with MIC ~ 

1 μM against (leaky mutant) E. coli NR698, as compared with RB. SAR studies on 20 

analogs revealed that the xanthene ring on RB is essential for inhibition; the chlorinated 

benzoate position (8a, Table 4) can tolerate fairly substantial modifications; and the 

carboxylate group and the aryl ring are not required for activity [151,152].

In a recent study, SecA inhibitors were reported for a citrus plant bacterium Candidatus 

Liberibacter asiaticus (Las) responsible for causing Huanglongbing citrus disease [147]. A 

homology model of Las SecA was derived from E. coli SecA and used for virtual screening 

studies. The 20 hits obtained were tested for SecA ATPase activity inhibition using 

malachite green spectrophotometric method and antimicrobial growth inhibition was studied 

for A. tumefaciens. The most potent SecA inhibitor obtained was 8a with IC50 of 0.25 μM; 

and the MIC of 0.76 mM (A. tumefaciens) as shown in Table 4. This is the very first 

example of inhibitors targeting SecA of plant-infecting bacteria. Since, SecA is highly 

conserved in nature and the fact that homology model of Las SecA was based upon E. coli 

SecA, it may be worthwhile to test the inhibition of these compounds in different bacterial 

SecA.

Crowther et al. [153] have developed a whole-cell-based inhibitor screening strategy for the 

SecA machinery and demonstrated its high-throughput utility using various inhibitors. It 

involves using an engineered E. coli strain, which produces beta-galactosidase protein (β-

gal) having the LamB sequence, causing it to be transported via Sec machinery. Transport of 

β-gal across SecYEG causes its inactivation; hence, the activity readout of β-gal is affected. 

This approach holds great advantage in screening for inhibitors of entire SecA machinery 

without having a specific target and works like antimicrobial (growth-based) assays in 

allowing only drug-like molecules to come up as hits. However, the screening results do not 

point to a specific molecular target as the reason for the observed effect.

In summary, seven structurally distinct classes of SecA inhibitors have been identified so 

far, along with the development of reliable assays, allowing screening of inhibitors against 

SecA ATPase under different conditions. These specific screening assays have helped in 

achieving a good understanding of the effects of inhibitors on various stages of protein 
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translocation, and can lead to efficient and selective drug designing strategies. It needs to be 

emphasized that the electrophysiological assay using oocytes provides the best correlation 

with antimicrobial results. This is not surprising, since this is the only one having SecA in a 

physiological membrane structure, which mimics the original physiological state for SecA. 

A comparison of the enzymatic and microbial growth inhibition activities (Table 3) of 

various SecA inhibitors presses upon the need for improving antimicrobial growth inhibition 

potency. For example, RB/EB analogs and indole derivatives (Tables 3 & 4, 7 and 8) show 

the most potent enzyme inhibition, but antimicrobial properties of these compounds need 

further improvement. RB (8a) and EB (8b) show no inhibition (up to 1 mM) against the 

wild-type E. coli and indole derivatives (7) show minimal bactericidal concentration of 0.76 

mM against A. tumefaciens. However, effective inhibition is seen (Table 4) against the leaky 

OM mutant with increased drug permeability (EcNR698: 8a, 3.1 μM, 8c, 1.0 μM) and 

Gram-positive (B. subtilis: 8a, 3.1 μM, 8c, 6.0 μM) bacteria. Clearly, these are due to the 

well-known outer membrane permeability issues in Gram-negative bacteria, which further 

suggest the need for overcoming outer membrane permeability problems. To an extent, this 

can be addressed by enhancing the drug-likeness of such compounds through modification 

of the structural features in order to improve physicochemical properties such as MW, logP 

and logS. Till date, membrane permeability poses one of the most challenging trials for 

medicinal chemists in the process of drug discovery.

Conclusions & future perspective

Thus far, ample results have demonstrated that indeed inhibition of SecA leads to 

antimicrobial effects and SecA is a valid target for the development of new antimicrobials. 

A critical issue in this area is the selection of the appropriate assays for SecA inhibition, 

which allows both throughput and accuracy. In this regard, the results from a combination of 

assays using truncated SecA, channel activity, and liposomal protein translocation seem to 

correlate well with antimicrobial effects. There are initial indications that SecA inhibition 

leads to attenuated secretion of virulence factors. Many results suggest that effect of SecA 

inhibitors can be more than just bactericidal/bacteriostatic and SecA inhibition can greatly 

attenuate pathogenicity. Furthermore, there are also indications that the potency of SecA 

inhibitors is not affected by the expression level of efflux pumps. Such results suggest that 

SecA may have the ability to overcome the effect of efflux by (1) directly accessing the 

target (SecA) and/or (2) impeding the integration of efflux pumps into bacterial membrane, 

especially in Gram-negative bacteria due to the presence of signal peptide sequence on 

efflux pumps recognizable for SecA Given the wide-spread nature of efflux pumps in 

bacteria and its importance in drug-resistance [154–160], such a finding by itself is of 

extraordinary novelty and significance. Thus SecA represent a very unique and promising 

target for antimicrobial development. The labs of Wang and Tai have collected ample 

evidence [125,127,150–152 (and some unpublished data, J Cui, AS Chaudhary, J Jin, PC Tai 

and B Wang, 2011-present)] to support the various points described. We hope our earlier 

review [161] will help stimulate significant research in this area, leading to the development 

of SecA-targeting novel antimicrobials.
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Key terms

Broad-spectrum 
antimicrobials

Antimicrobials capable of killing a wide range of bacteria by 

modulating a broad spectrum antimicrobial target

SecYEG Heterotrimeric complex comprising of SecY, SecE and SecG 

proteins, forming a channel in bacterial membrane for preprotein 

translocation

Multidrug 
resistance

Nonsusceptibility of microbes to at least one antimicrobial agent in 

three or more categories

SecA ATPase Bacterial enzyme that possesses intrinsic ATPase activity, which is 

stimulated by lipids, and that catalyzes the translocation of 

preproteins through SecYEG machinery by hydrolyzing ATP
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Executive summary

• Given the substantial increase in the prevalence of drug resistance bacteria, there 

is an urgent need for developing new antimicrobials with novel mechanism of 

action.

• We discuss the desired qualities of a good and ideal antimicrobial target in 

reference to SecA. The significance of SecA as an ATPase and an integral 

membrane protein along with its role in protein translocation in conjunction 

with SecYEG system is described.

• Furthermore, SecA as an ATPase, an integral membrane protein, and a protein-

conducting channel is discussed in great details. This includes a discussion of 

structure and mechanisms of protein translocation in

• SecYEG/SecA. We also discuss the regulatory mechanisms for SecA activity 

such as SecA’s NBD and IRA2 domains.

• Also, the established methods to test inhibitory effects on the functions of SecA, 

including assays such as SecA-lacZ reporter assay, antisense-mRNA based 

assay, ion-channel activity assay and others are described.

• We provide our review and analysis of reported SecA inhibitors and highlight a 

future perspective by discussing the need for effective and accurate assays for 

assessing SecA activity.
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Figure 1. 3D structure of the Escherichia coli SecA monomer
Color coding of SecA domains: NBD, red; IRA2, dark blue; SD, cyan; HWD, orange; PBD, 

yellow; IRA1, purple; and CTL (first 4 residues), black. Also shown are the bound ATP 

molecule (in ball and stick, colored by elements) and C34 regulating W775 residue (green). 

The figure was created using the UCSF Chimera package, using the coordinates of the 

EcSecA (PDB code 2FSG) [51].

For color images please see online www.future-science.com/doi/full/10.4155/FMC.15.42
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Figure 2. Space filling models of SecA dimers
Dimeric SecA proteins were structurally aligned on one of their protomers (the nucleotide 

binding domain NBD, red; the intramolecular regulator of ATPase 2 IRA2, dark blue; the 

protein binding domain PBD, yellow and the C-domain, purple) so as to demonstrate the 

variable position that the second (grey) protomer occupies; arrows indicate C-terminus. The 

figure was created using the UCSF Chimera package [67,68]. The structures used are: 

Escherichia coli (ecSecA1; 2FSF) [51]. Thermus thermophilus (ttSecA; 2IPC) [61].

For color images please see online www.future-science.com/doi/full/10.4155/FMC.15.42
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Figure 3. Model of the Sec-dependent preprotein secretion pathway in bacteria
(I) Membrane SecA complexed with the SecB and preprotein binds to SecYEG; (II) SecA 

acquires the translocation ATPase activity and inserts itself into SecYEG channel; (III) 

SecYEG channel loosens and gets ready to push the pre-proteins; and (IV) the preprotein is 

pushed into the periplasm across the cytoplasmic membrane.

Adapted with permission from [91] © Elsevier (2011).
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Figure 4. A proposed reciprocating piston model of the preprotein secretion pathway in bacteria
Steps 1–4: Initiation of protein translocation is commenced by SecA cytoplasmic 

homodimer (1) and ends with the release of SecB chaperone (4). Steps 5–9: The 

translocation cycle is initiated with the release of SecA protomer (5) which is recycled back 

into the translocation cycle (6–7), finally culminating in the release of preprotein into the 

periplasm (9).

Reproduced with permission from [46] © Springer (2011).
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Figure 5. A working model of SecA in the membrane
The Tai model [114]: SecA dimer [54,118] alone acts as the protein conducting-channel to 

promote protein translocation and ion-channel activity [113 62,120–122]. There exist two 

forms of integral SecA in the membranes [115,116]. SecAS has the same conformation as in 

soluble form, and SecAM is specific for lipids, acting as channels [53–55].

Reproduced from [114].
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Figure 6. Two separable soluble domains and lipid-specific domain of SecA
Two forms of SecA exist in the membrane: SecAS, which is similar to the soluble form with 

two separable domains: N68 and C34, and the other SecAM with the N36 and M48 domains 

spanning the lipid membrane [114]. X-ray ribbon structure of EcSecA with N68 (yellow) 

and C34 (green) is shown.

For color images please see online www.future-science.com/doi/full/10.4155/FMC.15.42
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Figure 7. 
Structure optimization of 5-cyano-6-aryl-2-thiouracils derivatives.
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Table 1

X-ray crystallography structures of SecA.

Organism PDB entry Ligand Additional structures Ref.

Mycobacterium tuberculosis 1NL3 1NKT (ADP, Mg2+) [59]

Thermus thermophiles 2IPC [61]

Escherichia coli 3BXZ ADP, Mg2+, spermidine [62]

E. coli 2FSF 2FSG (ATP), 2FSH (AMP-PNP), 2FSI (ADP) [51]

Bacillus subtilis 1M6N 1M74 (ADP, Mg2+,SO4
2−) [63]

B. subtilis 3JV2 ADP, Mg2+, peptide [64]

B. subtilis 3DL8 [65]

B. subtilis 1TF5 1TF2 (ADP, Mg2+) [66]

B. subtilis 2IBM ADP [60]

Thermotoga maritime 3JUX ADP, Mg2+ [64]

T. maritime 3DIN ADP, Mg2+, BEF [65]
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Table 2

Assays for testing SecA inhibition.

No. Assay Information Ref.

1 ATPase assay Investigates the activity of SecA on ATP hydrolysis [126–128]

2 SecA-LacZ reporter assay Detects SecA inhibitors by investigating expression of SecA inhibition due to 
autogenous regulation

[129]

3 Antisense-mRNA assay Identifies SecA inhibitors by using antisense-mRNA to block SecA translation and 
causing bacterial sensitization

[124]

4 Protein translocation assay Examines the protein transport activity of SecA through vesicles and liposomes [130–132]

5 Protein ion-channel activity assay Measures the ion-channel activity of SecA [113,133]
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Table 3

Comparative account of various SecA inhibitors and the assays used.

Inhibitor ID Compound name and structure Source (Year) Inhibition constants 
(IC50) and assay used

Ref.

1 NaN3

Inorganic azide
Synthetic (1990) Translocation EcSecA: 

5 mM
Intrinsic and 
membrane-bound SecA 
ATPase: no effect

[137]

2

Imino-containing molecule

Synthetic (2000) Antibacterial: 6.2 μM 
(S. aureusRN 8081)
Assay: SecA-lacZ 
reporter fusion to 
identify compounds 
that enhance SecA 
expression through 
inhibition of protein 
secretion

[129]

3

CJ-21058

CL47745, an 
unidentified 
fungus (2002)

SecA Translocation 
ATPase: 38.4 μM
Antibacterial: 12.0 μM 
(MRSA, Enterococcus 
faecalis)
Assay: Monitoring ATP 
hydrolysis using the 
SecA mediated 
translocation of 
proOmpA through the 
inner membrane 
vesicles bearing the 
heterotrimeric SecYEG 
complex

[132]

4

Pannomycin

Geomyces 
pannorum 
(Fungus) (2009)

Antibacterial:
B. subtilis (0.4 mM)
S. aureus (1.4 mM)
E. faecalis (1.4 mM)
Assay: antisense-based 
screening strategy

[124]
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Inhibitor ID Compound name and structure Source (Year) Inhibition constants 
(IC50) and assay used

Ref.

5

5-cyano-6-aryl-2-thiouracils derivatives

Synthetic (2010) Intrinsic SecATPase 
(EcN68): 2.0 μM (5b)
Antibacterial 
(EcNR698): 20 μM (5a)
Assay: ATPase 
malachite green assay

[146]

6

Thiazolo [4,5-d] pyrimidine derivatives

Synthetic (2011) Intrinsic SecA ATPase: 
135 μM
Translocation SecA 
ATPase:200 μM
E. coli or S. aureus 
SecA
Assay: ATPase 
malachite green assay
Protein translocation 
using membrane 
vesicles containing 
overexpressed SecYEG 
and the E. coli 
preprotein 
AlkProPhoA(Cys-)3

[130]

7

Indole derivative

Synthetic (2012) Intrinsic SecA ATPase 
inhibition: 0.25 μM
(Candidatus 
Liberibacter asiaticus)
Antibacterial: 0.76 mM 
(A. tumefaciens)
Assay: ATPase
Malachite green assay

[147]
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